1
|
Zhao X, He C, Wang S, Lei Y, Niu Q. The association between blood lymphocyte NMDAR, group I mGluRs and cognitive function changes in occupationally aluminum-exposed workers and verification in rats. J Trace Elem Med Biol 2022; 69:126875. [PMID: 34673477 DOI: 10.1016/j.jtemb.2021.126875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/27/2021] [Accepted: 10/12/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Many studies have shown that occupational aluminum (Al) exposure could affect the cognitive functions of workers and cause mild cognitive impairment (MCI). Glutamate receptors (GluRs) play an important role in learning and memory functions. METHODS 352 workers in a large Al production enterprise were investigated in this research. MMSE, CDT, DST, VFT, FOM were used to evaluate the cognitive functions of workers. Plasma Al levels as exposure indices were measured by Graphite Furnace Atomic Absorption Method (GFAAS). The expression of GluRs was measured by ELISA. Cognitive function comprehensive scores were obtained through factor analysis. Then a rat model of chronic AlCl3 exposure was established. The detection method of Al levels and protein expression were the same as mentioned-above. RESULTS Compared with the Q1 group, the DST, VFT, and comprehensive cognitive function scores of the Q4 group were lower(P < 0.05). For every 1μg/L increase in plasma Al concentration, the risk of cognitive impairment increases 1.051 times (95 %CI:1.031,1.072). Both NMDAR1 and NMDAR2A protein expression level of Q1 group were higher than those of Q2, Q3, Q4 group (all P < 0.05). The mediating effect ratio of NMDAR1 between plasma Al levels and cognitive function comprehensive scores was a1*b1/c=11.30 %, and the mediating effect ratio of NMDAR2A was |a2*b2/c|=21.77 %. Compared with control group, the escape latency of rats in the high Al dose group was longer day by day (P < 0.05). With the increase of Al dose, the relative expression of NMDAR1, NMDAR2A, NMDAR2B, GluR1 and mGluR5 in cerebral cortex and lymphocytes of rats were decreased (P < 0.05). The result of correlation analysis on NMDAR1 protein expression between brain cortex and lymphocyte showed that the correlation coefficient is r = 0.646(P < 0.05). CONCLUSION Taking together the results from both Al exposed workers and animal, there is a certain correlation between NMDAR1 protein contents of brain cortex and peripheral lymphocytes. We propose that lymphocyte NMDAR1 could be considered as a peripheral potential marker of cognitive impairment for further observation.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Chanting He
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Department of Anatomy, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Shanshan Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yang Lei
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
2
|
Chandrasekaran AR, Halvorsen K. DNA-Based Smart Reagent for Detecting Alzheimer's Associated MicroRNAs. ACS Sens 2021; 6:3176-3181. [PMID: 34491722 DOI: 10.1021/acssensors.1c01567] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, with significant research efforts devoted to identifying new biomarkers for clinical diagnosis and treatment. MicroRNAs have emerged as likely disease regulators and biomarkers for AD, now implicated as having roles in several biological processes related to progression of the disease. In this work, we use the miRacles assay (microRNA activated conditional looping of engineered switches) for single-step detection of AD-related microRNAs. The technology is based on conformationally responsive DNA nanoswitches that loop upon recognition of a target microRNA and report their on/off status through an electrophoretic readout. Unlike many methods, our approach directly detects native microRNAs without amplification or labeling, eliminating the need for expensive enzymes, reagents, and equipment. For known AD-related microRNA miR-107, we demonstrated sensitivity of ∼8 fM, specificity among four similar microRNAs of the same family, and simultaneous multiplexed detection of those four microRNA targets. Toward clinical use, we screened 56 AD-related microRNAs and found four that showed detectable differences between total RNA extracts derived from human healthy and AD brain samples. In the context of AD, this "smart reagent" could facilitate biomarker discovery, accelerate efforts to understand the role of microRNAs in AD, and have clinical potential as a diagnostic or monitoring tool for validated biomarkers.
Collapse
Affiliation(s)
- Arun Richard Chandrasekaran
- The RNA Institute, University of Albany, State University of New York, Albany, New York 12222, United States
| | - Ken Halvorsen
- The RNA Institute, University of Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
3
|
Dichev V, Kazakova M, Sarafian V. YKL-40 and neuron-specific enolase in neurodegeneration and neuroinflammation. Rev Neurosci 2021; 31:539-553. [PMID: 32045356 DOI: 10.1515/revneuro-2019-0100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/22/2019] [Indexed: 01/08/2023]
Abstract
Neurodegenerative diseases comprise a large number of disorders with high impact on human health. Neurodegenerative processes are caused by various etiological factors and differ in their clinical presentation. Neuroinflammation is widely discussed as both a cause and a consequence in the manifestation of these disorders. The interplay between the two entities is considered as a major contributor to the ongoing disease progression. An attentive search and implementation of new and reliable markers specific for the processes of inflammation and degeneration is still needed. YKL-40 is a secreted glycoprotein produced by activated glial cells during neuroinflammation. Neuron-specific enolase (NSE), expressed mainly by neuronal cells, is a long-standing marker for neuronal damage. The aim of this review is to summarize, clarify, and evaluate the potential significance and relationship between YKL-40 and NSE as biomarkers in the monitoring and prognosis of a set of neurological diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. YKL-40 appears to be a more reliable biomarker in neurological diseases than NSE. The more prominent expression pattern of YKL-40 could be explained with the more obvious involvement of glial cells in pathological processes accompanying each neurodegenerative disease, whereas reduced NSE levels are likely related to low metabolic activity and increased death of neurons.
Collapse
Affiliation(s)
- Valentin Dichev
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv 400, Bulgaria.,Research Institute at Medical University-Plovdiv, Plovdiv 4000, Bulgaria
| | - Maria Kazakova
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv 400, Bulgaria.,Research Institute at Medical University-Plovdiv, Plovdiv 4000, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv 400, Bulgaria.,Research Institute at Medical University-Plovdiv, Plovdiv 4000, Bulgaria
| |
Collapse
|
4
|
Manzine PR, Vatanabe IP, Peron R, Grigoli MM, Pedroso RV, Nascimento CMC, Cominetti MR. Blood-based Biomarkers of Alzheimer's Disease: The Long and Winding Road. Curr Pharm Des 2020; 26:1300-1315. [PMID: 31942855 DOI: 10.2174/1381612826666200114105515] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Blood-based biomarkers can be very useful in formulating new diagnostic and treatment proposals in the field of dementia, especially in Alzheimer's disease (AD). However, due to the influence of several factors on the reproducibility and reliability of these markers, their clinical use is still very uncertain. Thus, up-to-date knowledge about the main blood biomarkers that are currently being studied is extremely important in order to discover clinically useful and applicable tools, which could also be used as novel pharmacological strategies for the AD treatment. METHODS A narrative review was performed based on the current candidates of blood-based biomarkers for AD to show the main results from different studies, focusing on their clinical applicability and association with AD pathogenesis. OBJECTIVE The aim of this paper was to carry out a literature review on the major blood-based biomarkers for AD, connecting them with the pathophysiology of the disease. RESULTS Recent advances in the search of blood-based AD biomarkers were summarized in this review. The biomarkers were classified according to the topics related to the main hallmarks of the disease such as inflammation, amyloid, and tau deposition, synaptic degeneration and oxidative stress. Moreover, molecules involved in the regulation of proteins related to these hallmarks were described, such as non-coding RNAs, neurotrophins, growth factors and metabolites. Cells or cellular components with the potential to be considered as blood-based AD biomarkers were described in a separate topic. CONCLUSION A series of limitations undermine new discoveries on blood-based AD biomarkers. The lack of reproducibility of findings due to the small size and heterogeneity of the study population, different analytical methods and other assay conditions make longitudinal studies necessary in this field to validate these structures, especially when considering a clinical evaluation that includes a broad panel of these potential and promising blood-based biomarkers.
Collapse
Affiliation(s)
- Patricia R Manzine
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Izabela P Vatanabe
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Rafaela Peron
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Marina M Grigoli
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Renata V Pedroso
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Carla M C Nascimento
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Marcia R Cominetti
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| |
Collapse
|
5
|
The Association Between Circulating Inflammatory Markers and the Progression of Alzheimer Disease in Norwegian Memory Clinic Patients With Mild Cognitive Impairment or Dementia. Alzheimer Dis Assoc Disord 2019; 34:47-53. [PMID: 31414991 DOI: 10.1097/wad.0000000000000342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Neuroinflammation may play an important role in the pathogenesis and progression of Alzheimer disease (AD). The aim of the present study was to detect whether increased inflammatory activity at baseline could predict cognitive and functional decline in patients with amnestic mild cognitive impairment (aMCI) or AD dementia after 2 years. METHODS Serum samples from 242 memory clinic patients with an aMCI (n=88) or AD dementia (n=154) were analyzed for C-reactive protein and for 14 other inflammatory markers [interleukin (IL)-1β, interleukin-1 receptor antagonist, IL-6, IL-10, IL-12p40, IL-17a, IL-18, IL-22, IL-33, tumor necrosis factor, cluster of differentiation 40 ligand, interferon-γ, chemokine ligand (CCL) 2, and CCL4] by bead-based multiplex immunoassay. Disease progression was measured by the annual increase in the Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) and annual decrease in the score on the Mini-Mental State Examination (MMSE). RESULTS No association between increased levels of the inflammatory markers and change on the CDR-SB or MMSE score was found, but there was a significant difference in baseline IL-6 and interleukin-1 receptor antagonist levels between aMCI and AD dementia groups. CONCLUSION Increased levels of inflammatory markers were not associated with faster progression as measured by the annual change on the CDR-SB or MMSE score.
Collapse
|
6
|
T. dos Santos MC, Scheller D, Schulte C, Mesa IR, Colman P, Bujac SR, Bell R, Berteau C, Perez LT, Lachmann I, Berg D, Maetzler W, Nogueira da Costa A. Evaluation of cerebrospinal fluid proteins as potential biomarkers for early stage Parkinson's disease diagnosis. PLoS One 2018; 13:e0206536. [PMID: 30383831 PMCID: PMC6211693 DOI: 10.1371/journal.pone.0206536] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022] Open
Abstract
Cerebrospinal fluid (CSF) has often been used as the source of choice for biomarker discovery with the goal to support the diagnosis of neurodegenerative diseases. For this study, we selected 15 CSF protein markers which were identified in previously published clinical investigations and proposed as potential biomarkers for PD diagnosis. We aimed at investigating and confirming their suitability for early stage diagnosis of the disease. The current study was performed in a two-fold confirmatory approach. Firstly, the CSF protein markers were analysed in confirmatory cohort I comprising 80 controls and 80 early clinical PD patients. Through univariate analysis we found significant changes of six potential biomarkers (α-syn, DJ-1, Aβ42, S100β, p-Tau and t-Tau). In order to increase robustness of the observations for potential patient differentiation, we developed-based on a machine learning approach-an algorithm which enabled identifying a panel of markers which would improve clinical diagnosis. Based on that model, a panel comprised of α-syn, S100β and UCHL1 were suggested as promising candidates. Secondly, we aimed at replicating our observations in an independent cohort (confirmatory cohort II) comprising 30 controls and 30 PD patients. The univariate analysis demonstrated Aβ42 as the only reproducible potential biomarker. Taking into account both technical and clinical aspects, these observations suggest that the large majority of the investigated CSF proteins currently proposed as potential biomarkers lack robustness and reproducibility in supporting diagnosis in the early clinical stages of PD.
Collapse
Affiliation(s)
| | | | - Claudia Schulte
- Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, University of Tuebingen and German Center for Neurodegenerative Diseases, Tuebingen, Germany
| | - Irene R. Mesa
- Exploratory Statistics, Global Exploratory Development, UCB Pharma SA, Slough, United Kingdom
| | - Peter Colman
- Exploratory Statistics, Global Exploratory Development, UCB Pharma SA, Slough, United Kingdom
| | - Sarah R. Bujac
- Exploratory Statistics, Global Exploratory Development, UCB Pharma SA, Slough, United Kingdom
| | - Rosie Bell
- Translational Medicine, UCB Biopharma SPRL, Braine L’Alleud, Belgium
| | - Caroline Berteau
- Translational Medicine, UCB Biopharma SPRL, Braine L’Alleud, Belgium
| | - Luis Tosar Perez
- Bioanalytical Sciences, Non Clinical Development, UCB Biopharma SPRL, Braine L’Alleud, Belgium
| | | | - Daniela Berg
- Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, University of Tuebingen and German Center for Neurodegenerative Diseases, Tuebingen, Germany
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Walter Maetzler
- Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, University of Tuebingen and German Center for Neurodegenerative Diseases, Tuebingen, Germany
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| | | |
Collapse
|
7
|
Lang B, Kindy MS, Kozel FA, Schultz SK, Taheri S. Multi-Parametric Classification of Vascular Cognitive Impairment and Dementia: The Impact of Diverse Cerebrovascular Injury Biomarkers. J Alzheimers Dis 2018; 62:39-60. [DOI: 10.3233/jad-170733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Brittany Lang
- Clinical Psychology Program, University of South Florida, Tampa, FL, USA
| | - Mark S. Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Tampa, FL, USA
- James A. Haley VA Medical Center, Tampa, FL, USA
| | - F. Andrew Kozel
- James A. Haley VA Medical Center, Tampa, FL, USA
- Psychiatry and Behavioral Sciences, University of South Florida, Tampa, FL, USA
| | - Susan K. Schultz
- James A. Haley VA Medical Center, Tampa, FL, USA
- Psychiatry and Behavioral Sciences, University of South Florida, Tampa, FL, USA
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Tampa, FL, USA
- Byrd Alzheimer’s Institute, Tampa, FL, USA
| |
Collapse
|
8
|
A biosensor-based framework to measure latent proteostasis capacity. Nat Commun 2018; 9:287. [PMID: 29348634 PMCID: PMC5773518 DOI: 10.1038/s41467-017-02562-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022] Open
Abstract
The pool of quality control proteins (QC) that maintains protein-folding homeostasis (proteostasis) is dynamic but can become depleted in human disease. A challenge has been in quantitatively defining the depth of the QC pool. With a new biosensor, flow cytometry-based methods and mathematical modeling we measure the QC capacity to act as holdases and suppress biosensor aggregation. The biosensor system comprises a series of barnase kernels with differing folding stability that engage primarily with HSP70 and HSP90 family proteins. Conditions of proteostasis stimulation and stress alter QC holdase activity and aggregation rates. The method reveals the HSP70 chaperone cycle to be rate limited by HSP70 holdase activity under normal conditions, but this is overcome by increasing levels of the BAG1 nucleotide exchange factor to HSPA1A or activation of the heat shock gene cluster by HSF1 overexpression. This scheme opens new paths for biosensors of disease and proteostasis systems. A pool of quality control proteins (QC) maintains the protein-folding homeostasis in the cell, but its quantitative analysis is challenging. Here the authors develop a FRET sensor based on the protein barnase, able to quantify QC holdase activity and its ability to suppress protein aggregation.
Collapse
|
9
|
Ficulle E, Sufian MDS, Tinelli C, Corbo M, Feligioni M. Aging-related SUMOylation pattern in the cortex and blood plasma of wild type mice. Neurosci Lett 2018; 668:48-54. [PMID: 29325714 DOI: 10.1016/j.neulet.2018.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/20/2017] [Accepted: 01/02/2018] [Indexed: 12/19/2022]
Abstract
Protein activities and mechanisms related to aging has become a growing interest nowadays. Since SUMOylation is implicated in several cellular processes, its investigation related to senescence, aging and frailty is of high interest. In our study, wild type mice cortical lysates, synaptosomes and plasma have been processed to evaluate SUMOylation and SUMO machinery expression (Ubc9 and SENP1 enzymes) profile at different ages. In cortical lysates, SUMO-1ylation reached a peak at 6 months followed by a decrease; while in synaptosomes, it progressively increased till 18 months. Regarding SUMO-2/3ylation, it was observed a similar trend in both lysate and synaptosomes where the protein conjugation was the highest at 6 months but interestingly decreased afterwards. In addition, Ubc9 and SENP1 enzymes showed a linear increased expression level in both brain preparations. Since SUMOylation process is ubiquitously expressed, we were interested to identify SUMO conjugation at peripheral level too. Thus, SUMO-1ylation and SUMO-2/3ylation expression level has been detected in mouse plasma that revealed an inverted U-shaped curve trend during mice lifespan. Surprisingly, SENP1 enzyme was not present in the plasma while Ubc9 enzyme reached a plateau at 6 months and was highly expressed till 18 months. In conclusion, our data indicates that SUMOylation is highly correlated with age-related processes which indisputably need to be considered for further investigation.
Collapse
Affiliation(s)
- E Ficulle
- Laboratory of Neurobiology in Translational Medicine, Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - M D Shah Sufian
- Laboratory of Neurobiology in Translational Medicine, Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - C Tinelli
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
| | - M Corbo
- Laboratory of Neurobiology in Translational Medicine, Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - M Feligioni
- Laboratory of Neurobiology in Translational Medicine, Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy; Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.
| |
Collapse
|
10
|
Khudaish EA, Rather JA. Electrochemical studies of dopamine under stagnant and convective conditions at a sensor based on gold nanoparticles hosted in poly(triaminopyrimidine). J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.06.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Polivka J, Polivka J, Krakorova K, Peterka M, Topolcan O. Current status of biomarker research in neurology. EPMA J 2016; 7:14. [PMID: 27379174 PMCID: PMC4931703 DOI: 10.1186/s13167-016-0063-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 06/02/2016] [Indexed: 01/18/2023]
Abstract
Neurology is one of the typical disciplines where personalized medicine has been recently becoming an important part of clinical practice. In this article, the brief overview and a number of examples of the use of biomarkers and personalized medicine in neurology are described. The various issues in neurology are described in relation to the personalized medicine and diagnostic, prognostic as well as predictive blood and cerebrospinal fluid biomarkers. Such neurological domains discussed in this work are neuro-oncology and primary brain tumors glioblastoma and oligodendroglioma, cerebrovascular diseases focusing on stroke, neurodegenerative disorders especially Alzheimer's and Parkinson's diseases and demyelinating diseases such as multiple sclerosis. Actual state of the art and future perspectives in diagnostics and personalized treatment in diverse domains of neurology are given.
Collapse
Affiliation(s)
- Jiri Polivka
- Department of Neurology, Faculty of Medicine in Plzen, Charles University Prague, Husova 3, 301 66 Plzen, Czech Republic ; Department of Neurology, Faculty Hospital Plzen, E. Benese 13, 305 99 Plzen, Czech Republic
| | - Jiri Polivka
- Department of Histology and Embryology, Charles University Prague, Husova 3, 301 66 Plzen, Czech Republic ; Biomedical Centre, Faculty of Medicine in Plzen, Charles University Prague, Husova 3, 301 66 Plzen, Czech Republic
| | - Kristyna Krakorova
- Department of Neurology, Faculty of Medicine in Plzen, Charles University Prague, Husova 3, 301 66 Plzen, Czech Republic ; Department of Neurology, Faculty Hospital Plzen, E. Benese 13, 305 99 Plzen, Czech Republic
| | - Marek Peterka
- Department of Neurology, Faculty of Medicine in Plzen, Charles University Prague, Husova 3, 301 66 Plzen, Czech Republic ; Department of Neurology, Faculty Hospital Plzen, E. Benese 13, 305 99 Plzen, Czech Republic
| | - Ondrej Topolcan
- Central Imunoanalytical Laboratory, Faculty Hospital Plzen, E. Benese 13, 305 99 Plzen, Czech Republic
| |
Collapse
|
12
|
Khudaish EA, Al-Nofli F, Rather JA, Al-Hinaai M, Laxman K, Kyaw HH, Al-Harthy S. Sensitive and selective dopamine sensor based on novel conjugated polymer decorated with gold nanoparticles. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2015.12.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Hao M, Li C, Liu R, Jing M. Detection of glutathione within single erythrocyte of different ages and pathological state using microfluidic chips coupled with laser induced fluorescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 149:600-606. [PMID: 25983061 DOI: 10.1016/j.saa.2015.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/21/2015] [Accepted: 05/04/2015] [Indexed: 06/04/2023]
Abstract
As a major factor participating in the organism antioxidation and detoxification process, GSH is of vital importance to human beings. Detecting GSH content in single cells is significant to diagnosis and prevention of many diseases. In this work, the amount of GSH within single erythrocytes was detected and analyzed via statistical analysis. All erythrocytes tested were collected from people in different ages and people of different pathological states. The correlation between GSH level, age and pathological state were investigated. Results showed that the GSH level in erythrocytes decreased with the ages of patients increased. There was little difference between the GSH level in erythrocytes from people who had chronic diseases (hyperglycemia, hyperlipidemia and hypertension) and from healthy people. However, the GSH level in erythrocytes from people who had inflammation (myocarditis, nephritis and gastritis) was generally higher than that from the healthy people. This study provides basic data for researches of cell senescence and cytopathic effect and is helpful to diagnosis and prevention of diseases. In addition, it also provides a simple and effective method for rapid GSH detection within single cell.
Collapse
Affiliation(s)
- Minglu Hao
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100, PR China
| | - Chao Li
- School Hospital of Shandong University, 91# Shanda North Road, Jinan 250100, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100, PR China.
| | - Mingyang Jing
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong Province, Shandong University, 27# Shanda South Road, Jinan 250100, PR China
| |
Collapse
|
14
|
Ultrasensitive and selective voltammetric aptasensor for dopamine based on a conducting polymer nanocomposite doped with graphene oxide. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1418-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
Potential survival markers in cancer patients undergoing chemotherapy. Clin Exp Med 2014; 15:381-7. [PMID: 25261922 DOI: 10.1007/s10238-014-0313-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/15/2014] [Indexed: 12/28/2022]
Abstract
Due to the importance of the identification of chemotherapy outcome prognostic factors, we attempted to establish the potential of oxidative stress/DNA damage parameters such as prognostic markers. The aim of the study was to determine whether platinum derivative-based chemotherapy in cancer patients (n = 66) is responsible for systemic oxidatively damaged DNA and whether damage biomarkers, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and the modified base 8-oxo-7,8-dihydroguanine (8-oxo-Gua), in urine and DNA may be used as a prognostic factor for the outcome of chemotherapy. All the aforementioned modifications were analyzed using techniques involving high-performance liquid chromatography/electrochemical detection (HPLC/EC) or HPLC/gas chromatography-mass spectrometry (GC-MS). Among all the analyzed parameters, the significantly decreased levels of 8-oxo-Gua in urine collected from a subgroup of patients 24 h after the first infusion of the drug, as compared with the baseline levels, correlated with a significantly longer overall survival (OS) (60 months after therapy) than in the subgroup without any decrease of this parameter after therapy (median OS = 24 months, p = 0.007). Moreover, a significantly longer OS was also observed in a group with increased urine levels of 8-oxo-dG after chemotherapy (38.6 vs. 20.5 months, p = 0.03). The results of our study suggest that patients with decreased 8-oxo-Gua levels and increased 8-oxo-dG levels in urine 24 h after the first dose should be considered as better responders to the administered chemotherapy, with a lower risk of death. The conclusion may permit the use of these parameters as markers for predicting the clinical outcome of platinum derivative-based chemotherapy.
Collapse
|
16
|
Weaver CL, Li H, Luo X, Cui XT. A graphene oxide/conducting polymer nanocomposite for electrochemical dopamine detection: origin of improved sensitivity and specificity. J Mater Chem B 2014; 2:5209-5219. [DOI: 10.1039/c4tb00789a] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work describes the performance of a graphene oxide/poly(3,4-ethylenedioxythiophene) nanocomposite material as a sensitive and selective electrochemical dopamine sensor.
Collapse
Affiliation(s)
- C. L. Weaver
- Department of Bioengineering
- University of Pittsburgh
- Pittsburgh, USA
- McGowan Institute of Regenerative Medicine
- University of Pittsburgh
| | - H. Li
- Department of Bioengineering
- University of Pittsburgh
- Pittsburgh, USA
| | - X. Luo
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042, P.R. China
| | - X. T. Cui
- Department of Bioengineering
- University of Pittsburgh
- Pittsburgh, USA
- McGowan Institute of Regenerative Medicine
- University of Pittsburgh
| |
Collapse
|
17
|
Blennow K, Hampel H, Zetterberg H. Biomarkers in amyloid-β immunotherapy trials in Alzheimer's disease. Neuropsychopharmacology 2014; 39:189-201. [PMID: 23799530 PMCID: PMC3857643 DOI: 10.1038/npp.2013.154] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 12/21/2022]
Abstract
Drug candidates directed against amyloid-β (Aβ) are mainstream in Alzheimer's disease (AD) drug development. Active and passive Aβ immunotherapy is the principle that has come furthest, both in number and in stage of clinical trials. However, an increasing number of reports on major difficulties in identifying any clinical benefit in phase II-III clinical trials on this type of anti-Aβ drug candidates have caused concern among researchers, pharmaceutical companies, and other stakeholders. This has provided critics of the amyloid cascade hypothesis with fire for their arguments that Aβ deposition may merely be a bystander, and not the cause, of the disease or that the amyloid hypothesis may only be valid for the familial form of AD. On the other hand, most researchers argue that it is the trial design that will need refinement to allow for identifying a positive clinical effect of anti-Aβ drugs. A consensus in the field is that future trials need to be performed in an earlier stage of the disease and that biomarkers are essential to guide and facilitate drug development. In this context, it is reassuring that, in contrast to most brain disorders, research advances in the AD field have led to both imaging (magnetic resonance imaging (MRI) and PET) and cerebrospinal fluid (CSF) biomarkers for the central pathogenic processes of the disease. AD biomarkers will have a central role in future clinical trials to enable early diagnosis, and Aβ biomarkers (CSF Aβ42 and amyloid PET) may be essential to allow for testing a drug on patients with evidence of brain Aβ pathology. Pharmacodynamic Aβ and amyloid precursor protein biomarkers will be of use to verify target engagement of a drug candidate in humans, thereby bridging the gap between mechanistic data from transgenic AD models (that may not be relevant to the neuropathology of human AD) and large and expensive phase III trials. Last, downstream biomarker evidence (CSF tau proteins and MRI volumetry) that the drug ameliorates neurodegeneration will, together with beneficial clinical effects on cognition and functioning, be essential for labeling an anti-Aβ drug as disease modifying.
Collapse
Affiliation(s)
- Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Harald Hampel
- Department of Psychiatry, University of Frankfurt, Frankfurt, Germany
- Department of Neurology, University of Belgrade, Belgrade, Serbia
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
- University College London Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
18
|
Kumar P, Dezso Z, MacKenzie C, Oestreicher J, Agoulnik S, Byrne M, Bernier F, Yanagimachi M, Aoshima K, Oda Y. Circulating miRNA biomarkers for Alzheimer's disease. PLoS One 2013; 8:e69807. [PMID: 23922807 PMCID: PMC3726785 DOI: 10.1371/journal.pone.0069807] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/12/2013] [Indexed: 12/13/2022] Open
Abstract
A minimally invasive diagnostic assay for early detection of Alzheimer's disease (AD) is required to select optimal patient groups in clinical trials, monitor disease progression and response to treatment, and to better plan patient clinical care. Blood is an attractive source for biomarkers due to minimal discomfort to the patient, encouraging greater compliance in clinical trials and frequent testing. MiRNAs belong to the class of non-coding regulatory RNA molecules of ∼22 nt length and are now recognized to regulate ∼60% of all known genes through post-transcriptional gene silencing (RNAi). They have potential as useful biomarkers for clinical use because of their stability and ease of detection in many tissues, especially blood. Circulating profiles of miRNAs have been shown to discriminate different tumor types, indicate staging and progression of the disease and to be useful as prognostic markers. Recently their role in neurodegenerative diseases, both as diagnostic biomarkers as well as explaining basic disease etiology has come into focus. Here we report the discovery and validation of a unique circulating 7-miRNA signature (hsa-let-7d-5p, hsa-let-7g-5p, hsa-miR-15b-5p, hsa-miR-142-3p, hsa-miR-191-5p, hsa-miR-301a-3p and hsa-miR-545-3p) in plasma, which could distinguish AD patients from normal controls (NC) with >95% accuracy (AUC of 0.953). There was a >2 fold difference for all signature miRNAs between the AD and NC samples, with p-values<0.05. Pathway analysis, taking into account enriched target mRNAs for these signature miRNAs was also carried out, suggesting that the disturbance of multiple enzymatic pathways including lipid metabolism could play a role in AD etiology.
Collapse
Affiliation(s)
- Pavan Kumar
- Eisai Inc, Biomarkers and Personalized Medicine Core Function Unit, Eisai Product Creation Systems, Andover, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Leung R, Proitsi P, Simmons A, Lunnon K, Güntert A, Kronenberg D, Pritchard M, Tsolaki M, Mecocci P, Kloszewska I, Vellas B, Soininen H, Wahlund LO, Lovestone S. Inflammatory proteins in plasma are associated with severity of Alzheimer's disease. PLoS One 2013; 8:e64971. [PMID: 23762274 PMCID: PMC3677891 DOI: 10.1371/journal.pone.0064971] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 04/23/2013] [Indexed: 12/02/2022] Open
Abstract
Markers of Alzheimer’s disease (AD) are being widely sought with a number of studies suggesting blood measures of inflammatory proteins as putative biomarkers. Here we report findings from a panel of 27 cytokines and related proteins in over 350 subjects with AD, subjects with Mild Cognitive Impairment (MCI) and elderly normal controls where we also have measures of longitudinal change in cognition and baseline neuroimaging measures of atrophy. In this study, we identify five inflammatory proteins associated with evidence of atrophy on MR imaging data particularly in whole brain, ventricular and entorhinal cortex measures. In addition, we observed six analytes that showed significant change (over a period of one year) in people with fast cognitive decline compared to those with intermediate and slow decline. One of these (IL-10) was also associated with brain atrophy in AD. In conclusion, IL-10 was associated with both clinical and imaging evidence of severity of disease and might therefore have potential to act as biomarker of disease progression.
Collapse
Affiliation(s)
- Rufina Leung
- King’s College London and National Institute for Health Research (NIHR), Biomedical Research Centres at South London and Maudsley NHS Foundation Trust and Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Petroula Proitsi
- King’s College London, Institute of Psychiatry, London, United Kingdom
| | - Andrew Simmons
- King’s College London and National Institute for Health Research (NIHR), Biomedical Research Centres at South London and Maudsley NHS Foundation Trust and Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
- King’s College London, Institute of Psychiatry, London, United Kingdom
| | - Katie Lunnon
- King’s College London, Institute of Psychiatry, London, United Kingdom
| | - Andreas Güntert
- King’s College London, Institute of Psychiatry, London, United Kingdom
| | - Deborah Kronenberg
- King’s College London and National Institute for Health Research (NIHR), Biomedical Research Centres at South London and Maudsley NHS Foundation Trust and Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Megan Pritchard
- King’s College London and National Institute for Health Research (NIHR), Biomedical Research Centres at South London and Maudsley NHS Foundation Trust and Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Magda Tsolaki
- 3rd Department of Neurology, "G.Papanicolaou" Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Iwona Kloszewska
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | - Bruno Vellas
- UMR INSERM 1027, Gerontopole, CHU Toulouse, University of Toulouse, Toulouse, France
| | - Hilkka Soininen
- University of Eastern Finland and University Hospital of Kuopio, Kuopio, Finland
| | - Lars-Olaf Wahlund
- Department of Neurobiology, Care Sciences and Society, Section of Clinical Geriatrics, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Simon Lovestone
- King’s College London and National Institute for Health Research (NIHR), Biomedical Research Centres at South London and Maudsley NHS Foundation Trust and Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
- King’s College London, Institute of Psychiatry, London, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Darusman H, Sajuthi D, Kalliokoski O, Jacobsen K, Call J, Schapiro S, Gjedde A, Abelson K, Hau J. Correlations between serum levels of beta amyloid, cerebrospinal levels of tau and phospho tau, and delayed response tasks in young and aged cynomolgus monkeys (Macaca fascicularis
). J Med Primatol 2013; 42:137-46. [DOI: 10.1111/jmp.12044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2013] [Indexed: 12/20/2022]
Affiliation(s)
- H.S. Darusman
- Department of Experimental Medicine; Faculty of Health Science; University of Copenhagen; Copenhagen Denmark
- Department of Anatomy; Physiology and Pharmacology; Faculty of Veterinary Medicine; Bogor Agricultural University; Bogor Indonesia
| | - D. Sajuthi
- Primate Research Center; Bogor Agricultural University; Bogor Indonesia
| | - O. Kalliokoski
- Department of Experimental Medicine; Faculty of Health Science; University of Copenhagen; Copenhagen Denmark
| | - K.R. Jacobsen
- Department of Experimental Medicine; Faculty of Health Science; University of Copenhagen; Copenhagen Denmark
| | - J. Call
- Max Planck Institute of Evolutionary Anthropology; Leipzig Germany
| | - S.J. Schapiro
- Department of Experimental Medicine; Faculty of Health Science; University of Copenhagen; Copenhagen Denmark
- Department of Veterinary Sciences; The University of Texas MD Andersson Cancer Center; Bastrop TX USA
| | - A. Gjedde
- Department of Neuroscience and Pharmacology; Faculty of Health Science; University of Copenhagen; Copenhagen Denmark
- Center for Functionally Integrative Neuroscience; University of Aarhus; Aarhus Denmark
- Department of Radiology and Radiological Science; Johns Hopkins University; Baltimore MD USA
| | - K.S.P. Abelson
- Department of Experimental Medicine; Faculty of Health Science; University of Copenhagen; Copenhagen Denmark
| | - J. Hau
- Department of Experimental Medicine; Faculty of Health Science; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
21
|
Hampel H, Lista S, Khachaturian ZS. Development of biomarkers to chart all Alzheimer's disease stages: the royal road to cutting the therapeutic Gordian Knot. Alzheimers Dement 2012; 8:312-36. [PMID: 22748938 DOI: 10.1016/j.jalz.2012.05.2116] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The aim of this perspective article is to stimulate radical shifts in thinking and foster further discussion on the effective discovery, development, validation, and qualification process of biological markers derived from all available technical modalities that meet the complex conceptual and pathophysiological challenges across all stages of the complex, nonlinear, dynamic, and chronically progressive sporadic Alzheimer's disease (AD). This perspective evaluates the current state of the science regarding a broad spectrum of hypothesis-driven and exploratory technologies and "markers" as candidates for all required biomarker functions, in particular, surrogate indicators of adaptive to maladaptive and compensatory to decompensatory, reversible to irreversible brain "systems failure." We stress the future importance of the systems biology (SB) paradigm (next to the neural network paradigm) for substantial progress in AD research. SB represents an integrated and deeper investigation of interacting biomolecules within cells and organisms. This approach has only recently become feasible as high-throughput technologies and mass spectrometric analyses of proteins and lipids, together with rigorous bioinformatics, have evolved. Existing high-content data derived from clinically and experimentally derived neural tissues point to convergent pathophysiological pathways during the course of AD, transcending traditional descriptive studies to reach a more integrated and comprehensive understanding of AD pathophysiology, derived systems biomarkers, and "druggable" system nodes. The discussion is continued on the premise that the lack of integration of advanced biomarker technologies and transfertilization from more mature translational research fields (e.g., oncology, immunology, cardiovascular), which satisfy regulatory requirements for an accurate, sensitive, and well-validated surrogate marker of specific pathophysiological processes and/or clinical outcomes, is a major rate-limiting factor for the successful development and approval of effective treatments for AD prevention. We consider the conceptual, scientific, and technical challenges for the discovery-development-validation-qualification process of biomarker tools and analytical algorithms for detection of the earliest pathophysiological processes in asymptomatic individuals at elevated risk during preclinical stages of AD. The most critical need for rapid translation of putative markers into validated (performance) and standardized (harmonized standard operating procedures) biomarker tools that fulfill regulatory requirements (qualify for use in treatment trials: e.g., safety, target engagement, mechanism of action, enrichment, stratification, secondary and primary outcome, surrogate outcome) is the availability of a large-scale worldwide comprehensive longitudinal database that includes the following cohorts: (a) healthy aging, (b) people at elevated risks (genetic/epigenetic/lifestyle/comorbid conditions), and (c) asymptomatic-preclinical/prodromal-mild cognitive impairment/syndromal mild, moderate, or severe AD. Our proposal, as initial strategic steps for integrating markers into future development of diagnostic and therapy trial technologies, is to work toward: (a) creating the essential research and development infrastructure as an international shared resource, (b) building the organizational structure for managing such a multinational shared resource, and (c) establishing an integrated transsectoral multidisciplinary global network of collaborating investigators to help build and use the shared research resource.
Collapse
Affiliation(s)
- Harald Hampel
- Department of Psychiatry, University of Frankfurt, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
22
|
Caine S, Heraud P, Tobin MJ, McNaughton D, Bernard CC. The application of Fourier transform infrared microspectroscopy for the study of diseased central nervous system tissue. Neuroimage 2012; 59:3624-40. [DOI: 10.1016/j.neuroimage.2011.11.033] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 10/20/2011] [Accepted: 11/09/2011] [Indexed: 12/13/2022] Open
|