1
|
Willette JA, Tsoi M, Frobish D, VanderBroek AR. Intrathecal enalapril reduces adhesion formation in experimentally induced digital flexor tendon sheath injuries in horses. Vet Surg 2025; 54:141-154. [PMID: 39498787 PMCID: PMC11734880 DOI: 10.1111/vsu.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/21/2024] [Accepted: 10/13/2024] [Indexed: 11/07/2024]
Abstract
OBJECTIVE The objectives of the study were to describe a standing percutaneous adhesion induction model in the digital flexor tendon sheath (DFTS) of horses and to evaluate the effect of intrathecal administration of the angiotensin-converting enzyme (ACE) inhibitor enalapril on tendon healing and adhesion formation. STUDY DESIGN Randomized, blinded, controlled experimental study. ANIMALS Eight healthy horses. METHODS A collagenase-induced adhesion model was implemented in the deep digital flexor tendon (DDFT) of both forelimbs under standing ultrasonographic guidance. Daily intrathecal injections of 5 mg enalapril (the treatment condition) were administered to a randomly assigned forelimb for 5 days, with the contralateral limb receiving an equivalent volume of 0.9% NaCl (the control). Lameness and limb circumference were recorded weekly. Horses were euthanized after 8 weeks and evaluated for gross digital flexor tendon sheath (DFTS) adhesions. Tendons were collected for histopathologic scoring of DDFT healing. Paired data were analyzed using a one-sided alternative sign test and longitudinal regression. RESULTS Multiple DFTS adhesions were formed in control limbs of all horses. The median number of gross DFTS adhesions in treated limbs was less than in control limbs (p = .0039). The average reduction in limb circumference and lameness scores over time occurred faster in treated versus control limbs (p < .025). There were no differences in DDFT histopathologic scores between groups. CONCLUSION The standing percutaneous DFTS adhesion induction model demonstrated that intrathecal enalapril reduced DFTS adhesion formation, lameness scores, and limb circumference over time. CLINICAL SIGNIFICANCE Intrathecal enalapril administration may reduce morbidity in horses with naturally occurring tendon injuries.
Collapse
Affiliation(s)
- Jaclyn A. Willette
- Department of Large Animal Clinical Sciences, College of Veterinary MedicineMichigan State UniversityEast LansingMichiganUSA
| | - Mayra Tsoi
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary MedicineMichigan State UniversityLansingMichiganUSA
| | - Daniel Frobish
- Department of Statistics, College of Liberal Arts and SciencesGrand Valley State UniversityAllendaleMichiganUSA
| | - Ashley R. VanderBroek
- Department of Large Animal Clinical Sciences, College of Veterinary MedicineMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
2
|
Carlier S, Depuydt E, Suls M, Bocqué C, Thys J, Vandenberghe A, Martens A, Saunders J, Hellmann K, Braun G, Beerts C, Spaas JH. Equine allogeneic tenogenic primed mesenchymal stem cells: A clinical field study in horses suffering from naturally occurring superficial digital flexor tendon and suspensory ligament injuries. Equine Vet J 2024; 56:924-935. [PMID: 37847100 DOI: 10.1111/evj.14008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 08/17/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Mesenchymal stem cells are an innovative therapeutic for various equine orthopaedic diseases, including soft tissue injuries. OBJECTIVES To evaluate the safety and efficacy of tenogenic primed equine allogeneic peripheral blood-derived mesenchymal stem cells (tpMSCs) in horses with naturally occurring superficial digital flexor tendon (SDFT) and suspensory ligament (SL) injuries. STUDY DESIGN Multicentre, blinded, randomised, placebo-controlled clinical trial. METHODS One hundred client-owned horses with SDFT and SL injuries were randomised to receive an intralesional tpMSC (66) or saline (34) injection. Clinical and ultrasonographic evaluation was performed before treatment and on Days 56 ± 3 and 112 ± 3 after treatment. Long-term data on re-injury was collected up to 2 years after treatment. RESULTS Significantly more tpMSC-treated horses achieved improvement in fibre alignment score (FAS) (100% vs. 54.5%, p < 0.001) and echogenicity (97.0% vs. 57.6%, p < 0.001) on Day 112 ± 3, and their lesion size decreased significantly (-27.6 ± 25.91 vs. -4.6 ± 26.64 mm2, p < 0.001) compared to the placebo group. A FAS = 0 was achieved in 65% of tpMSC-treated horses, as compared to 9% of placebo-treated horses at Day 112 ± 3. The attending veterinarians reported no re-injury in 41 of 53 tpMSC and in 2 of 26 saline-treated horses available for long-term follow-up (p < 0.001). MAIN LIMITATIONS As this study consisted of client-owned horses, no samples for histology were collected. Long-term follow-up was only available for a subset of enrolled horses. CONCLUSIONS The intralesional administration of tpMSCs was safe and improved the quality of healing and long-term outcomes in sports horses with naturally occurring SDFT and suspensory injuries.
Collapse
Affiliation(s)
- Stephanie Carlier
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eva Depuydt
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
- Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Marc Suls
- Praktijk Dr. Suls BV, Nederweert, the Netherlands
- Via Nova Equine, Bree, Belgium
| | | | | | | | - Ann Martens
- Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jimmy Saunders
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Charlotte Beerts
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jan H Spaas
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Mattei DN, Harman RM, Van de Walle GR, Smith R, Grivel JC, Abdelalim EM, Vinardell T. Effect of pregnancy on isolation efficiency and in vitro proliferation of equine peripheral-blood derived mesenchymal stromal cells. Theriogenology 2024; 224:107-118. [PMID: 38761667 DOI: 10.1016/j.theriogenology.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Mesenchymal stromal cells (MSCs) have regenerative and immunomodulatory potential and may be used to treat injured tissues. Pregnancy has been associated with increased MSCs in the peripheral circulation in multiple species, but to date, there are no reports on this matter in horses. This study aimed to evaluate the effect of pregnancy on isolation efficiency and proliferation capacity of equine MSCs derived from the peripheral blood (PB) of mares. Venous blood samples were collected at the 11th month of gestation and 1 month after delivery from clinically healthy Arabian mares that presented normal pregnancies. Blood samples were processed for in vitro cellular culture and hormonal and metabolic profiles. MSCs were isolated and characterized by trilineage differentiation potential, immunophenotyping, analyzed by gene sequencing and proliferation assays. The isolation of peripheral blood mononuclear cells (PBMCs) of pregnant mares were associated with higher isolation efficiency and proliferative capacity of MSCs derived from peripheral blood (PB-MSCs) recovered pre-partum than those isolated post-partum. Although fetal gender, parity, 5α-reduced pregnanes, insulin, and cortisol were shown to affect cellular proliferation, individual factors and the small population studied must be considered. This study suggests that PB-MSCs from pregnant mares could be a valuable alternative source of MSCs for therapeutic purposes.
Collapse
Affiliation(s)
- Debora N Mattei
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Member of Qatar Foundation, PO Box 34110, Education City, Doha, Qatar; Equine Veterinary Medical Center, Member of Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Rebecca M Harman
- Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Rd, Ithaca, NY 14850, USA
| | - Gerlinde R Van de Walle
- Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Rd, Ithaca, NY 14850, USA
| | - Roger Smith
- Department of Clinical Science and Services, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, United Kingdom
| | - Jean Charles Grivel
- Deep Phenotyping Core, Sidra Medicine, PO Box 26999, Al Garrafa St, Ar-Rayyan, Doha, Qatar
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Member of Qatar Foundation, PO Box 34110, Education City, Doha, Qatar; Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar; Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Member of Qatar Foundation, PO Box 34110, Education City, Doha, Qatar
| | - Tatiana Vinardell
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Member of Qatar Foundation, PO Box 34110, Education City, Doha, Qatar; Equine Veterinary Medical Center, Member of Qatar Foundation, P.O. Box 5825, Doha, Qatar.
| |
Collapse
|
4
|
Li H, Li Y, Luo S, Zhang Y, Feng Z, Li S. The roles and mechanisms of the NF-κB signaling pathway in tendon disorders. Front Vet Sci 2024; 11:1382239. [PMID: 38978635 PMCID: PMC11228182 DOI: 10.3389/fvets.2024.1382239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Both acute and chronic tendon injuries are the most frequently occurring musculoskeletal diseases in human and veterinary medicine, with a limited repertoire of successful and evidenced-based therapeutic strategies. Inflammation has been suggested as a key driver for the formation of scar and adhesion tissue following tendon acute injury, as well as pathological alternations of degenerative tendinopathy. However, prior efforts to completely block this inflammatory process have yet to be largely successful. Recent investigations have indicated that a more precise targeted approach for modulating inflammation is critical to improve outcomes. The nuclear factor-kappaB (NF-κB) is a typical proinflammatory signal transduction pathway identified as a key factor leading to tendon disorders. Therefore, a comprehensive understanding of the mechanism or regulation of NF-κB in tendon disorders will aid in developing targeted therapeutic strategies for human and veterinary tendon disorders. In this review, we discuss what is currently known about molecular components and structures of basal NF-κB proteins and two activation pathways: the canonical activation pathway and the non-canonical activation pathway. Furthermore, we summarize the underlying mechanisms of the NF-κB signaling pathway in fibrosis and adhesion after acute tendon injury, as well as pathological changes of degenerative tendinopathy in all species and highlight the effect of targeting this signaling pathway in tendon disorders. However, to gain a comprehensive understanding of its mechanisms underlying tendon disorders, further investigations are required. In the future, extensive scientific examinations are warranted to full characterize the NF-κB, the exact mechanisms of action, and translate findings into clinical human and veterinary practice.
Collapse
Affiliation(s)
- Hanyue Li
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Yini Li
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shengyu Luo
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Yan Zhang
- Luzhou Vocational and Technical College, Luzhou, China
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Sen Li
- School of Physical Education, Southwest Medical University, Luzhou, China
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Smith EJ, Beaumont RE, Dudhia J, Guest DJ. Equine Embryonic Stem Cell-Derived Tenocytes are Insensitive to a Combination of Inflammatory Cytokines and Have Distinct Molecular Responses Compared to Primary Tenocytes. Stem Cell Rev Rep 2024; 20:1040-1059. [PMID: 38396222 PMCID: PMC11087315 DOI: 10.1007/s12015-024-10693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
Tissue fibrosis following tendon injury is a major clinical problem due to the increased risk of re-injury and limited treatment options; however, its mechanism remains unclear. Evidence suggests that insufficient resolution of inflammation contributes to fibrotic healing by disrupting tenocyte activity, with the NF-κB pathway being identified as a potential mediator. Equine embryonic stem cell (ESC) derived tenocytes may offer a potential cell-based therapy to improve tendon regeneration, but how they respond to an inflammatory environment is largely unknown. Our findings reveal for the first time that, unlike adult tenocytes, ESC-tenocytes are unaffected by IFN-γ, TNFα, and IL-1β stimulation; producing minimal changes to tendon-associated gene expression and generating 3-D collagen gel constructs indistinguishable from unstimulated controls. Inflammatory pathway analysis found these inflammatory cytokines failed to activate NF-κB in the ESC-tenocytes. However, NF-κB could be activated to induce changes in gene expression following stimulation with NF-κB pharmaceutical activators. Transcriptomic analysis revealed differences between cytokine and NF-κB signalling components between adult and ESC-tenocytes, which may contribute to the mechanism by which ESC-tenocytes escape inflammatory stimuli. Further investigation of these molecular mechanisms will help guide novel therapies to reduce fibrosis and encourage superior tendon healing.
Collapse
Affiliation(s)
- Emily J Smith
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK.
| | - Ross E Beaumont
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - Jayesh Dudhia
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - Deborah J Guest
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK.
| |
Collapse
|
6
|
Carlier S, Depuydt E, Van Hecke L, Martens A, Saunders J, Spaas JH. Safety assessment of equine allogeneic tenogenic primed mesenchymal stem cells in horses with naturally occurring tendon and ligament injuries. Front Vet Sci 2024; 11:1282697. [PMID: 38468694 PMCID: PMC10925754 DOI: 10.3389/fvets.2024.1282697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Background Mesenchymal stem cells provide a valuable treatment option in orthopedic injuries in horses. Objectives The aim of this study was to evaluate the hematological, biochemical, immunological and immunomodulatory parameters following intralesional treatment with tenogenic primed equine allogeneic peripheral blood-derived mesenchymal stem cells (tpMSCs) in client-owned horses with naturally occurring superficial digital flexor tendon (SDFT) and suspensory ligament (SL) injuries. Methods The immunogenicity and immunomodulatory capacities of tpMSCs were assessed in a modified mixed lymphocyte reaction, including peripheral blood mononuclear cells (PBMCs) of 14 horses with SDFT and SL injuries after treatment with tpMSCs. In a second study, 18 horses with SDFT and SL injuries received either an intralesional injection with tpMSCs (n = 9) or no treatment (n = 9). Results The tpMSCs did not provoke a cellular immune response (p < 0.001) and were able to immunomodulate stimulated T lymphocytes (p < 0.001) in vitro. Therapeutic use of tpMSCs did not result in relevant hematologic or biochemical abnormalities. Main limitations Both studies had a small sample size. No statistical analyses were performed in the second study. Fibrinogen was only analyzed in a single horse prior to treatment. Conclusion Co-incubation of tpMSCs and PBMCs of horses that have been previously exposed to tpMSCs did not elicit a cellular immune response and tpMSCs were able to immunomodulate stimulated T lymphocytes. Intralesional treatment with tpMSCs did not provoke abnormal changes in hematological and biochemical parameters.
Collapse
Affiliation(s)
- Stephanie Carlier
- Stephanie Carlier, Kortrijk, Belgium
- Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eva Depuydt
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
| | - Lore Van Hecke
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
| | - Ann Martens
- Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jimmy Saunders
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jan H. Spaas
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Boehringer Ingelheim Animal Health USA, Athens, GA, United States
| |
Collapse
|
7
|
Depuydt E, Chiers K, Van Hecke L, Saunders J, Martens A, Pille F, Spaas JH. Assessing the functional properties of tenogenic primed mesenchymal stem cells in ex vivo equine tendon and ligament explants: A preliminary study. Stem Cell Res 2022; 65:102963. [PMID: 36395687 DOI: 10.1016/j.scr.2022.102963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
Injuries to equine tendons and ligaments are career-compromising, causing reduced performance and premature retirement. Promising treatment alternatives have been investigated in the field of mesenchymal stem cells (MSCs). In this study, the tissue adherence and protein expression of tenogenic primed mesenchymal stem cells (tpMSCs) after administration to ex vivo tendon and ligament explants is investigated. First, collagen type I (COL I) and smooth muscle actin (SMA) expression was assessed in cytospins prepared from native MSCs and tpMSCs. Second, equine superficial digital flexor tendon and suspensory ligament explants were cultivated, and a lesion was treated with both cell types. Subsequently, cell adhesion to the explants and the amount of COL I and SMA positive cells was evaluated. The cytospins revealed a significantly higher COL I and lower SMA expression in tpMSCs compared to native MSCs. In the explants, tpMSCs showed a significantly higher tendon and ligament adherence. Furthermore, a significantly higher percentage of COL I positive and a lower percentage of SMA positive cells were observed in the lesions treated with tpMSCs. The results of these explant co-cultures may demonstrate at least a part of the mechanism of action and functional properties of tpMSCs in restoring function to tendons and ligaments.
Collapse
Affiliation(s)
- Eva Depuydt
- Boehringer Ingelheim Veterinary Medicine Belgium, Noorwegenstraat 4, 9940 Evergem, Belgium; Ghent University, Faculty of Veterinary Medicine, Department of Surgery and Anaesthesiology of Domestic Animals, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Koen Chiers
- Ghent University, Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Poultry diseases, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Lore Van Hecke
- Boehringer Ingelheim Veterinary Medicine Belgium, Noorwegenstraat 4, 9940 Evergem, Belgium.
| | - Jimmy Saunders
- Ghent University, Faculty of Veterinary Medicine, Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Ann Martens
- Ghent University, Faculty of Veterinary Medicine, Department of Surgery and Anaesthesiology of Domestic Animals, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Frederik Pille
- Ghent University, Faculty of Veterinary Medicine, Department of Surgery and Anaesthesiology of Domestic Animals, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Jan H Spaas
- Ghent University, Faculty of Veterinary Medicine, Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Salisburylaan 133, 9820 Merelbeke, Belgium; Boehringer Ingelheim Animal Health, 1730 Olympic Drive, 30606 Athens, GA, USA.
| |
Collapse
|
8
|
Webb TL, Spaas JH, Guest DJ. Editorial: One Health and Veterinary Regenerative Medicine: Translational Applications. Front Vet Sci 2022; 9:959564. [PMID: 35865873 PMCID: PMC9294726 DOI: 10.3389/fvets.2022.959564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Tracy L. Webb
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
- *Correspondence: Tracy L. Webb
| | - Jan H. Spaas
- Boehringer-Ingelheim Animal Health USA, Athens, GA, United States
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Debbie J. Guest
- Department of Clinical Science and Services, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
9
|
Jaramillo-Chaustre X, Fonseca-Matheus J, Delgado-Villamizar K, Gómez-Parra F, Mendoza-Ibarra J. Uso de plasma rico en plaquetas como coadyuvante en el tratamiento quirúrgico de la ruptura del tendón calcáneo común en gatos. REVISTA U.D.C.A ACTUALIDAD & DIVULGACIÓN CIENTÍFICA 2022. [DOI: 10.31910/rudca.v25.n1.2022.1878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
Melotti L, Carolo A, Elshazly N, Boesso F, Da Dalt L, Gabai G, Perazzi A, Iacopetti I, Patruno M. Case Report: Repeated Intralesional Injections of Autologous Mesenchymal Stem Cells Combined With Platelet-Rich Plasma for Superficial Digital Flexor Tendon Healing in a Show Jumping Horse. Front Vet Sci 2022; 9:843131. [PMID: 35252428 PMCID: PMC8894652 DOI: 10.3389/fvets.2022.843131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/18/2022] [Indexed: 12/02/2022] Open
Abstract
In the present case report a show jumping 10-year-old Sella Italiano gelding, presented with severe lameness, swelling and pain at palpation of the mid-metacarpal region of the left forelimb. Clinical and ultrasound examination diagnosed a chronic tendonitis of the central region of the superficial digital flexor tendon (SDFT). The lesion was a reoccurrence since it developed from a previously healed injury. The horse had to stop competing and was unresponsive to gold-standard treatments as Non-steroidal anti-inflammatory drugs (NSAIDs) and conservative management after 6 months of therapy. The animal was subjected to repeated intralesional injections of autologous adipose-derived mesenchymal stem cells (AD-MSCs) combined with autologous platelet-rich plasma (PRP). The combined treatment was administered twice in a 1-month interval. The healing process was assessed through clinical examination, ultrasound imaging and quantification of oxidative stress products and inflammatory mediators in blood plasma. After 2 weeks from first injection, a reduction of concentration of oxidative-derived products was observed, together with an increase of anti-inflammatory cytokines and pro-mitotic growth factors. These results were reflected clinically as the horse showed a reduction of lameness along with swelling and pain after 4 weeks. At the 1-year follow-up, the horse showed no signs of lameness and swelling. The ultrasonographic examination highlighted a compact fiber alignment with a normal echogenic tendon as observed in the sound contralateral limb. Moreover, the horse went back to the previous level of competition. Our results suggest the positive effects of a repeated intralesional injection of AD-MSCs and PRP for the treatment of a chronic tendonitis with long-term effects and an improvement for both equine quality of life and athletic performance.
Collapse
Affiliation(s)
- Luca Melotti
- Department of Comparative Biomedicine and Food Science, University of Padua–Agripolis Campus, Legnaro, Italy
| | - Anna Carolo
- Department of Comparative Biomedicine and Food Science, University of Padua–Agripolis Campus, Legnaro, Italy
| | - Noha Elshazly
- Department of Comparative Biomedicine and Food Science, University of Padua–Agripolis Campus, Legnaro, Italy
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | | | - Laura Da Dalt
- Department of Comparative Biomedicine and Food Science, University of Padua–Agripolis Campus, Legnaro, Italy
| | - Gianfranco Gabai
- Department of Comparative Biomedicine and Food Science, University of Padua–Agripolis Campus, Legnaro, Italy
| | - Anna Perazzi
- Department of Animal Medicine, Production and Health, University of Padua–Agripolis Campus, Legnaro, Italy
| | - Ilaria Iacopetti
- Department of Animal Medicine, Production and Health, University of Padua–Agripolis Campus, Legnaro, Italy
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua–Agripolis Campus, Legnaro, Italy
- *Correspondence: Marco Patruno
| |
Collapse
|
11
|
Mesenchymal Stromal Cells Adapt to Chronic Tendon Disease Environment with an Initial Reduction in Matrix Remodeling. Int J Mol Sci 2021; 22:ijms222312798. [PMID: 34884602 PMCID: PMC8657831 DOI: 10.3390/ijms222312798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/11/2023] Open
Abstract
Tendon lesions are common sporting injuries in humans and horses alike. The healing process of acute tendon lesions frequently results in fibrosis and chronic disease. In horses, local mesenchymal stromal cell (MSC) injection is an accepted therapeutic strategy with positive influence on acute lesions. Concerning the use of MSCs in chronic tendon disease, data are scarce but suggest less therapeutic benefit. However, it has been shown that MSCs can have a positive effect on fibrotic tissue. Therefore, we aimed to elucidate the interplay of MSCs and healthy or chronically diseased tendon matrix. Equine MSCs were cultured either as cell aggregates or on scaffolds from healthy or diseased equine tendons. Higher expression of tendon-related matrix genes and tissue inhibitors of metalloproteinases (TIMPs) was found in aggregate cultures. However, the tenogenic transcription factor scleraxis was upregulated on healthy and diseased tendon scaffolds. Matrix metalloproteinase (MMPs) expression and activity were highest in healthy scaffold cultures but showed a strong transient decrease in diseased scaffold cultures. The release of glycosaminoglycan and collagen was also higher in scaffold cultures, even more so in those with tendon disease. This study points to an early suppression of MSC matrix remodeling activity by diseased tendon matrix, while tenogenic differentiation remained unaffected.
Collapse
|
12
|
Meeremans M, Van de Walle GR, Van Vlierberghe S, De Schauwer C. The Lack of a Representative Tendinopathy Model Hampers Fundamental Mesenchymal Stem Cell Research. Front Cell Dev Biol 2021; 9:651164. [PMID: 34012963 PMCID: PMC8126669 DOI: 10.3389/fcell.2021.651164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Overuse tendon injuries are a major cause of musculoskeletal morbidity in both human and equine athletes, due to the cumulative degenerative damage. These injuries present significant challenges as the healing process often results in the formation of inferior scar tissue. The poor success with conventional therapy supports the need to search for novel treatments to restore functionality and regenerate tissue as close to native tendon as possible. Mesenchymal stem cell (MSC)-based strategies represent promising therapeutic tools for tendon repair in both human and veterinary medicine. The translation of tissue engineering strategies from basic research findings, however, into clinical use has been hampered by the limited understanding of the multifaceted MSC mechanisms of action. In vitro models serve as important biological tools to study cell behavior, bypassing the confounding factors associated with in vivo experiments. Controllable and reproducible in vitro conditions should be provided to study the MSC healing mechanisms in tendon injuries. Unfortunately, no physiologically representative tendinopathy models exist to date. A major shortcoming of most currently available in vitro tendon models is the lack of extracellular tendon matrix and vascular supply. These models often make use of synthetic biomaterials, which do not reflect the natural tendon composition. Alternatively, decellularized tendon has been applied, but it is challenging to obtain reproducible results due to its variable composition, less efficient cell seeding approaches and lack of cell encapsulation and vascularization. The current review will overview pros and cons associated with the use of different biomaterials and technologies enabling scaffold production. In addition, the characteristics of the ideal, state-of-the-art tendinopathy model will be discussed. Briefly, a representative in vitro tendinopathy model should be vascularized and mimic the hierarchical structure of the tendon matrix with elongated cells being organized in a parallel fashion and subjected to uniaxial stretching. Incorporation of mechanical stimulation, preferably uniaxial stretching may be a key element in order to obtain appropriate matrix alignment and create a pathophysiological model. Together, a thorough discussion on the current status and future directions for tendon models will enhance fundamental MSC research, accelerating translation of MSC therapies for tendon injuries from bench to bedside.
Collapse
Affiliation(s)
- Marguerite Meeremans
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Catharina De Schauwer
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
13
|
Depuydt E, Broeckx SY, Van Hecke L, Chiers K, Van Brantegem L, van Schie H, Beerts C, Spaas JH, Pille F, Martens A. The Evaluation of Equine Allogeneic Tenogenic Primed Mesenchymal Stem Cells in a Surgically Induced Superficial Digital Flexor Tendon Lesion Model. Front Vet Sci 2021; 8:641441. [PMID: 33748217 PMCID: PMC7973085 DOI: 10.3389/fvets.2021.641441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Tendon injuries are very common in horses and jeopardize the athletic performance, and due to the high risk of reinjury may lead to early retirement. The use of mesenchymal stem cells for the treatment of equine tendon disease is widely investigated because of their regenerative potential. The objective of this study is to investigate the safety and efficacy of equine allogeneic tenogenic primed mesenchymal stem cells (tpMSCs) for the management of tendinitis in horses. Methods: A core lesion was surgically induced in the superficial digital flexor tendon of both forelimbs of eight horses. After 7 days, one forelimb was treated with tpMSCs, while the contralateral forelimb served as an intra-individual control and was treated with saline. A prescribed exercise program was started. All horses underwent a daily clinical evaluation throughout the entire study period of 112 days. Blood samples were taken at different time points for hematological and biochemical analysis. Tendon assessment, lameness examination, ultrasound assessment and ultrasound tissue characterization (UTC) were performed at regular time intervals. At the end of the study period, the superficial digital flexor tendons were evaluated macroscopically and histologically. Results: No suspected or serious adverse events occurred during the entire study period. There was no difference in local effects including heat and pain to pressure between a single intralesional injection of allogeneic tpMSCs and a single intralesional injection with saline. A transient moderate local swelling was noted in the tpMSC treated limbs, which dissipated by day 11. Starting at a different time point depending on the parameter, a significant improvement was observed in the tpMSC treated limbs compared to the placebo for echogenicity score, fiber alignment score, anterior-posterior thickness of the tendon and echo type by UTC assessment. Immunohistochemistry 112 days post-injection revealed that the amount of collagen type I and Von Willebrand factor were significantly higher in the tendon tissue of the tpMSC group, while the amount of collagen type III and smooth muscle actin was significantly lower. Conclusion: Equine allogeneic tenogenic primed mesenchymal stem cells were shown to be well-tolerated and may be effective for the management of tendon injuries.
Collapse
Affiliation(s)
- Eva Depuydt
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium.,Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sarah Y Broeckx
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium
| | - Lore Van Hecke
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium
| | - Koen Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Leen Van Brantegem
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hans van Schie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Research and Development, UTC Imaging, Stein, Netherlands
| | - Charlotte Beerts
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium.,Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jan H Spaas
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium.,Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Frederik Pille
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Martens
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
14
|
Meeremans M, Van Damme L, De Spiegelaere W, Van Vlierberghe S, De Schauwer C. Equine Tenocyte Seeding on Gelatin Hydrogels Improves Elongated Morphology. Polymers (Basel) 2021; 13:747. [PMID: 33670848 PMCID: PMC7957613 DOI: 10.3390/polym13050747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Tendinopathy is a common injury in both human and equine athletes. Representative in vitro models are mandatory to facilitate translation of fundamental research into successful clinical treatments. Natural biomaterials like gelatin provide favorable cell binding characteristics and are easily modifiable. In this study, methacrylated gelatin (gel-MA) and norbornene-functionalized gelatin (gel-NB), crosslinked with 1,4-dithiotreitol (DTT) or thiolated gelatin (gel-SH) were compared. (2) Methods: The physicochemical properties (1H-NMR spectroscopy, gel fraction, swelling ratio, and storage modulus) and equine tenocyte characteristics (proliferation, viability, and morphology) of four different hydrogels (gel-MA, gel-NB85/DTT, gel-NB55/DTT, and gel-NB85/SH75) were evaluated. Cellular functionality was analyzed using fluorescence microscopy (viability assay and focal adhesion staining). (3) Results: The thiol-ene based hydrogels showed a significantly lower gel fraction/storage modulus and a higher swelling ratio compared to gel-MA. Significantly less tenocytes were observed on gel-MA discs at 14 days compared to gel-NB85/DTT, gel-NB55/DTT and gel-NB85/SH75. At 7 and 14 days, the characteristic elongated morphology of tenocytes was significantly more pronounced on gel-NB85/DTT and gel-NB55/DTT in contrast to TCP and gel-MA. (4) Conclusions: Thiol-ene crosslinked gelatins exploiting DTT as a crosslinker are the preferred biomaterials to support the culture of tenocytes. Follow-up experiments will evaluate these biomaterials in more complex models.
Collapse
Affiliation(s)
- Marguerite Meeremans
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium;
| | - Lana Van Damme
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-Bis, B-9000 Ghent, Belgium; (L.V.D.); (S.V.V.)
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium;
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-Bis, B-9000 Ghent, Belgium; (L.V.D.); (S.V.V.)
| | - Catharina De Schauwer
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium;
| |
Collapse
|
15
|
Regenerative Medicine for Equine Musculoskeletal Diseases. Animals (Basel) 2021; 11:ani11010234. [PMID: 33477808 PMCID: PMC7832834 DOI: 10.3390/ani11010234] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Lameness due to musculoskeletal disease is the most common diagnosis in equine veterinary practice. Many of these orthopaedic disorders are chronic problems, for which no clinically satisfactory treatment exists. Thus, high hopes are pinned on regenerative medicine, which aims to replace or regenerate cells, tissues, or organs to restore or establish normal function. Some regenerative medicine therapies have already made their way into equine clinical practice mainly to treat tendon injures, tendinopathies, cartilage injuries and degenerative joint disorders with promising but diverse results. This review summarises the current knowledge of commonly used regenerative medicine treatments and critically discusses their use. Abstract Musculoskeletal injuries and chronic degenerative diseases commonly affect both athletic and sedentary horses and can entail the end of their athletic careers. The ensuing repair processes frequently do not yield fully functional regeneration of the injured tissues but biomechanically inferior scar or replacement tissue, causing high reinjury rates, degenerative disease progression and chronic morbidity. Regenerative medicine is an emerging, rapidly evolving branch of translational medicine that aims to replace or regenerate cells, tissues, or organs to restore or establish normal function. It includes tissue engineering but also cell-based and cell-free stimulation of endogenous self-repair mechanisms. Some regenerative medicine therapies have made their way into equine clinical practice mainly to treat tendon injures, tendinopathies, cartilage injuries and degenerative joint disorders with promising results. However, the qualitative and quantitative spatiotemporal requirements for specific bioactive factors to trigger tissue regeneration in the injury response are still unknown, and consequently, therapeutic approaches and treatment results are diverse. To exploit the full potential of this burgeoning field of medicine, further research will be required and is ongoing. This review summarises the current knowledge of commonly used regenerative medicine treatments in equine patients and critically discusses their use.
Collapse
|
16
|
Yuan H, Li X, Lee MS, Zhang Z, Li B, Xuan H, Li WJ, Zhang Y. Collagen and chondroitin sulfate functionalized bioinspired fibers for tendon tissue engineering application. Int J Biol Macromol 2020; 170:248-260. [PMID: 33359806 DOI: 10.1016/j.ijbiomac.2020.12.152] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/26/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Functional tendon tissue engineering depends on harnessing the biochemical and biophysical cues of the native tendon extracellular matrix. In this study, we fabricated highly-aligned poly(L-lactic acid) (PLLA) fibers with surfaces decorated by two of the crucial tendon ECM components, type 1 collagen (COL1) and chondroitin sulfate (CS), through a coaxial stable jet electrospinning approach. Effects of the biomimetic COL1-CS (shell)/PLLA (core) fibers on the tenogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro were investigated. Higher rates of cell spreading and proliferation are observed on the aligned COL1-CS/PLLA fibers compared to that on the plain PLLA fibers. Expression of the tendon-associated genes scleraxis (SCX) and COL1 as well as protein tenomodulin (TNMD) are significantly increased. Introduction of mechanical stimulation gives rise to synergistic effect on tenogenic differentiation of hMSCs. Higher expression of TGF-β2, TGFβR-II, and Smad3 by the cells on the COL1-CS/PLLA fiber substrates are observed, which indicates that COL1-CS/PLLA ultrafine fibers dictate the hMSC tenogenic differentiation through activating the TGF-β signaling pathway. Animal study in rat Achilles tendon repair model corroborated the promoting role of COL1-CS/PLLA in regenerating a tendon-like tissue. Thus, our highly aligned biomimicking fibers may serve as an efficient scaffolding system for functional tendon regeneration.
Collapse
Affiliation(s)
- Huihua Yuan
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China; College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA.
| | - Xiaolei Li
- Department of Orthopedics and Orthopedic Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China
| | - Ming-Song Lee
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhuojun Zhang
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Biyun Li
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China; College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Hongyun Xuan
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Wan-Ju Li
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Yanzhong Zhang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
17
|
Harman RM, Patel RS, Fan JC, Park JE, Rosenberg BR, Van de Walle GR. Single-cell RNA sequencing of equine mesenchymal stromal cells from primary donor-matched tissue sources reveals functional heterogeneity in immune modulation and cell motility. Stem Cell Res Ther 2020; 11:524. [PMID: 33276815 PMCID: PMC7716481 DOI: 10.1186/s13287-020-02043-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The efficacy of mesenchymal stromal cell (MSC) therapy is thought to depend on the intrinsic heterogeneity of MSC cultures isolated from different tissue sources as well as individual MSCs isolated from the same tissue source, neither of which is well understood. To study this, we used MSC cultures isolated from horses. The horse is recognized as a physiologically relevant large animal model appropriate for translational MSC studies. Moreover, due to its large size the horse allows for the simultaneous collection of adequate samples from multiple tissues of the same animal, and thus, for the unique collection of donor matched MSC cultures from different sources. The latter is much more challenging in mice and humans due to body size and ethical constraints, respectively. METHODS In the present study, we performed single-cell RNA sequencing (scRNA-seq) on primary equine MSCs that were collected from three donor-matched tissue sources; adipose tissue (AT), bone marrow (BM), and peripheral blood (PB). Based on transcriptional differences detected with scRNA-seq, we performed functional experiments to examine motility and immune regulatory function in distinct MSC populations. RESULTS We observed both inter- and intra-source heterogeneity across the three sources of equine MSCs. Functional experiments demonstrated that transcriptional differences correspond with phenotypic variance in cellular motility and immune regulatory function. Specifically, we found that (i) differential expression of junctional adhesion molecule 2 (JAM2) between MSC cultures from the three donor-matched tissue sources translated into altered cell motility of BM-derived MSCs when RNA interference was used to knock down this gene, and (ii) differences in C-X-C motif chemokine ligand 6 (CXCL6) expression in clonal MSC lines derived from the same tissue source correlated with the chemoattractive capacity of PB-derived MSCs. CONCLUSIONS Ultimately, these findings will enhance our understanding of MSC heterogeneity and will lead to improvements in the therapeutic potential of MSCs, accelerating the transition from bench to bedside.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Roosheel S Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jennifer C Fan
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Jee E Park
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
18
|
Assessment of Clayey Peloid Formulations Prior to Clinical Use in Equine Rehabilitation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103365. [PMID: 32408650 PMCID: PMC7277428 DOI: 10.3390/ijerph17103365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 11/17/2022]
Abstract
Clays are natural ingredients used to prepare therapeutic cataplasms suitable for topical application. The knowledge about these formulations and their preparations to be applied on humans and animals has been orally transmitted since ancient times. Several empirical methods using clays have demonstrated fast and effective results in the reduction of the inflammatory response and the formation of edemas in horse limbs. The use of traditional and alternative medicine, such as pelotherapy, is now becoming more popular in veterinarian medical practice, alone or combined with other therapies in horse muscle and tendon rehabilitation. This study characterizes the use of commercial equine clays and an old therapeutic clay cataplasm formulation, using acetic acid, to treat tendon injuries in horses. This work might contribute to a major database characterization of clays used empirically on equine health, the potential of dermal absorption, the risks of exposure to some toxic elements, and safety assessment for these formulations. The present study was carried out to characterize the suitability of four commercial equine clays (Group II) and a protocoled healing mixture: “clay acetic acid cataplasm”, (Group III), to treat tendon injuries in horses. In this mixture, three conventional “green” clays (Group I) without any mineralogical specificity were used and blended with acetic acid. The mineralogical composition was determined through X-ray powder diffraction and X-ray fluorescence data. To determine the performance of the samples, cooling kinetics, oil absorption, expandability, and specific surface area were measured. According to the mineralogical composition, Group I was mainly composed of carbonates and silicates, while Group II was much richer in silicates with the main clay minerals kaolinite and illite. Group II exhibited the highest values for As, Pb, Cr, Ni, and Zn, considered potentially toxic. Both groups showed low cation exchange capacities and exchanged mainly Ca2+, with the exception of VET.1 and VET.7, which also highlight Na+, and VET.5 and VET.6, which have K+ as an exchangeable main cation. The addition of acetic acid (Group III) does not reveal any significant chemical changes. The results confirm that both clay groups are adequate for the therapeutic propose. They have good plastic properties (skin adherence), good oil absorptive capabilities (cleaning), and exchange an essential physiological element, calcium. Group II has prior industrial preparation, which is probably why it showed better results. Group I presented lower heat retention capacity and higher abrasiveness, which could be improved using cosmetic additives. The clinical benefit of the “clay acetic acid cataplasm” (Group III) could be the systemic anti-inflammatory effect established by the acetic acid.
Collapse
|
19
|
Gugjoo MB, Fazili MUR, Gayas MA, Ahmad RA, Dhama K. Animal mesenchymal stem cell research in cartilage regenerative medicine - a review. Vet Q 2020; 39:95-120. [PMID: 31291836 PMCID: PMC8923021 DOI: 10.1080/01652176.2019.1643051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Healing of articular cartilage is a major clinical challenge as it also lacks a direct vasculature and nerves, and carries a limited number of resident chondrocytes that do not proliferate easily. Damaged articular cartilages are usually replaced by fibrocartilages, which are mechanically and structurally weaker and less resilient. Regenerative medicine involving stem cells is considered to have a definitive potential to overcome the limitations associated with the currently available surgical methods of cartilage repair. Among various stem cell types, mesenchymal stem cells (MSCs) are preferred for clinical applications. These cells can be readily derived from various sources and have the ability to trans-differentiate into various tissue-specific cells, including those of the cartilage by the process of chondrogenesis. Compared to embryonic or induced pluripotent stem cells (iPSCs), no ethical or teratogenic issues are associated with MSCs. These stem cells are being extensively evaluated for the treatment of joint affections and the results appear promising. Unlike human medicine, in veterinary medicine, the literature on stem cell research for cartilage regeneration is limited. This review, therefore, aims to comprehensively discuss the available literature and pinpoint the achievements and limitations associated with the use of MSCs for articular cartilage repair in animal species.
Collapse
Affiliation(s)
| | | | | | - Raja Aijaz Ahmad
- Division of Veterinary Clinical Complex, FVSc and AH, SKUAST , Srinagar , India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute , Bareilly, India
| |
Collapse
|
20
|
Ericson C, Stenfeldt P, Hardeman A, Jacobson I. The Effect of Kinesiotape on Flexion-Extension of the Thoracolumbar Back in Horses at Trot. Animals (Basel) 2020; 10:E301. [PMID: 32069962 PMCID: PMC7071056 DOI: 10.3390/ani10020301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 01/09/2023] Open
Abstract
Kinesiotape theoretically stimulates mechanoreceptive and proprioceptive sensory pathways that in turn may modulate the neuromuscular activity and locomotor function, so alteration of activation, locomotion and/or range of motion (ROM) can be achieved. The aim of this study was to determine whether kinesiotape applied to the abdominal muscles would affect the ROM in flexion-extension (sagittal plane) in the thoracolumbar back of horses at trot. The study design was a paired experimental study, with convenient sample. Each horse was randomly placed in the control or the intervention group and then the order reversed. Eight horses trotted at their own preferred speed in hand on a straight line, 2 × 30 m. Optical motion capture was used to collect kinematic data. Paired t-tests, normality tests and 1-Sample Wilcoxon test were used to assess the effects of the kinesiotape. No statistical significance (p < 0.05) for changes in flexion-extension of the thoracolumbar back in trot was shown in this group of horses. Some changes were shown indicating individual movement strategies in response to stimuli from the kinesiotape. More research in this popular and clinically used method is needed to fully understand the reacting mechanisms in horses.
Collapse
Affiliation(s)
- Cajsa Ericson
- Animotion Rehab, Kalles ängsväg 1, 760 15 Gräddö, Sweden;
| | | | - Aagje Hardeman
- Tierklinik Luesche GmbH, 49456 Luesche, Germany;
- Dep. of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, 3512 Utrecht, The Netherlands
- Dep. of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Inger Jacobson
- Division of Health Science, Luleå University of Technology, 971 87 Luleå, Sweden;
| |
Collapse
|
21
|
McClellan A, Paterson YZ, Paillot R, Guest DJ. Equine Fetal, Adult, and Embryonic Stem Cell-Derived Tenocytes Are All Immune Privileged but Exhibit Different Immune Suppressive Properties In Vitro. Stem Cells Dev 2019; 28:1413-1423. [PMID: 31507234 DOI: 10.1089/scd.2019.0120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In horses and humans, tendon injuries are a significant problem. Not only can they occur in both athletes and nonathletes, they require lengthy periods of recuperation and undergo poor natural regeneration, which leads to high reinjury rates. Embryonic stem cells (ESCs) may provide a renewable source of allogeneic cells to use in clinical applications to aid tissue regeneration. Equine ESCs can undergo tenocyte differentiation in vivo and in vitro, but the immune properties of tenocytes isolated from either ESCs or tissues have not previously been characterized. Here, we demonstrate that equine tenocytes derived from fetal and adult tendon tissue and ESCs express robust levels of major histocompatibility complex (MHC) I but no MHC II in response to inflammatory cytokine interferon gamma (IFNγ). However, MHC expression does not affect their allorecognition by peripheral blood mononuclear cells in vitro. Adult and fetal tenocytes remain immune privileged and strongly immune suppressive in both the presence and absence of exogenously applied IFNγ. In contrast, ESC-derived tenocytes are immune privileged even in the presence of IFNγ, but they are only weakly immune suppressive in the presence but not in the absence of exogenously applied IFNγ. This is despite ESC-tenocytes expressing a number of genes involved in immune modulation at significantly higher levels than those expressed by adult and fetal tenocytes when in standard, nonstimulated monolayer culture. Together, this work suggests that, similar to other fibroblasts, tenocytes have immune modulatory properties, and that culture-expanded tenocytes derived from primary tissues or ESCs may be safe to use in clinical transplantations to injured tendons of unrelated animals.
Collapse
Affiliation(s)
- Alyce McClellan
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom
| | - Yasmin Z Paterson
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Romain Paillot
- LABÉO Frank Duncombe, Caen, France.,Normandie University, UniCaen, Biotargen, Saint-Contest, France
| | - Deborah Jane Guest
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom
| |
Collapse
|
22
|
A novel mechanism for the protection of embryonic stem cell derived tenocytes from inflammatory cytokine interleukin 1 beta. Sci Rep 2019; 9:2755. [PMID: 30808942 PMCID: PMC6391488 DOI: 10.1038/s41598-019-39370-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/23/2019] [Indexed: 12/29/2022] Open
Abstract
Interleukin 1β (IL-1β) is upregulated following tendon injury. Here we demonstrate that in adult and fetal tenocytes IL-1β increases the expression of matrix metalloproteinases, tenascin-C and Sox9 and decreases the expression of scleraxis and cartilage oligomeric matrix protein. When cultured in 3-dimensional collagen gels adult and fetal tenocytes exposed to IL-1β have reduced contraction ability and generate tendon-like constructs with a lower storage modulus. In contrast, equine embryonic stem cell (ESC) derived tenocytes exposed to IL-1β exhibit no changes in gene expression and generate identical tendon-like constructs. We propose that ESC-derived tenocytes do not respond to IL-1β due to their low expression of interleukin 1 (IL-1) receptor 1 and high expression of the decoy receptor IL-1 receptor 2 and IL-1 receptor antagonist protein (IL1Ra). This may make ESC-derived tenocytes an advantageous source of cells for tissue regeneration and allow the development of novel pharmaceutical interventions to protect endogenous cells from inflammation.
Collapse
|
23
|
de Almeida MDS, Guerra FDR, de Oliveira LP, Vieira CP, Pimentel ER. A Hypothesis for the Anti-Inflammatory and Mechanotransduction Molecular Mechanisms Underlying Acupuncture Tendon Healing. Acupunct Med 2018; 32:178-82. [DOI: 10.1136/acupmed-2013-010455] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A previous study demonstrated that acupuncture increases the synthesis and reorganisation of collagen molecules in rat tendons after injury. Clinical studies have shown that acupuncture improves pain and functional activity in patients with tendinopathy. However, the molecular mechanisms underlying these effects are unknown. Recent studies have shown that acupuncture can modulate both anti-inflammatory (AI) and mechanotransduction (MT) molecular pathways. Moreover, the modulation of these pathways can increase type I collagen synthesis, which is the main factor that influences tendon biomechanical properties. Our hypothesis is that acupuncture increases synthesis and subsequent reorganisation of type I collagen during tendon healing by concomitant modulation of the Toll-like receptor-nuclear factor-κB AI pathway, the mitogen-activated protein kinases pathway and the Rho/Rac-F-actin MT pathway. Increased collagen synthesis and reorganisation requires that at least one acupoint is anatomically connected with the site of the injury because of the local tenoblast MT mechanism. Confirmation of this hypothesis will increase the knowledge of acupuncture modulation of the previously mentioned molecular pathways, and such confirmation may also help to establish the relationships between the different types of acupuncture needle stimulation and the influence of acupuncture stimuli on pathway activity levels. In addition, the downstream therapeutic effects of acupuncture therapy may be established. This hypothesis can be verified in a rat tendon healing model, and subsequent clinical protocols for tendon healing can be developed and evaluated as standalone therapies or as a component of a combination therapy.
Collapse
Affiliation(s)
- Marcos dos Santos de Almeida
- Department of Functional and Structural Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, São Paulo, Brazil
| | - Flávia Da Ré Guerra
- Department of Anatomy, Biomedical Science Institute, Federal University of Alfenas—UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Letícia Prado de Oliveira
- Department of Functional and Structural Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, São Paulo, Brazil
| | - Cristiano Pedrozo Vieira
- Department of Functional and Structural Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, São Paulo, Brazil
| | - Edson Rosa Pimentel
- Department of Functional and Structural Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
24
|
Almeida MDS, Oliveira LP, Vieira CP, Guerra FDR, Pimentel ER. Birefringence of Collagen Fibres in Rat Calcaneal Tendons Treated with Acupuncture during Three Phases of Healing. Acupunct Med 2018; 34:27-32. [DOI: 10.1136/acupmed-2015-010845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2015] [Indexed: 01/15/2023]
Abstract
Background Birefringence is an optical anisotropy that is investigated by polarisation microscopy, and has been valuable for the study of the oriented organisation of collagen fibres in tendons. However, the application of this technology to evaluate the effect of different acupuncture points during tendon healing has not yet been described. Objectives To evaluate the concentration of non-collagenous proteins (NCP) and birefringence in rat calcaneal tendons following injury during the three different phases of healing: inflammatory (7th day), proliferative (14th day), and remodelling (21st day). Methods Tendons of 120 Wistar rats were tenotomised and left untreated (teno group, n=24), treated with manual acupuncture at ST36 (ST36 group, n=24), BL57 (BL57 group, n=24) or ST36+BL57 (SB group, n=24), or treated with electroacupuncture at ST36+BL57 (EA group, n=24). Tendon samples were collected at 7, 14 and 21 days after injury (n=8 per group). NCP concentrations were measured using the Bradford method (n=4 each) and birefringence was examined using polarisation microscopy and image analysis (n=4 each). Comparison was also made with healthy (non-tenotomised) tendons in a subgroup of rats (n=4 each). Results Manual acupuncture at ST36 and BL57 increased molecular organisation of collagen fibres on day 14 and 21 after injury. Isolated use of BL57 and ST36 also increased collagen fibre organisation when examined on day 14 and 21, respectively. No significant increase in NCP concentration was observed in any of the treated tenotomised groups. Conclusions Acupuncture, through putative anti-inflammatory and mechanotransductor effects, may have a role in strengthening tendons and increasing resistance to re-rupture.
Collapse
Affiliation(s)
- Marcos dos Santos Almeida
- Department of Anatomy, Biomedical Science Institute, Federal University of Alfenas—UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Letícia Prado Oliveira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas—UNICAMP, Campinas, São Paulo, Brazil
| | - Cristiano Pedrozo Vieira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas—UNICAMP, Campinas, São Paulo, Brazil
| | - Flávia Da Ré Guerra
- Department of Anatomy, Biomedical Science Institute, Federal University of Alfenas—UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Edson Rosa Pimentel
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas—UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
25
|
Gugjoo MB, Amarpal, Fazili MR, Shah RA, Sharma GT. Mesenchymal stem cell: Basic research and potential applications in cattle and buffalo. J Cell Physiol 2018; 234:8618-8635. [PMID: 30515790 DOI: 10.1002/jcp.27846] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
Characteristic features like self-renewal, multilineage differentiation potential, and immune-modulatory/anti-inflammatory properties, besides the ability to mobilize and home distant tissues make stem cells (SCs) a lifeline for an individual. Stem cells (SCs) if could be harvested and expanded without any abnormal change may be utilized as an all-in-one solution to numerous clinical ailments. However, slender understanding of their basic physiological properties, including expression potential, behavioral alternations during culture, and the effect of niche/microenvironment has currently restricted the clinical application of SCs. Among various types of SCs, mesenchymal stem cells (MSCs) are extensively studied due to their easy availability, straightforward harvesting, and culturing procedures, besides, their less likelihood to produce teratogens. Large ruminant MSCs have been harvested from various adult tissues and fetal membranes and are well characterized under in vitro conditions but unlike human or other domestic animals in vivo studies on cattle/buffalo MSCs have mostly been aimed at improving the animals' production potential. In this document, we focused on the status and potential application of MSCs in cattle and buffalo.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India.,Division of Surgery, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Mujeeb R Fazili
- Division of Veterinary Clinical Complex, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India
| | - Riaz A Shah
- Division of Animal Biotechnology, FVSc & AH, SKUAST Kashmir, Srinagar, J&K, India
| | - Gutulla Taru Sharma
- Division of Physiology & Climatology, Indian Veterinary Research Institute, Bareilly, UP, India
| |
Collapse
|
26
|
Gugjoo MB, Amarpal, Makhdoomi DM, Sharma GT. Equine Mesenchymal Stem Cells: Properties, Sources, Characterization, and Potential Therapeutic Applications. J Equine Vet Sci 2018; 72:16-27. [PMID: 30929778 DOI: 10.1016/j.jevs.2018.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/06/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
Abstract
Properties like sustained multiplication and self-renewal, and homing and multilineage differentiation to undertake repair of the damaged tissues make stem cells the lifeline for any living system. Therefore, stem cell therapy is regarded to carry immense therapeutic potential. Though the dearth of understanding about the basic biological properties and pathways involved in therapeutic benefits currently limit the application of stem cells in humans as well as animals, there are innumerable reports that suggest clinical benefits of stem cell therapy in equine. Among various stem cell sources, currently adult mesenchymal stem cells (MSCs) are preferred for therapeutic application in horse owing to their easy availability, capacity to modulate inflammation, and promote healing. Also the cells carry very limited teratogenic risk compared to the pluripotent stem cells. Mesenchymal stem cells were earlier considered mainly for musculoskeletal tissues, but now may also be utilized in other diverse clinical problems in horse, and the results may be extrapolated even for human medicine. The current review highlights biological properties, sources, mechanisms, and potential therapeutic applications of stem cells in equine practice.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Surgery, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India.
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India
| | - Dil Mohammad Makhdoomi
- Division of Surgery, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-Kashmir, Srinagar, J&K, India
| | - Gutulla Taru Sharma
- Division of Physiology and Climatology, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India
| |
Collapse
|
27
|
Bonilla-Gutiérrez AF, Castillo-Franz C, López C, Álvarez ME, Giraldo CE, Carmona JU. Equine suspensory ligament and tendon explants cultured with platelet-rich gel supernatants release different anti-inflammatory and anabolic mediators. Biomed Pharmacother 2018; 108:476-485. [PMID: 30241051 DOI: 10.1016/j.biopha.2018.09.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/08/2018] [Accepted: 09/11/2018] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to evaluate the release of pro- and anti-inflammatory as well as anabolic mediators stimulated by a leukocyte-reduced platelet-rich gel supernatant (Lr-PRGS) and a leukocyte-reduced plasma supernatant (Lr-PL) at two concentrations (25 and 50%) on normal equine suspensory ligament explants (SLEs) and tendon explants (TEs). SLEs and TEs from six horses were independently incubated for 48 h with Lr-PRGS and Lr-PL at concentrations of 25 and 50%, respectively. Samples were collected from the incubated tissues at 1 h and 48 h, which were employed for ELISA determination of interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), IL-4, IL-1 receptor antagonist (IL-1ra), platelet-derived growth factor isoform BB (PDGF-BB), transforming growth factor beta-1 (TGF-β1, and hyaluronic acid (HA). Overall, 50% Lr-PRGS induced significantly less IL-1β release than the other hemoderivatives in both tissues. At 48 h, both Lr-PRGS and 25% Lr-PL induced significantly higher TNF-α concentrations in SLEs when compared to TEs, whereas both Lr-PRGS concentrations induced significantly higher IL-4 concentrations in SLEs in comparison to TEs. IL-1ra release was not different between tissues. However, this cytokine was significantly higher in tissue explants cultured with both Lr-PRGS concentrations. HA concentration was lower in tissue explants cultured with all hemoderivatives at two concentrations when compared to the control group. The positive effects observed for ligaments and tendons treated with Lr-PRGS may be mediated by the inhibition of IL-1β release of and increased release of IL-4 and IL-1ra. Furthermore, PDGF-BB could be a polypeptide responsible for mediating the release of anti-inflammatory cytokines in SLEs and TEs incubated with Lr-PRGS.
Collapse
Affiliation(s)
- Andrés F Bonilla-Gutiérrez
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Manizales, Colombia.
| | - Cristian Castillo-Franz
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Manizales, Colombia; Grupo de Investigación en Medicina Veterinaria GIVET, Corporación Universitaria Lasallista, Caldas, Colombia; Programa de Doctorado en Ciencias Veterinarias, Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Becario Doctorado Nacional CONICYT, Valdivia, Chile.
| | - Catalina López
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Manizales, Colombia.
| | - María E Álvarez
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Manizales, Colombia.
| | - Carlos E Giraldo
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Manizales, Colombia.
| | - Jorge U Carmona
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Manizales, Colombia.
| |
Collapse
|
28
|
Mariñas-Pardo L, García-Castro J, Rodríguez-Hurtado I, Rodríguez-García MI, Núñez-Naveira L, Hermida-Prieto M. Allogeneic Adipose-Derived Mesenchymal Stem Cells (Horse Allo 20) for the Treatment of Osteoarthritis-Associated Lameness in Horses: Characterization, Safety, and Efficacy of Intra-Articular Treatment. Stem Cells Dev 2018; 27:1147-1160. [DOI: 10.1089/scd.2018.0074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
| | - Javier García-Castro
- Unidad de Biotecnología Celular, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | | | | | | |
Collapse
|
29
|
Beerts C, Suls M, Broeckx SY, Seys B, Vandenberghe A, Declercq J, Duchateau L, Vidal MA, Spaas JH. Tenogenically Induced Allogeneic Peripheral Blood Mesenchymal Stem Cells in Allogeneic Platelet-Rich Plasma: 2-Year Follow-up after Tendon or Ligament Treatment in Horses. Front Vet Sci 2017; 4:158. [PMID: 29018808 PMCID: PMC5622984 DOI: 10.3389/fvets.2017.00158] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/11/2017] [Indexed: 12/16/2022] Open
Abstract
Poor healing of tendon and ligament lesions often results in early retirement of sport horses. Therefore, regenerative therapies are being explored as potentially promising treatment for these injuries. In this study, an intralesional injection was performed with allogeneic tenogenically induced mesenchymal stem cells and platelet-rich plasma 5-6 days after diagnosis of suspensory ligament (SL) (n = 68) or superficial digital flexor tendon (SDFT) (n = 36) lesion. Clinical, lameness and ultrasonographic evaluation was performed at 6 and 12 weeks. Moreover, a survey was performed 12 and 24 months after treatment to determine how many horses were competing at original level and how many were re-injured. At 6 weeks, 88.2% of SL (n = 68) and 97.3% of SDFT lesions (n = 36) demonstrated moderate ultrasonographic improvement. At 12 weeks, 93.1% of SL (n = 29) and 95.5% of SDFT lesions (n = 22) improved convincingly. Moreover, lameness was abolished in 78.6% of SL (n = 28) and 85.7% (n = 7) of SDFT horses at 12 weeks. After 12 months (n = 92), 11.8% of SL and 12.5% of SDFT horses were re-injured, whereas 83.8 of SL and 79.2% of SDFT returned to previous performance level. At 24 months (n = 89) after treatment, 82.4 (SL) and 85.7% (SDFT) of the horses returned to previous level of performance. A meta-analysis was performed on relevant published evidence evaluating re-injury 24 months after stem cell-based [17.6% of the SL and 14.3% of the SDFT group (n = 89)] versus conventional therapies. Cell therapies resulted in a significantly lower re-injury rate of 18% [95% confidence interval (CI), 0.11-0.25] 2 years after treatment compared to the 44% re-injury rate with conventional treatments (95% CI, 0.37-0.51) based on literature data (P < 0.0001).
Collapse
Affiliation(s)
| | - Marc Suls
- Equine Veterinary Practice Dr. Suls, Nederweert, Netherlands
| | - Sarah Y Broeckx
- Global Stem Cell Technology, ANACURA Group, Evergem, Belgium
| | - Bert Seys
- Equine Veterinary Practice Dr. Suls, Nederweert, Netherlands
| | | | | | - Luc Duchateau
- Faculty of Veterinary Medicine, Department of Comparative Physiology and Biometrics, Ghent University, Merelbeke, Belgium
| | - Martin A Vidal
- Cave Creek Equine Surgical & Imaging Center, Phoenix, AZ, United States
| | - Jan H Spaas
- Global Stem Cell Technology, ANACURA Group, Evergem, Belgium
| |
Collapse
|
30
|
Bavin EP, Atkinson F, Barsby T, Guest DJ. Scleraxis Is Essential for Tendon Differentiation by Equine Embryonic Stem Cells and in Equine Fetal Tenocytes. Stem Cells Dev 2017; 26:441-450. [DOI: 10.1089/scd.2016.0279] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Emma P. Bavin
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom
| | - Francesca Atkinson
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom
| | - Tom Barsby
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom
| | - Debbie J. Guest
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom
| |
Collapse
|
31
|
Aligned Nanofiber Topography Directs the Tenogenic Differentiation of Mesenchymal Stem Cells. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7010059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Tenogenic induction of equine mesenchymal stem cells by means of growth factors and low-level laser technology. Vet Res Commun 2016; 40:39-48. [PMID: 26757735 DOI: 10.1007/s11259-016-9652-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022]
Abstract
Tendons regenerate poorly due to a dense extracellular matrix and low cellularity. Cellular therapies aim to improve tendon repair using mesenchymal stem cells and tenocytes; however, a current limitation is the low proliferative potential of tenocytes in cases of severe trauma. The purpose of this study was to develop a method useful in veterinary medicine to improve the differentiation of Peripheral Blood equine mesenchymal stem cells (PB-MSCs) into tenocytes. PB-MSCs were used to study the effects of the addition of some growth factors (GFs) as TGFβ3 (transforming growth factor), EGF2 (Epidermal growth factor), bFGF2 (Fibroblast growth factor) and IGF-1 (insulin-like growth factor) in presence or without Low Level Laser Technology (LLLT) on the mRNA expression levels of genes important in the tenogenic induction as Early Growth Response Protein-1 (EGR1), Tenascin (TNC) and Decorin (DCN). The singular addition of GFs did not show any influence on the mRNA expression of tenogenic genes whereas the specific combinations that arrested cell proliferation in favour of differentiation were the following: bFGF2 + TGFβ3 and bFGF2 + TGFβ3 + LLLT. Indeed, the supplement of bFGF2 and TGFβ3 significantly upregulated the expression of Early Growth Response Protein-1 and Decorin, while the use of LLLT induced a significant increase of Tenascin C levels. In conclusion, the present study might furnish significant suggestions for developing an efficient approach for tenocyte induction since the external administration of bFGF2 and TGFβ3, along with LLLT, influences the differentiation of PB-MSCs towards the tenogenic fate.
Collapse
|
33
|
Vandenberghe A, Broeckx SY, Beerts C, Seys B, Zimmerman M, Verweire I, Suls M, Spaas JH. Tenogenically Induced Allogeneic Mesenchymal Stem Cells for the Treatment of Proximal Suspensory Ligament Desmitis in a Horse. Front Vet Sci 2015; 2:49. [PMID: 26664976 PMCID: PMC4672201 DOI: 10.3389/fvets.2015.00049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/09/2015] [Indexed: 12/13/2022] Open
Abstract
Suspensory ligament injuries are a common injury in sport horses, especially in competing dressage horses. Because of the poor healing of chronic recalcitrant tendon injuries, this represents a major problem in the rehabilitation of sport horses and often compromises the return to the initial performance level. Stem cells are considered as a novel treatment for different pathologies in horses and humans. Autologous mesenchymal stem cells (MSCs) are well known for their use in the treatment of tendinopathies; however, recent studies report a safe use of allogeneic MSCs for different orthopedic applications in horses. Moreover, it has been reported that pre-differentiation of MSCs prior to injection might result in improved clinical outcomes. For all these reasons, the present case report describes the use of allogeneic tenogenically induced peripheral blood-derived MSCs for the treatment of a proximal suspensory ligament injury. During conservative management for 4 months, the horse demonstrated no improvement of a right front lameness with a Grade 2/5 on the American Association of Equine Practitioners (AAEP) scale and a clear hypo-echoic area detectable in 30% of the cross sectional area. From 4 weeks after treatment, the lameness reduced to an AAEP Grade 1/5 and a clear filling of the lesion could be noticed on ultrasound. At 12 weeks (T4) after the first injection, a second intralesional injection with allogeneic tenogenically induced MSCs and platelet-rich plasma was given and at 4 weeks after the second injection (T5), the horse trotted sound under all circumstances with a close to total fiber alignment. The horse went back to previous performance level at 32 weeks after the first regenerative therapy and is currently still doing so (i.e., 20 weeks later or 1 year after the first stem cell treatment). In conclusion, the present case report demonstrated a positive evolution of proximal suspensory ligament desmitis after treatment with allogeneic tenogenically induced MSCs.
Collapse
Affiliation(s)
- Aurélie Vandenberghe
- Global Stem Cell Technology, ANACURA Group , Evergem , Belgium ; Equine Veterinary Pratice Dr. Suls , Nederweert , Netherlands
| | - Sarah Y Broeckx
- Global Stem Cell Technology, ANACURA Group , Evergem , Belgium
| | | | - Bert Seys
- Equine Veterinary Pratice Dr. Suls , Nederweert , Netherlands
| | | | - Ineke Verweire
- Global Stem Cell Technology, ANACURA Group , Evergem , Belgium
| | - Marc Suls
- Equine Veterinary Pratice Dr. Suls , Nederweert , Netherlands
| | - Jan H Spaas
- Global Stem Cell Technology, ANACURA Group , Evergem , Belgium
| |
Collapse
|
34
|
Gaspar D, Spanoudes K, Holladay C, Pandit A, Zeugolis D. Progress in cell-based therapies for tendon repair. Adv Drug Deliv Rev 2015; 84:240-56. [PMID: 25543005 DOI: 10.1016/j.addr.2014.11.023] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/08/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
The last decade has seen significant developments in cell therapies, based on permanently differentiated, reprogrammed or engineered stem cells, for tendon injuries and degenerative conditions. In vitro studies assess the influence of biophysical, biochemical and biological signals on tenogenic phenotype maintenance and/or differentiation towards tenogenic lineage. However, the ideal culture environment has yet to be identified due to the lack of standardised experimental setup and readout system. Bone marrow mesenchymal stem cells and tenocytes/dermal fibroblasts appear to be the cell populations of choice for clinical translation in equine and human patients respectively based on circumstantial, rather than on hard evidence. Collaborative, inter- and multi-disciplinary efforts are expected to provide clinically relevant and commercially viable cell-based therapies for tendon repair and regeneration in the years to come.
Collapse
Affiliation(s)
- Diana Gaspar
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Kyriakos Spanoudes
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Carolyn Holladay
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Dimitrios Zeugolis
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
35
|
de Almeida MDS, de Freitas KM, Oliveira LP, Vieira CP, Guerra FDR, Dolder MAH, Pimentel ER. Acupuncture Increases the Diameter and Reorganisation of Collagen Fibrils during Rat Tendon Healing. Acupunct Med 2015; 33:51-7. [DOI: 10.1136/acupmed-2014-010548] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background Our previous study showed that electroacupuncture (EA) increases the concentration and reorganisation of collagen in a rat model of tendon healing. However, the ultrastructure of collagen fibrils after acupuncture is unknown. Objectives To assess the effect of acupuncture protocols on the ultrastructure of collagen fibrils during tendon healing. Methods Sixty-four rats were divided into the following groups: non-tenotomised (normal group), tenotomised (teno group), tenotomised and subjected to manual acupuncture at ST36 (ST36 group), BL57 (BL57 group) and ST36+BL57 (SB group) and EA at ST36+BL57 (EA group). The mass-average diameter (MAD) and the reorganisation of collagen fibril diameters were determined during the three phases of tendon healing (at 7, 14 and 21 days). Results The MAD increased during the three phases of healing in the SB group. In the EA group, MAD increased initially but was reduced at day 21. The reorganisation of collagen fibrils was improved in the EA and SB groups at days 14 and 21, respectively. EA at day 21 appeared to reduce the reorganisation. Conclusions These results indicate that the use of EA up to day 14 and manual acupuncture at ST36+BL57 up to day 21 improve the ultrastructure of collagen fibrils, indicating strengthening of the tendon structure. These data suggest a potential role for acupuncture in rehabilitation protocols.
Collapse
Affiliation(s)
- Marcos dos Santos de Almeida
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas—UNICAMP, Campinas, São Paulo, Brazil
| | - Karine Moura de Freitas
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas—UNICAMP, Campinas, São Paulo, Brazil
| | - Letícia Prado Oliveira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas—UNICAMP, Campinas, São Paulo, Brazil
| | - Cristiano Pedrozo Vieira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas—UNICAMP, Campinas, São Paulo, Brazil
| | - Flávia Da Ré Guerra
- Department of Anatomy, Biomedical Science Institute, Federal University of Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Mary Anne Heidi Dolder
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas—UNICAMP, Campinas, São Paulo, Brazil
| | - Edson Rosa Pimentel
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas—UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
36
|
Bussche L, Van de Walle GR. Peripheral Blood-Derived Mesenchymal Stromal Cells Promote Angiogenesis via Paracrine Stimulation of Vascular Endothelial Growth Factor Secretion in the Equine Model. Stem Cells Transl Med 2014; 3:1514-25. [PMID: 25313202 DOI: 10.5966/sctm.2014-0138] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have received much attention as a potential treatment of ischemic diseases, including ischemic tissue injury and cardiac failure. The beneficial effects of MSCs are thought to be mediated by their ability to provide proangiogenic factors, creating a favorable microenvironment that results in neovascularization and tissue regeneration. To study this in more detail and to explore the potential of the horse as a valuable translational model, the objectives of the present study were to examine the presence of angiogenic stimulating factors in the conditioned medium (CM) of peripheral blood-derived equine mesenchymal stromal cells (PB-MSCs) and to study their in vitro effect on angiogenesis-related endothelial cell (EC) behavior, including proliferation and vessel formation. Our salient findings were that CM from PB-MSCs contained significant levels of several proangiogenic factors. Furthermore, we found that CM could induce angiogenesis in equine vascular ECs and confirmed that endothelin-1, insulin growth factor binding protein 2, interleukin-8, and platelet-derived growth factor-AA, but not urokinase-type plasminogen activator, were responsible for this enhanced EC network formation by increasing the expression level of vascular endothelial growth factor-A, an important angiogenesis stimulator.
Collapse
Affiliation(s)
- Leen Bussche
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
37
|
Lopez MJ, Jarazo J. State of the art: stem cells in equine regenerative medicine. Equine Vet J 2014; 47:145-54. [PMID: 24957845 DOI: 10.1111/evj.12311] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/01/2014] [Indexed: 12/20/2022]
Abstract
According to Greek mythology, Prometheus' liver grew back nightly after it was removed each day by an eagle as punishment for giving mankind fire. Hence, contrary to popular belief, the concept of tissue and organ regeneration is not new. In the early 20th century, cell culture and ex vivo organ preservation studies by Alexis Carrel, some with famed aviator Charles Lindbergh, established a foundation for much of modern regenerative medicine. While early beliefs and discoveries foreshadowed significant accomplishments in regenerative medicine, advances in knowledge within numerous scientific disciplines, as well as nano- and micromolecular level imaging and detection technologies, have contributed to explosive advances over the last 20 years. Virtually limitless preparations, combinations and applications of the 3 major components of regenerative medicine, namely cells, biomaterials and bioactive molecules, have created a new paradigm of future therapeutic options for most species. It is increasingly clear, however, that despite significant parallels among and within species, there is no 'one-size-fits-all' regenerative therapy. Likewise, a panacea has yet to be discovered that completely reverses the consequences of time, trauma and disease. Nonetheless, there is no question that the promise and potential of regenerative medicine have forever altered medical practices. The horse is a relative newcomer to regenerative medicine applications, yet there is already a large body of work to incorporate novel regenerative therapies into standard care. This review focuses on the current state and potential future of stem cells in equine regenerative medicine.
Collapse
Affiliation(s)
- M J Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Equine Health Studies Program, Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, USA
| | | |
Collapse
|
38
|
Regenerative therapies for equine degenerative joint disease: a preliminary study. PLoS One 2014; 9:e85917. [PMID: 24465787 PMCID: PMC3896436 DOI: 10.1371/journal.pone.0085917] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022] Open
Abstract
Degenerative joint disease (DJD) is a major cause of reduced athletic function and retirement in equine performers. For this reason, regenerative therapies for DJD have gained increasing interest. Platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs) were isolated from a 6-year-old donor horse. MSCs were either used in their native state or after chondrogenic induction. In an initial study, 20 horses with naturally occurring DJD in the fetlock joint were divided in 4 groups and injected with the following: 1) PRP; 2) MSCs; 3) MSCs and PRP; or 4) chondrogenic induced MSCs and PRP. The horses were then evaluated by means of a clinical scoring system after 6 weeks (T1), 12 weeks (T2), 6 months (T3) and 12 months (T4) post injection. In a second study, 30 horses with the same medical background were randomly assigned to one of the two combination therapies and evaluated at T1. The protein expression profile of native MSCs was found to be negative for major histocompatibility (MHC) II and p63, low in MHC I and positive for Ki67, collagen type II (Col II) and Vimentin. Chondrogenic induction resulted in increased mRNA expression of aggrecan, Col II and cartilage oligomeric matrix protein (COMP) as well as in increased protein expression of p63 and glycosaminoglycan, but in decreased protein expression of Ki67. The combined use of PRP and MSCs significantly improved the functionality and sustainability of damaged joints from 6 weeks until 12 months after treatment, compared to PRP treatment alone. The highest short-term clinical evolution scores were obtained with chondrogenic induced MSCs and PRP. This study reports successful in vitro chondrogenic induction of equine MSCs. In vivo application of (induced) MSCs together with PRP in horses suffering from DJD in the fetlock joint resulted in a significant clinical improvement until 12 months after treatment.
Collapse
|
39
|
Abstract
Tendinopathies, chronic tendon disorders characterized by pain and functional impairment, are a common problem particularly in elite and recreational athletes. There is a high prevalence of Achilles tendinopathy in runners, while patellar tendinopathies, also referred to as jumpers knee, are very common amongst volleyball and basketball players. However, tendinopathies also occur in the sedentary population. The syndrome is associated with a variety of morphological, histopathological, biochemical and molecular changes, such as an increase in tendon cross sectional area, loss of fibre organization and infiltration of blood vessels. It has been shown that exercise or mechanical loading plays a role, which is why overuse is suspected to initiate tendinopathies. The exact mechanisms are still poorly understood, which makes the treatment problematic. A variety of treatment options are available, ranging from non-invasive procedures such as exercise treatment, topical nitroglycerin patches or shock wave therapy, over injections of various substances, such as corticosteroids, platelet-rich plasma or sclerosing agents, to surgical debridement. However, most of the treatment options focus solely on symptom relief, and the evidence for their effectiveness is often poor. The effectiveness of a treatment is furthermore likely to depend on the stage of the tendinapathy. In contrast to many therapies, exercise treatment has been relatively well investigated, has been shown to work in the majority of cases and is considered the gold standard.
Collapse
Affiliation(s)
- K. Legerlotz
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|