1
|
Alhummiany B, Sharma K, Buckley DL, Soe KK, Sourbron SP. Physiological confounders of renal blood flow measurement. MAGMA (NEW YORK, N.Y.) 2024; 37:565-582. [PMID: 37971557 PMCID: PMC11417086 DOI: 10.1007/s10334-023-01126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVES Renal blood flow (RBF) is controlled by a number of physiological factors that can contribute to the variability of its measurement. The purpose of this review is to assess the changes in RBF in response to a wide range of physiological confounders and derive practical recommendations on patient preparation and interpretation of RBF measurements with MRI. METHODS A comprehensive search was conducted to include articles reporting on physiological variations of renal perfusion, blood and/or plasma flow in healthy humans. RESULTS A total of 24 potential confounders were identified from the literature search and categorized into non-modifiable and modifiable factors. The non-modifiable factors include variables related to the demographics of a population (e.g. age, sex, and race) which cannot be manipulated but should be considered when interpreting RBF values between subjects. The modifiable factors include different activities (e.g. food/fluid intake, exercise training and medication use) that can be standardized in the study design. For each of the modifiable factors, evidence-based recommendations are provided to control for them in an RBF-measurement. CONCLUSION Future studies aiming to measure RBF are encouraged to follow a rigorous study design, that takes into account these recommendations for controlling the factors that can influence RBF results.
Collapse
Affiliation(s)
- Bashair Alhummiany
- Department of Biomedical Imaging Sciences, University of Leeds, Leeds, LS2 9NL, UK.
| | - Kanishka Sharma
- Department of Imaging, Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - David L Buckley
- Department of Biomedical Imaging Sciences, University of Leeds, Leeds, LS2 9NL, UK
| | - Kywe Kywe Soe
- Department of Imaging, Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Steven P Sourbron
- Department of Imaging, Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
2
|
Bach AJE, Cunningham SJK, Morris NR, Xu Z, Rutherford S, Binnewies S, Meade RD. Experimental research in environmentally induced hyperthermic older persons: A systematic quantitative literature review mapping the available evidence. Temperature (Austin) 2024; 11:4-26. [PMID: 38567267 PMCID: PMC7615797 DOI: 10.1080/23328940.2023.2242062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/21/2023] [Indexed: 04/04/2024] Open
Abstract
The heat-related health burden is expected to persist and worsen in the coming years due to an aging global population and climate change. Defining the breadth and depth of our understanding of age-related changes in thermoregulation can identify underlying causes and strategies to protect vulnerable individuals from heat. We conducted the first systematic quantitative literature review to provide context to the historical experimental research of healthy older adults - compared to younger adults or unhealthy age matched cases - during exogenous heat strain, focusing on factors that influence thermoregulatory function (e.g. co-morbidities). We identified 4,455 articles, with 147 meeting eligibility criteria. Most studies were conducted in the US (39%), Canada (29%), or Japan (12%), with 71% of the 3,411 participants being male. About 71% of the studies compared younger and older adults, while 34% compared two groups of older adults with and without factors influencing thermoregulation. Key factors included age combined with another factor (23%), underlying biological mechanisms (18%), age independently (15%), influencing health conditions (15%), adaptation potential (12%), environmental conditions (9%), and therapeutic/pharmacological interventions (7%). Our results suggest that controlled experimental research should focus on the age-related changes in thermoregulation in the very old, females, those with overlooked chronic heat-sensitive health conditions (e.g. pulmonary, renal, mental disorders), the impact of multimorbidity, prolonged and cumulative effects of extreme heat, evidence-based policy of control measures (e.g. personal cooling strategies), pharmaceutical interactions, and interventions stimulating protective physiological adaptation. These controlled studies will inform the directions and use of limited resources in ecologically valid fieldwork studies.
Collapse
Affiliation(s)
- Aaron J. E. Bach
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| | - Sarah J. K. Cunningham
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| | - Norman R. Morris
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
- Metro North Hospital and Health Service, The Prince Charles Hospital. Allied Health Research Collaborative, Brisbane, QLD, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Zhiwei Xu
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| | - Shannon Rutherford
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
- Cities Research Institute, Griffith University, Gold Coast, QLD, Australia
| | - Sebastian Binnewies
- School of Information and Communication Technology, Griffith University, Gold Coast, QLD, Australia
| | - Robert D. Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| |
Collapse
|
3
|
Kawakami S, Yasuno T, Kotoku K, Kawakami S, Ito A, Fujimi K, Matsuda T, Nakashima S, Masutani K, Uehara Y, Higaki Y, Michishita R. The differences in renal hemodynamic response following high-intensity exercise between younger and older males. Clin Exp Nephrol 2023; 27:972-980. [PMID: 37450106 DOI: 10.1007/s10157-023-02381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Renal blood flow (RBF) decreases with exercise, but this change is only temporary, and habitual exercise may be an effective method to improve renal function. The kidney shows structural and functional changes with aging, but it is unclear how aging affects the hemodynamic response of the kidneys to exercise. Therefore, we evaluated the differences in the hemodynamic response of the kidneys to high-intensity exercise between younger and older men. METHODS Sixteen men (8 young and 8 older) underwent an incremental exercise test using a cycle ergometer with a 1-min warm up followed by exercise at 10-20 W/min until the discontinuation criteria were met. Renal hemodynamics were assessed before exercise, immediately after exercise, and at 60-min after exercise using ultrasound echo. RESULTS High-intensity exercise significantly reduced RBF in both groups (younger: ∆ - 53 ± 16%, p = 0.0005; older: ∆ - 53 ± 19%, p = 0.0004). In the younger group, RBF returned to the pre-exercise level 60-min after exercise (∆ - 0.4 ± 5.7%, p > 0.9999). In contrast, RBF 60-min after exercise was significantly lower than that before exercise in the older group (∆ - 24 ± 19%, p = 0.0006). The older group had significantly lower RBF than younger adults 60-min after exercise (423 ± 32 vs. 301 ± 98 mL/min, p = 0.0283). CONCLUSIONS Our findings demonstrate that RBF following high-intensity exercise recovered 60-min after exercise in younger group, whereas RBF recovery was delayed in the older group.
Collapse
Affiliation(s)
- Shotaro Kawakami
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka, Japan
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
- The Fukuoka University Institute for Physical Activity, Fukuoka, Japan
| | - Tetsuhiko Yasuno
- Division of Nephrology and Rheumatology, Department of Internal Medicine, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Kazuko Kotoku
- Faculty of Fukuoka Medical Technology, Teikyo University, 6-22, Misaki-Machi, Omuta-Shi, Fukuoka, Japan
| | - Saki Kawakami
- The Fukuoka University Institute for Physical Activity, Fukuoka, Japan
| | - Ai Ito
- The Fukuoka University Institute for Physical Activity, Fukuoka, Japan
| | - Kanta Fujimi
- Department of Rehabilitation, Fukuoka University Hospital, Fukuoka, Japan
| | - Takuro Matsuda
- Department of Rehabilitation, Fukuoka University Hospital, Fukuoka, Japan
| | - Shihoko Nakashima
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
- The Fukuoka University Institute for Physical Activity, Fukuoka, Japan
| | - Kosuke Masutani
- Division of Nephrology and Rheumatology, Department of Internal Medicine, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yoshinari Uehara
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
- The Fukuoka University Institute for Physical Activity, Fukuoka, Japan
| | - Yasuki Higaki
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
- The Fukuoka University Institute for Physical Activity, Fukuoka, Japan
| | - Ryoma Michishita
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan.
- The Fukuoka University Institute for Physical Activity, Fukuoka, Japan.
| |
Collapse
|
4
|
Temperature regulation during exercise in the heat: Insights for the aging athlete. J Sci Med Sport 2020; 24:739-746. [PMID: 33358656 DOI: 10.1016/j.jsams.2020.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/30/2020] [Accepted: 12/13/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The purpose of this review is to evaluate the currently-available literature regarding the impact of both primary aging and age-related fitness on thermoregulatory function during exercise in the heat. In so doing, we aim to (1) characterize the influence of fitness in mitigating age-related declines in thermoregulation, (2) address the limitations of prior experimental approaches for investigating age-related thermoregulatory impairments, (3) examine to what extent aerobic fitness can be maintained in the aging athlete, and (4) begin to address the specific environmental conditions in which age-related impairments in thermoregulatory function may place highly active older adults at increased risk for heat-related illness and injury and/or limited performance. DESIGN Mini-review. METHODS Review and synthesis of available information. RESULTS The earth's climate is warming, accompanied by a consequently greater frequency and severity of extreme heat events. At the same time, lifespan is increasing and people of all ages are staying increasingly active. Age-related impairments in thermoregulatory function are well-documented, leading to increased heat-related health risks and reduced exercise/athletic performance for older adults in hot environmental conditions. High aerobic fitness improves body temperature regulation during exercise via augmented sweating and improved cardiovascular function, including cardiac output and skin blood flow, in humans of all ages. CONCLUSIONS The masters athlete is better suited for exercise/heat-stress compared to his or her less fit peers. However, while age and thermoregulation in general has been studied extensively, research on the most fit older adults, including highly competitive athletes, is generally lacking.
Collapse
|
5
|
Chapman CL, Johnson BD, Parker MD, Hostler D, Pryor RR, Schlader Z. Kidney physiology and pathophysiology during heat stress and the modification by exercise, dehydration, heat acclimation and aging. Temperature (Austin) 2020; 8:108-159. [PMID: 33997113 PMCID: PMC8098077 DOI: 10.1080/23328940.2020.1826841] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
The kidneys' integrative responses to heat stress aid thermoregulation, cardiovascular control, and water and electrolyte regulation. Recent evidence suggests the kidneys are at increased risk of pathological events during heat stress, namely acute kidney injury (AKI), and that this risk is compounded by dehydration and exercise. This heat stress related AKI is believed to contribute to the epidemic of chronic kidney disease (CKD) occurring in occupational settings. It is estimated that AKI and CKD affect upwards of 45 million individuals in the global workforce. Water and electrolyte disturbances and AKI, both of which are representative of kidney-related pathology, are the two leading causes of hospitalizations during heat waves in older adults. Structural and physiological alterations in aging kidneys likely contribute to this increased risk. With this background, this comprehensive narrative review will provide the first aggregation of research into the integrative physiological response of the kidneys to heat stress. While the focus of this review is on the human kidneys, we will utilize both human and animal data to describe these responses to passive and exercise heat stress, and how they are altered with heat acclimation. Additionally, we will discuss recent studies that indicate an increased risk of AKI due to exercise in the heat. Lastly, we will introduce the emerging public health crisis of older adults during extreme heat events and how the aging kidneys may be more susceptible to injury during heat stress.
Collapse
Affiliation(s)
- Christopher L. Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Blair D. Johnson
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Mark D. Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - David Hostler
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Riana R. Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Zachary Schlader
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| |
Collapse
|
6
|
Chapman CL, Johnson BD, Vargas NT, Hostler D, Parker MD, Schlader ZJ. Both hyperthermia and dehydration during physical work in the heat contribute to the risk of acute kidney injury. J Appl Physiol (1985) 2020; 128:715-728. [PMID: 32078468 DOI: 10.1152/japplphysiol.00787.2019] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Occupational heat stress increases the risk of acute kidney injury (AKI) and kidney disease. This study tested the hypothesis that attenuating the magnitude of hyperthermia (i.e., increase in core temperature) and/or dehydration during prolonged physical work in the heat attenuates increases in AKI biomarkers. Thirteen healthy adults (3 women, 23 ± 2 yr) exercised for 2 h in a 39.7 ± 0.6°C, 32 ± 3% relative-humidity environmental chamber. In four trials, subjects received water to remain euhydrated (Water), continuous upper-body cooling (Cooling), a combination of both (Water + Cooling), or no intervention (Control). The magnitude of hyperthermia (increased core temperature of 1.9 ± 0.3°C; P < 0.01) and dehydration (percent loss of body mass of -2.4 ± 0.5%; P < 0.01) were greatest in the Control group. There were greater increases in the urinary biomarkers of AKI in the Control trial: albumin (increase of 13 ± 11 μg/mL; P ≤ 0.05 compared with other trials), neutrophil gelatinase-associated lipocalin (NGAL) (increase of 16 ± 14 ng/dL, P ≤ 0.05 compared with Cooling and Water + Cooling groups), and insulin-like growth factor-binding protein 7 (IGFBP7) (increase of 227 ± 190 ng/mL; P ≤ 0.05 compared with other trials). Increases in IGFBP7 in the Control trial persisted after correcting for urine production/concentration. There were no differences in the AKI biomarker tissue inhibitor of metalloproteinase 2 (TIMP-2) between trials (P ≥ 0.11). Our findings indicate that the risk of AKI is highest with greater magnitudes of hyperthermia and dehydration during physical work in the heat. Additionally, the differential findings between IGFBP7 (preferentially secreted in proximal tubules) and TIMP-2 (distal tubules) suggest the proximal tubules as the location of potential renal injury.NEW & NOTEWORTHY We demonstrate that the risk for acute kidney injury (AKI) is higher in humans with greater magnitudes of hyperthermia and dehydration during physical work in the heat and that alleviating the hyperthermia and/or limiting dehydration equally reduce the risk of AKI. The biomarker panel employed in this study suggests the proximal tubules as the location of potential renal injury.
Collapse
Affiliation(s)
- Christopher L Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Blair D Johnson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Nicole T Vargas
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - David Hostler
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Mark D Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York.,Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Zachary J Schlader
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York.,Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| |
Collapse
|
7
|
Schlader ZJ, Hostler D, Parker MD, Pryor RR, Lohr JW, Johnson BD, Chapman CL. The Potential for Renal Injury Elicited by Physical Work in the Heat. Nutrients 2019; 11:nu11092087. [PMID: 31487794 PMCID: PMC6769672 DOI: 10.3390/nu11092087] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
An epidemic of chronic kidney disease (CKD) is occurring in laborers who undertake physical work in hot conditions. Rodent data indicate that heat exposure causes kidney injury, and when this injury is regularly repeated it can elicit CKD. Studies in humans demonstrate that a single bout of exercise in the heat increases biomarkers of acute kidney injury (AKI). Elevations in AKI biomarkers in this context likely reflect an increased susceptibility of the kidneys to AKI. Data largely derived from animal models indicate that the mechanism(s) by which exercise in the heat may increase the risk of AKI is multifactorial. For instance, heat-related reductions in renal blood flow may provoke heterogenous intrarenal blood flow. This can promote localized ischemia, hypoxemia and ATP depletion in renal tubular cells, which could be exacerbated by increased sodium reabsorption. Heightened fructokinase pathway activity likely exacerbates ATP depletion occurring secondary to intrarenal fructose production and hyperuricemia. Collectively, these responses can promote inflammation and oxidative stress, thereby increasing the risk of AKI. Equivalent mechanistic evidence in humans is lacking. Such an understanding could inform the development of countermeasures to safeguard the renal health of laborers who regularly engage in physical work in hot environments.
Collapse
Affiliation(s)
- Zachary J Schlader
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA.
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN 47405, USA.
| | - David Hostler
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Mark D Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Riana R Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - James W Lohr
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Blair D Johnson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Christopher L Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
8
|
Chapman CL, Johnson BD, Sackett JR, Parker MD, Schlader ZJ. Soft drink consumption during and following exercise in the heat elevates biomarkers of acute kidney injury. Am J Physiol Regul Integr Comp Physiol 2019; 316:R189-R198. [DOI: 10.1152/ajpregu.00351.2018] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to test the hypothesis that consuming a soft drink (i.e., a high-fructose, caffeinated beverage) during and following exercise in the heat elevates biomarkers of acute kidney injury (AKI) in humans. Twelve healthy adults drank 2 liters of an assigned beverage during 4 h of exercise in the heat [35.1 (0.1)°C, 61 (5)% relative humidity] in counterbalanced soft drink and water trials, and ≥1 liter of the same beverage after leaving the laboratory. Stage 1 AKI (i.e., increased serum creatinine ≥0.30 mg/dl) was detected at postexercise in 75% of participants in the Soft Drink trial compared with 8% in Water trial ( P = 0.02). Furthermore, urinary neutrophil gelatinase-associated lipocalin (NGAL), a biomarker of AKI, was higher during an overnight collection period after the Soft Drink trial compared with Water in both absolute concentration [6 (4) ng/dl vs. 5 (4) ng/dl, P < 0.04] and after correcting for urine flow rate [6 (7) (ng/dl)/(ml/min) vs. 4 (4) (ng/dl)/(ml/min), P = 0.03]. Changes in serum uric acid from preexercise were greater in the Soft Drink trial than the Water trial at postexercise ( P < 0.01) and 24 h ( P = 0.05). There were greater increases from preexercise in serum copeptin, a stable marker of vasopressin, at postexercise in the Soft Drink trial ( P < 0.02) than the Water trial. These findings indicate that consuming a soft drink during and following exercise in the heat induces AKI, likely via vasopressin-mediated mechanisms.
Collapse
Affiliation(s)
- Christopher L. Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Blair D. Johnson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - James R. Sackett
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Mark D. Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Zachary J. Schlader
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
9
|
Schlader ZJ, Chapman CL, Benati JM, Gideon EA, Vargas NT, Lema PC, Johnson BD. Renal Hemodynamics During Sympathetic Activation Following Aerobic and Anaerobic Exercise. Front Physiol 2019; 9:1928. [PMID: 30687130 PMCID: PMC6335335 DOI: 10.3389/fphys.2018.01928] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022] Open
Abstract
We tested the hypotheses that prior aerobic (Study 1) or anaerobic (Study 2) exercise attenuates the increase in renal vascular resistance (RVR) during sympathetic stimulation. Ten healthy young adults (5 females) participated in both Study 1 (aerobic exercise) and Study 2 (anaerobic exercise). In Study 1, subjects completed three minutes of face cooling pre- and post- 30 min of moderate intensity aerobic exercise (68 ± 1% estimate maximal heart rate). In Study 2, subjects completed two minutes of the cold pressor test pre- and post- the completion of a 30 s maximal effort cycling test (Wingate Anaerobic Test). Both face cooling and the cold pressor test stimulate the sympathetic nervous system and elevate RVR. The primary dependent variable in both Studies was renal blood velocity, which was measured at baseline and every minute during sympathetic stimulation. Renal blood velocity was measured via the coronal approach at the distal segment of the right renal artery with pulsed wave Doppler ultrasound. RVR was calculated from the quotient of mean arterial pressure and renal blood velocity. In Study 1, renal blood velocity and RVR did not differ between pre- and post- aerobic exercise (P ≥ 0.24). Face cooling decreased renal blood velocity (P < 0.01) and the magnitude of this decrease did not differ between pre- and post- aerobic exercise (P = 0.52). RVR increased with face cooling (P < 0.01) and the extent of these increases did not differ between pre- and post- aerobic exercise (P = 0.74). In Study 2, renal blood velocity was 2 ± 2 cm/s lower post- anaerobic exercise (P = 0.02), but RVR did not differ (P = 0.08). The cold pressor test decreased renal blood velocity (P < 0.01) and the magnitude of this decrease did not differ between pre- and post- anaerobic exercise (P = 0.26). RVR increased with the cold pressor test (P < 0.01) and the extent of these increases did not differ between pre- and post- anaerobic exercise (P = 0.12). These data indicate that 30 min of moderate intensity aerobic exercise or 30 s of maximal effort anaerobic exercise does not affect the capacity to increase RVR during sympathetic stimulation following exercise.
Collapse
Affiliation(s)
- Zachary J. Schlader
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, United States
| | - Christopher L. Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, United States
| | - Julia M. Benati
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, United States
| | - Elizabeth A. Gideon
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, United States
| | - Nicole T. Vargas
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, United States
| | - Penelope C. Lema
- Department of Emergency Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Blair D. Johnson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
10
|
Gittemeier EM, Ericson T, Ghosh P, Copp SW, Opoku-Acheampong AB, Behnke BJ. Effects of aging and exercise training on the dynamics of vasoconstriction in skeletal muscle resistance vessels. Eur J Appl Physiol 2017; 117:397-407. [PMID: 28154974 DOI: 10.1007/s00421-017-3541-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/09/2017] [Indexed: 11/24/2022]
Abstract
It is unknown whether aging or exercise training affect the dynamics of arteriolar vasoconstriction. PURPOSE We hypothesized that old age will slow, and exercise training will speed, the dynamics of skeletal muscle arteriolar vasoconstriction in resistance vessels of aged rats. METHOD Young (6 month old) and aged (24 month old) male Fischer-344 rats were assigned to sedentary (Sed: n = 6/age group) or exercise-trained (ET: n = 5 aged and 6 young; via treadmill running for 10-12 weeks) groups. After completion of training, arterioles from the red portion of the gastrocnemius muscle were removed, cannulated, and exposed to 10-4 M norepinephrine (NE) or 20 mM caffeine. Changes in luminal diameter were recorded for analysis of constrictor dynamics. RESULT Old age blunted all kinetic parameters (i.e., time delay, time constant) resulting in vasoconstriction taking ~3 times as long to reach a steady state (SS) versus younger counterparts for NE (aged-sed: 15.6 ± 6.0 versus young-sed: 4.6 ± 0.5 s; P < 0.05) with a similar time course to caffeine. Exercise training resulted in a similar time to SS between age groups for NE (aged-ET: 6.8 ± 1.6 versus young-ET: 7.0 ± 0.6 s) and caffeine (aged-ET: 7.8 ± 0.6 versus young-ET: 8.6 ± 1.0 s). CONCLUSION The results of this study demonstrate that aging blunts the rate of vasoconstriction in skeletal muscle resistance vessels to the sympathetic neurotransmitter NE due, in part, to an attenuated rate of contraction from intracellular calcium release. Further, exercise training speeds the dynamics of constriction to both NE and caffeine with old age.
Collapse
Affiliation(s)
| | - Tyler Ericson
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Payal Ghosh
- Department of Food, Nutrition and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | | | - Bradley J Behnke
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA. .,Department of Kinesiology, Johnson Cancer Research Center, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
11
|
Fu Q, Vongpatanasin W, Levine BD. Neural and nonneural mechanisms for sex differences in elderly hypertension: can exercise training help? Hypertension 2008; 52:787-94. [PMID: 18852385 DOI: 10.1161/hypertensionaha.108.118927] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qi Fu
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas, TX 75231, USA.
| | | | | |
Collapse
|
12
|
Passmore JC, Joshua IG, Rowell PP, Tyagi SC, Falcone JC. Reduced alpha adrenergic mediated contraction of renal preglomerular blood vessels as a function of gender and aging. J Cell Biochem 2006; 96:672-81. [PMID: 16149078 DOI: 10.1002/jcb.20581] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As human males age, a decline in baroreflex-mediated elevation of blood pressure occurs due, at least in part, to a reduction in alpha-1 adrenergic vasoconstrictor function. Alpha adrenergic constriction is mediated by guanosine triphosphate binding Protein (G Protein) coupled signaling pathways. Alpha-1 A/C, B, and D adrenergic receptor expressions, measured by GeneChip array, are not reduced during aging in renal blood vessels of male or female rats. Alpha-1 A GeneChip expression is greater, at all ages studied, in females than in males. Prazosin binding by alpha-1 adrenergic receptors is greater in young adult female rats than in young adult male rats; however, it is reduced with aging in both male and female rats. G alpha q GeneChip expression declines while expression of adrenergic receptor kinase (GRK2) and tyrosine phosphatases (TyrP) increase with aging in male rats. The declines in alpha-1 adrenergic receptor binding and G alpha q expression and also the increases in GRK2 and TyrP expression likely relate to the age-related decline of vasoconstriction in male rats. The information that the expression of alpha-1 A adrenergic receptors is greater in female rats and (GRK2) expression does not increase during aging could relate to the gender differences in vasoconstrictor function with aging. Gene therapy to ameliorate the age-related decline in renal function could possibly reduce the need for renal dialysis. Signaling pathways such as those reviewed herein may provide an outline of the molecular pathways needed to move toward successful renal gene therapy for aging individuals.
Collapse
Affiliation(s)
- John C Passmore
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky 40292, USA.
| | | | | | | | | |
Collapse
|
13
|
Falcone JC, Joshua IG, Passmore JC. Decreased alpha-adrenergic constriction of renal preglomerular arteries occurs with age and is gender-specific in the rat. AGE (DORDRECHT, NETHERLANDS) 2005; 27:107-116. [PMID: 23598616 PMCID: PMC3458505 DOI: 10.1007/s11357-005-1627-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Accepted: 01/21/2005] [Indexed: 06/02/2023]
Abstract
Age and/or gender appear to moderate alpha-adrenergic mediated constrictor mechanisms found in the interlobar arteries of the Munich Wistar rat. We have determined the extent of constriction to alpha-adrenergic receptor stimulation using norepinephrine, phenylephrine and A61603 (α1A-adrenergic receptor agonist) as a function of age and gender. Norepinephrine produced less constriction in male-derived arteries at ages greater than eight months as compared to the younger adult male (four to six months). The arteries derived from females did not demonstrate altered constriction until greater than 15 months of age. Similarly, arteries derived from the male demonstrated weaker constrictions to phenylephrine (10(-6) to 10(-3) M) at ages greater than eight months while arteries from females showed differences at greater than 15 months. In contrast, the effective concentration of norepinephrine to cause a 50% maximal constriction (EC50) was significantly less in the four to five-month-old male rats compared to the pooled data from older groups. Interestingly, four to five month old males had A61603 EC50 values similar to the 8 to 12-month and 15+ old females. These studies conclude that an age related loss of sympathetic α-adrenergic constriction of renal interlobar arteries is present in Munich Wistar rats. Furthermore, this loss, while similar along longitudinal aspects of age, is also different as a function of gender with the loss of α-adrenergic constrictor function delayed in the female when compared to the male.
Collapse
Affiliation(s)
- Jeff C. Falcone
- Department of Physiology and Biophysics, Health Sciences Center, A-1115, University of Louisville, 500 South Preston St., Louisville, KY 40292 USA
| | - Irving G. Joshua
- Department of Physiology and Biophysics, Health Sciences Center, A-1115, University of Louisville, 500 South Preston St., Louisville, KY 40292 USA
| | - John C. Passmore
- Department of Physiology and Biophysics, Health Sciences Center, A-1115, University of Louisville, 500 South Preston St., Louisville, KY 40292 USA
| |
Collapse
|
14
|
Ungar A, Castellani S, Di Serio C, Cantini C, Cristofari C, Vallotti B, La Cava G, Masotti G. Changes in renal autacoids and hemodynamics associated with aging and isolated systolic hypertension. Prostaglandins Other Lipid Mediat 2000; 62:117-33. [PMID: 10938406 DOI: 10.1016/s0090-6980(00)00077-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aging kidney is characterized by a decrease in renal blood flow and glomerular filtration rate mainly due to glomerulosclerosis. Nevertheless, even in the presence of these changes, the kidney maintains its functionality until advanced age. However, there is a tendency towards greater renal vasoconstriction in the elderly as compared with young individuals. This occurs either in physiological circumstances such as physical exercise, or in disease manifestations, such as the effective circulatory volume depletion that develops, for example, in heart failure. This tendency may be secondary to the reduction of renal autacoid modulatory capacity, particularly at the vasodilating prostaglandin level. In an acute experimental model we could demonstrate that, in the healthy elderly, the renal response to adrenergic activation by mental stress is characterized by a prolonged and pronounced vasoconstriction. In addition to this, in elderly patients affected by isolated systolic hypertension, we demonstrated an impairment of renal hemodynamic and humoral adaptation capacity in response to adrenergic activation and blood pressure increase. In the presence of sudden blood pressure increase, the kidney of these patients responds with a passive vasodilation and a glomerular filtration rate increase without any activation of humoral modulatory substances. The impairment in renal adaptation capacity may predispose these patients to renal injury, particularly in the presence of the many hypertensive peaks which characterize everyday life of elderly individuals. In conclusion, these results show that renal adaptation capacity of elderly patients with isolated systolic hypertension is completely lost. Further studies will elucidate whether antihypertensive treatment per se, or specific classes of antihypertensive drugs, are able to revert this impairment.
Collapse
Affiliation(s)
- A Ungar
- Istituto di Gerontologia e Geriatria, Università degli Studi di Firenze e Azienda Ospedaliera Careggi, Firenze, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Farquhar WB, Kenney WL. Age and renal prostaglandin inhibition during exercise and heat stress. J Appl Physiol (1985) 1999; 86:1936-43. [PMID: 10368359 DOI: 10.1152/jappl.1999.86.6.1936] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aging is associated with a number of physiological changes that may cause the kidney to rely to a greater extent on vasodilatory PGs for normal functioning. Acute exercise has been shown to cause renal vasoconstriction that may be partially buffered by vasodilatory PGs. To determine the relative importance of renal PGs during exercise in older adults, we compared the renal effects of the PG inhibitor ibuprofen (1.2 g/day for 3 days) vs. a placebo control in a cohort of eight younger (24 +/- 2 yr) and eight older (64 +/- 2 yr) women during treadmill exercise ( approximately 57% maximal oxygen consumption) in the heat (36 degrees C). This over-the-counter dose of ibuprofen reduced renal PG (i.e., PGE2) excretion by 47% (P < 0. 05). Acute exercise in the heat caused dramatic decreases in glomerular filtration rate, renal blood flow, and sodium excretion in both age groups. PG inhibition was associated with greater decreases in urine production and free water clearance (P < 0.05). There were no drug-related declines in glomerular filtration rate or renal blood flow. We conclude that PG inhibition has only modest effects on renal function during exercise. Also, the lack of hemodynamic changes with PG inhibition indicates that healthy well-hydrated older women are not in a renal PG-dependent state.
Collapse
Affiliation(s)
- W B Farquhar
- Noll Physiological Research Center, Pennsylvania State University, University Park, Pennsylvania 16802-6900, USA.
| | | |
Collapse
|
16
|
Castellani S, Ungar A, Cantini C, La Cava G, Di Serio C, Altobelli A, Vallotti B, Pellegri M, Brocchi A, Camaiti A, Coppo M, Meldolesi U, Messeri G, Masotti G. Excessive vasoconstriction after stress by the aging kidney: inadequate prostaglandin modulation of increased endothelin activity. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1998; 132:186-94. [PMID: 9735924 DOI: 10.1016/s0022-2143(98)90167-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The adaptive capacity of the aging kidney to stimulation of the sympathetic nervous system, as induced by a 30-minute mental stress (MS), was assessed in 8 elderly healthy women (68 to 82 years of age) and compared with that of 8 younger women (24 to 40 years of age). The study encompassed 4 consecutive 30-minute periods (baseline, mental stress, recovery 1, and recovery 2). In the elderly subjects, baseline effective renal plasma flow (ERPF)(iodine 131-labeled hippurate clearance) was lower and glomerular filtration rate (GFR)(iodine 125-labeled iothalamate clearance) was proportionally less reduced than in the younger group; the filtration fraction (FF) was higher. The elderly group excreted more endothelin 1 (ET-1) (P < .05), prostaglandin E2 (PGE2), and 6-keto-prostaglandin F1alpha (6-keto PGF1alpha)(P < .001 for both)(radioimmunoassay). Mental stress induced similar increases in blood pressure, heart rate, and plasma catecholamines in the 2 age groups, limited to the stimulation period. In the elderly group, mental stress caused a prolonged decrease in ERPF that reached its maximum 60 minutes after mental stress (-33%, P < .05), while GFR remained constant during the whole experiment, so that FF increased. In the younger subjects, renal hemodynamic changes were limited to the mental stress period. ET-1 increased during mental stress and the first recovery period in the elderly group (+50% and +25%, P < .05) as it did in the younger group, but the elderly group differed from the younger in that vasodilating prostaglandins increased only during mental stress. In conclusion, the aging kidney reacts to adrenergic stimulation with more-pronounced and -prolonged vasoconstriction that is probably caused by a defect in prostaglandin modulation of endothelin activity. Autoregulation of GFR is maintained at the expense of increased intraglomerular pressure.
Collapse
Affiliation(s)
- S Castellani
- Istituto di Clinica Medica Generale e Cardiologia, Dipartimento di Fisiopatologia Clinica, Università di Firenze, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Minson CT, Wladkowski SL, Cardell AF, Pawelczyk JA, Kenney WL. Age alters the cardiovascular response to direct passive heating. J Appl Physiol (1985) 1998; 84:1323-32. [PMID: 9516200 DOI: 10.1152/jappl.1998.84.4.1323] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During direct passive heating in young men, a dramatic increase in skin blood flow is achieved by a rise in cardiac output (Qc) and redistribution of flow from the splanchnic and renal vascular beds. To examine the effect of age on these responses, seven young (Y; 23 +/- 1 yr) and seven older (O; 70 +/- 3 yr) men were passively heated with water-perfused suits to their individual limit of thermal tolerance. Measurements included heart rate (HR), Qc (by acetylene rebreathing), central venous pressure (via peripherally inserted central catheter), blood pressures (by brachial auscultation), skin blood flow (from increases in forearm blood flow by venous occlusion plethysmography), splanchnic blood flow (by indocyanine green clearance), renal blood flow (by p-aminohippurate clearance), and esophageal and mean skin temperatures. Qc was significantly lower in the older than in the young men (11.1 +/- 0.7 and 7.4 +/- 0.2 l/min in Y and O, respectively, at the limit of thermal tolerance; P < 0. 05), despite similar increases in esophageal and mean skin temperatures and time to reach the limit of thermal tolerance. A lower stroke volume (99 +/- 7 and 68 +/- 4 ml/beat in Y and O, respectively, P < 0.05), most likely due to an attenuated increase in inotropic function during heating, was the primary factor for the lower Qc observed in the older men. Increases in HR were similar in the young and older men; however, when expressed as a percentage of maximal HR, the older men relied on a greater proportion of their chronotropic reserve to obtain the same HR response (62 +/- 3 and 75 +/- 4% maximal HR in Y and O, respectively, P < 0.05). Furthermore, the older men redistributed less blood flow from the combined splanchnic and renal circulations at the limit of thermal tolerance (960 +/- 80 and 720 +/- 100 ml/min in Y and O, respectively, P < 0. 05). As a result of these combined attenuated responses, the older men had a significantly lower increase in total blood flow directed to the skin.
Collapse
Affiliation(s)
- C T Minson
- Noll Physiological Research Center, Pennsylvania State University, University Park, Pennsylvania 16802-6900, USA
| | | | | | | | | |
Collapse
|
18
|
Ho CW, Beard JL, Farrell PA, Minson CT, Kenney WL. Age, fitness, and regional blood flow during exercise in the heat. J Appl Physiol (1985) 1997; 82:1126-35. [PMID: 9104849 DOI: 10.1152/jappl.1997.82.4.1126] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During dynamic exercise in warm environments, the requisite increase in skin blood flow (SkBF) is supported by an increase in cardiac output (Qc) and decreases in splanchnic (SBF) and renal blood flows (RBF). To examine interactions between age and fitness in determining this integrated response, 24 men, i.e., 6 younger fit (YF), 6 younger sedentary (YS), 6 older fit (OF), and 6 older sedentary (OS) rested for 50 min, then exercised at 35 and 60% maximal O2 consumption (VO2max) at 36 degrees C ambient temperature. YF had a significantly higher Qc and SkBF than any other group during exercise, but fitness level had no significant effect on any measured variable in the older men. At 60% VO2max, younger subjects had significantly greater decreases in SBF and RBF than the older men, regardless of fitness level. Total flow redirected from these two vascular beds (deltaSBF + deltaRBF) followed YF >> YS > OF > OS. A rigorous 4-wk endurance training program increased exercise SkBF in OS, but deltaSBF and deltaRBF were unchanged. Under these conditions, older men distribute Qc differently to regional circulations, i.e., smaller increases in SkBF and smaller decreases in SBF and RBF. In younger subjects, the higher SkBF associated with a higher fitness level is a function of both a higher Qc and a greater redistribution of flow from splanchnic and renal circulations, but the attenuated splanchnic and renal vasoconstriction in older men does not appear to change with enhanced aerobic fitness.
Collapse
Affiliation(s)
- C W Ho
- Noll Physiological Research Center, Pennsylvania State University, University Park 16802-6900, USA
| | | | | | | | | |
Collapse
|