1
|
Ghieh F, Izard V, Poulain M, Fortemps J, Kazdar N, Mandon‐Pepin B, Ferlicot S, Ayoubi JM, Vialard F. Cryptic splice site poisoning and meiotic arrest caused by a homozygous frameshift mutation in
RBMXL2
: A case report. Andrologia 2022; 54:e14595. [DOI: 10.1111/and.14595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Farah Ghieh
- UVSQ, INRAE, BREED Université Paris‐Saclay Jouy‐en‐Josas France
- École Nationale Vétérinaire d'Alfort, BREED Maisons‐Alfort France
| | - Vincent Izard
- Centre Chirurgical Pierre Cherest Neuilly‐sur‐Seine France
- Département d'urologie Hôpital Foch Suresnes France
| | - Marine Poulain
- UVSQ, INRAE, BREED Université Paris‐Saclay Jouy‐en‐Josas France
- École Nationale Vétérinaire d'Alfort, BREED Maisons‐Alfort France
- Département d'urologie Hôpital Foch Suresnes France
| | - Johanne Fortemps
- Service d'Anatomie Pathologique CHI de Poissy/Saint‐Germain‐en‐Laye Saint‐Germain‐en‐Laye France
| | | | - Béatrice Mandon‐Pepin
- UVSQ, INRAE, BREED Université Paris‐Saclay Jouy‐en‐Josas France
- École Nationale Vétérinaire d'Alfort, BREED Maisons‐Alfort France
| | - Sophie Ferlicot
- Service d'Anatomie Pathologique, AP‐HP Université Paris‐Saclay, Hôpital de Bicêtre Le Kremlin‐Bicêtre France
| | - Jean Marc Ayoubi
- UVSQ, INRAE, BREED Université Paris‐Saclay Jouy‐en‐Josas France
- École Nationale Vétérinaire d'Alfort, BREED Maisons‐Alfort France
- Département d'urologie Hôpital Foch Suresnes France
| | - François Vialard
- UVSQ, INRAE, BREED Université Paris‐Saclay Jouy‐en‐Josas France
- École Nationale Vétérinaire d'Alfort, BREED Maisons‐Alfort France
- Département de Génétique, Laboratoire de Biologie Médicale CHI de Poissy/Saint‐Germain‐en‐Laye Poissy France
| |
Collapse
|
2
|
Yuen W, Golin AP, Flannigan R, Schlegel PN. Histology and sperm retrieval among men with Y chromosome microdeletions. Transl Androl Urol 2021; 10:1442-1456. [PMID: 33850779 PMCID: PMC8039602 DOI: 10.21037/tau.2020.03.35] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In this review of Y chromosome microdeletions, azoospermia factor (AZF) deletion subtypes, histological features and microTESE sperm retrieval rates are summarized after a systematic literature review. PubMed was searched and papers were identified using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Approximately half of infertile couples have a male factor contributing to their infertility. One of the most common genetic etiologies are Y chromosome microdeletions. Men with Y chromosome microdeletions may have rare sperm available in the ejaculate or undergo surgical sperm retrieval and subsequent intracytoplasmic sperm injection to produce offspring. Azoospermia or severe oligozoospermia are the most common semen analysis findings found in men with Y chromosome microdeletions, associated with impaired spermatogenesis. Men with complete deletions of azoospermia factor a, b, or a combination of any loci have severely impaired spermatogenesis and are nearly always azoospermic with no sperm retrievable from the testis. Deletions of the azoospermia factor c or d often have sperm production and the highest likelihood of a successful sperm retrieval. In men with AZFc deletions, histologically, 46% of men demonstrate Sertoli cell only syndrome on biopsy, whereas 38.2% have maturation arrest and 15.7% have hypospermatogenesis. The microTESE sperm retrieval rates in AZFc-deleted men range from 13-100% based on the 32 studies analyzed, with a mean sperm retrieval rate of 47%.
Collapse
Affiliation(s)
- Wallace Yuen
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Andrew P Golin
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ryan Flannigan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Peter N Schlegel
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Punjani N, Kang C, Schlegel PN. Clinical implications of Y chromosome microdeletions among infertile men. Best Pract Res Clin Endocrinol Metab 2020; 34:101471. [PMID: 33214080 DOI: 10.1016/j.beem.2020.101471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Male factor infertility contributes significantly to couples facing difficulty achieving a pregnancy. Genetic factors, and specifically those related to the Y chromosome, may occur in up to 15% of men with oligozoospermia or azoospermia. A subset of loci within the Y chromosome, known as the azoospermia factors (AZFa, AZFb, and AZFc), have been associated with male infertility. Emerging evidence has demonstrated that microdeletions of at least a subset of these regions may also have impacts on systemic conditions. This review provides a brief review of male infertility and the structure of the Y chromosome, and further highlights the role of Y chromosome microdeletions in male infertility and other systemic disease.
Collapse
Affiliation(s)
- Nahid Punjani
- Division of Urology, Weill Cornell Medical College, New York, NY, USA
| | - Caroline Kang
- Division of Urology, Weill Cornell Medical College, New York, NY, USA.
| | - Peter N Schlegel
- Division of Urology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
4
|
The Role of Number of Copies, Structure, Behavior and Copy Number Variations (CNV) of the Y Chromosome in Male Infertility. Genes (Basel) 2019; 11:genes11010040. [PMID: 31905733 PMCID: PMC7016774 DOI: 10.3390/genes11010040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
The World Health Organization (WHO) defines infertility as the inability of a sexually active, non-contracepting couple to achieve spontaneous pregnancy within one year. Statistics show that the two sexes are equally at risk. Several causes may be responsible for male infertility; however, in 30–40% of cases a diagnosis of idiopathic male infertility is made in men with normal urogenital anatomy, no history of familial fertility-related diseases and a normal panel of values as for endocrine, genetic and biochemical markers. Idiopathic male infertility may be the result of gene/environment interactions, genetic and epigenetic abnormalities. Numerical and structural anomalies of the Y chromosome represent a minor yet significant proportion and are the topic discussed in this review. We searched the PubMed database and major search engines for reports about Y-linked male infertility. We present cases of Y-linked male infertility in terms of (i) anomalies of the Y chromosome structure/number; (ii) Y chromosome misbehavior in a normal genetic background; (iii) Y chromosome copy number variations (CNVs). We discuss possible explanations of male infertility caused by mutations, lower or higher number of copies of otherwise wild type, Y-linked sequences. Despite Y chromosome structural anomalies are not a major cause of male infertility, in case of negative results and of normal DNA sequencing of the ascertained genes causing infertility and mapping on this chromosome, we recommend an analysis of the karyotype integrity in all cases of idiopathic fertility impairment, with an emphasis on the structure and number of this chromosome.
Collapse
|
5
|
Lau YFC, Li Y, Kido T. Battle of the sexes: contrasting roles of testis-specific protein Y-encoded (TSPY) and TSPX in human oncogenesis. Asian J Androl 2019; 21:260-269. [PMID: 29974883 PMCID: PMC6498724 DOI: 10.4103/aja.aja_43_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022] Open
Abstract
The Y-located testis-specific protein Y-encoded (TSPY) and its X-homologue TSPX originated from the same ancestral gene, but act as a proto-oncogene and a tumor suppressor gene, respectively. TSPY has specialized in male-specific functions, while TSPX has assumed the functions of the ancestral gene. Both TSPY and TSPX harbor a conserved SET/NAP domain, but are divergent at flanking structures. Specifically, TSPX contains a C-terminal acidic domain, absent in TSPY. They possess contrasting properties, in which TSPY and TSPX, respectively, accelerate and arrest cell proliferation, stimulate and inhibit cyclin B-CDK1 phosphorylation activities, have no effect and promote proteosomal degradation of the viral HBx oncoprotein, and exacerbate and repress androgen receptor (AR) and constitutively active AR variant, such as AR-V7, gene transactivation. The inhibitory domain has been mapped to the carboxyl acidic domain in TSPX, truncation of which results in an abbreviated TSPX exerting positive actions as TSPY. Transposition of the acidic domain to the C-terminus of TSPY results in an inhibitory protein as intact TSPX. Hence, genomic mutations/aberrant splicing events could generate TSPX proteins with truncated acidic domain and oncogenic properties as those for TSPY. Further, TSPY is upregulated by AR and AR-V7 in ligand-dependent and ligand-independent manners, respectively, suggesting the existence of a positive feedback loop between a Y-located proto-oncogene and male sex hormone/receptors, thereby amplifying the respective male oncogenic actions in human cancers and diseases. TSPX counteracts such positive feedback loop. Hence, TSPY and TSPX are homologues on the sex chromosomes that function at the two extremes of the human oncogenic spectrum.
Collapse
Affiliation(s)
- Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center and Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| | - Yunmin Li
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center and Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| | - Tatsuo Kido
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center and Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| |
Collapse
|
6
|
Ehrmann I, Crichton JH, Gazzara MR, James K, Liu Y, Grellscheid SN, Curk T, de Rooij D, Steyn JS, Cockell S, Adams IR, Barash Y, Elliott DJ. An ancient germ cell-specific RNA-binding protein protects the germline from cryptic splice site poisoning. eLife 2019; 8:39304. [PMID: 30674417 PMCID: PMC6345566 DOI: 10.7554/elife.39304] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022] Open
Abstract
Male germ cells of all placental mammals express an ancient nuclear RNA binding protein of unknown function called RBMXL2. Here we find that deletion of the retrogene encoding RBMXL2 blocks spermatogenesis. Transcriptome analyses of age-matched deletion mice show that RBMXL2 controls splicing patterns during meiosis. In particular, RBMXL2 represses the selection of aberrant splice sites and the insertion of cryptic and premature terminal exons. Our data suggest a Rbmxl2 retrogene has been conserved across mammals as part of a splicing control mechanism that is fundamentally important to germ cell biology. We propose that this mechanism is essential to meiosis because it buffers the high ambient concentrations of splicing activators, thereby preventing poisoning of key transcripts and disruption to gene expression by aberrant splice site selection. In humans and other mammals, a sperm from a male fuses with an egg cell from a female to produce an embryo that may ultimately grow into a new individual. Sperm and egg cells are made when certain cells in the body divide in a process called meiosis. Many proteins are required for meiosis to happen and these proteins are made using instructions provided by genes, which are made of a molecule called DNA. The DNA within a gene is transcribed to make molecules of ribonucleic acid (or RNA for short). The cell then modifies many of these RNAs in a process called splicing before using them as templates to make proteins. During splicing, segments of RNA known as introns are discarded and other segments termed exons are joined together. Some exons may also be removed from RNAs in different combinations to create different proteins from the same gene. A protein called RBMXL2 is able to bind to RNA molecules and is only made during and after meiosis in humans and most other mammals. RBMXL2 can also bind to other proteins that are known to be involved in controlling splicing of RNAs, but its role in splicing remains unclear. To address this question, Ehrmann et al. studied the gene that encodes the RBMXL2 protein in mice. Removing this gene prevented male mice from being able to make sperm. Further experiments using a technique called RNA sequencing showed that the RBMXL2 protein helps to ensure that splicing happens correctly by preventing bits of exons and introns in mouse genes from being rearranged. These findings suggest that the gene encoding RBMXL2 is part of a splicing control mechanism that is important for making sperm and egg cells. The work of Ehrmann et al. could eventually help some couples understand why they have problems conceiving children. Male infertility is poorly understood, and not knowing its causes can harm the mental health of affected men. Furthermore, these findings may help researchers to understand the role of a closely related protein called RBMY that has also been linked to infertility in men, but is much more difficult to study.
Collapse
Affiliation(s)
- Ingrid Ehrmann
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - James H Crichton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew R Gazzara
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Katherine James
- Life Sciences, Natural History Museum, London, United Kingdom
| | - Yilei Liu
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom.,Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Sushma Nagaraja Grellscheid
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom.,School of Biological and Biomedical Sciences, University of Durham, Durham, United Kingdom
| | - Tomaž Curk
- Laboratory of Bioinformatics, Faculty of Computer and Information Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Dirk de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jannetta S Steyn
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Simon Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Ian R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Department of Computer and Information Science, University of Pennsylvania, Philadelphia, United States
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
7
|
RNA processing in the male germline: Mechanisms and implications for fertility. Semin Cell Dev Biol 2018; 79:80-91. [DOI: 10.1016/j.semcdb.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022]
|
8
|
Yan Y, Yang X, Liu Y, Shen Y, Tu W, Dong Q, Yang D, Ma Y, Yang Y. Copy number variation of functional RBMY1 is associated with sperm motility: an azoospermia factor-linked candidate for asthenozoospermia. Hum Reprod 2018; 32:1521-1531. [PMID: 28498920 DOI: 10.1093/humrep/dex100] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/28/2017] [Indexed: 02/05/2023] Open
Abstract
STUDY QUESTION What is the influence of copy number variation (CNV) in functional RNA binding motif protein Y-linked family 1 (RBMY1) on spermatogenic phenotypes? SUMMARY ANSWER The RBMY1 functional copy dosage is positively correlated with sperm motility, and dosage insufficiency is an independent risk factor for asthenozoospermia. WHAT IS KNOWN ALREADY RBMY1, a multi-copy gene expressed exclusively in the adult testis, is one of the most important candidates for male infertility in the azoospermia factor (AZF) region of the Y-chromosome. RBMY1 encodes an RNA-binding protein that serves as a pre-mRNA splicing regulator during spermatogenesis, and male mice deficient in Rbmy are sterile. STUDY DESIGN, SIZE, DURATION A total of 3127 adult males were recruited from 2009 to 2016; of this group, the dosage of RBMY1 functional copy were investigated in 486 fertile males. In the remaining 2641 males with known spermatogenesis status, 1070 Y-chromosome haplogroup (Y-hg) O3* or O3e carriers without chromosomal aberration or known AZF structure mutations responsible for spermatogenic impairment, including 506 men with normozoospermia and 564 men with oligozoospermia or/and asthenozoospermia, were screened, and the RBMY1 functional copy dosage and copy conversion were determined to explore their associations with sperm phenotypes. The correlation between RBMY1 dosage and its mRNA level or RBMY1 protein level and the correlation between sperm RBMY1 level and motility were analysed in 15 testis tissue samples and eight semen samples. Ten additional semen samples were used to confirm the subcellular localization of RBMY1 in individual sperm. PARTICIPANTS/MATERIALS, SETTING, METHODS All the Han volunteers donating whole blood, semen and testis tissue were from southwest China. RBMY1 copy number, copy conversion, mRNA/protein amount and protein location in sperm were detected using the AccuCopy® assay method, paralog ratio test, quantitative PCR, western blotting and immunofluorescence staining methods, respectively. MAIN RESULTS AND THE ROLE OF CHANCE This study identified Y-hg-independent CNV of functional RBMY1 in the enrolled population. A difference in the distribution of RBMY1 copy number was observed between the group with normal sperm motility and the group with asthenozoospermia. A positive correlation between the RBMY1 copy dosage and sperm motility was identified, and the males with fewer than six copies of RBMY1 showed an elevated risk for asthenozoospermia relative to those with six RBMY1 copies, the most common dosage in the population. The RBMY1 copy dosage was positively correlated with its mRNA and protein level in the testis. Sperm with high motility were found to carry more RBMY1 protein than those with relatively low motility. The RBMY1 protein was confirmed to predominantly localize in the neck and mid-piece region of sperm as well as the principal piece of the sperm tail. Our population study completes a chain of evidence suggesting that RBMY1 influences the susceptibility of males to asthenozoospermia by modulating sperm motility. LIMITATIONS REASONS FOR CAUTION High sequence similarity between the RBMY1 functional copies and a large number of pseudogenes potentially reduces the accuracy of the copy number detection. The mechanism underlying the CNV in RBMY1 is still unclear, and the effect of the structural variations in the RBMY1 copy cluster on the copy dosage of other protein-coding genes located in the region cannot be excluded, which may potentially bias our observations. WIDER IMPLICATIONS OF THE FINDINGS Asthenozoospermia is a multi-factor complex disease with a limited number of proven susceptibility genes. This study identified a novel genomic candidate independently contributing to the condition, enriching our understanding of the role of AZF-linked genes in male reproduction. Our finding provides insight into the physiological and pathological characteristics of RBMY1 in terms of sperm motility, supplies persuasive evidence of the significance of RBMY1 copy number analysis in the clinical counselling of male infertility resulting from asthenozoospermia. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by the National Natural Science Foundation of China (Nos. 81370748 and 30971598). The authors have no conflicts of interest.
Collapse
Affiliation(s)
- Yuanlong Yan
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Xiling Yang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Yunqiang Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Ying Shen
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Wenling Tu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| | - Qiang Dong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dong Yang
- Reproductive Medicine Institute, Chengdu Women's and Children's Central Hospital, Chengdu, Sichuan 610031, China
| | - Yongyi Ma
- Jinjiang Maternal and Child Health Hospital, Chengdu, Sichuan 610016, China
| | - Yuan Yang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 1, Keyuan Road 4, Gaopeng Street, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
Pathak D, Yadav SK, Rawal L, Ali S. Mutational landscape of the human Y chromosome-linked genes and loci in patients with hypogonadism. J Genet 2016; 94:677-87. [PMID: 26690523 DOI: 10.1007/s12041-015-0582-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sex chromosome-related anomalies engender plethora of conditions leading to male infertility. Hypogonadotropic hypogonadism (HH) is a rare but well-known cause of male infertility. Present study was conducted to ascertain possible consensus on the alterations of the Y-linked genes and loci in males representing hypogonadism (H), which in turn culminate in reproductive dysfunction. A total of nineteen 46, XY males, clinically diagnosed with H (11 representative HH adults and eight prepubertal boys suspected of having HH) were included in the study. Sequence-tagged site screening,SRY gene sequencing,fluorescence in situ hybridization mapping (FISH), copy number and relative expression studies by real-time PCR were conducted to uncover the altered status of the Y chromosome in the patients. The result showed random microdeletions within the AZFa (73%)/b (78%) and c(26%) regions. Sequencing of the SRY gene showed nucleotide variations within and outside of the HMG box in four males (21%). FISH uncovered mosaicism for SRY, AMELY,DAZ genes and DYZ1 arrays, structural rearrangement for AMELY (31%) and duplication of DAZ (57%) genes. Copy number variation for seven Y-linked genes (2-8 rounds of duplication), DYZ1 arrays (495-6201 copies) and differential expression of SRY,UTY and VCY in the patients' blood were observed. Present work demonstrates the organizational vulnerability of several Y-linked genes in H males. These results are envisaged to be useful during routine diagnosis of H patients.
Collapse
Affiliation(s)
- Deepali Pathak
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067,India.
| | | | | | | |
Collapse
|
10
|
Nistal M, Paniagua R, González-Peramato P, Reyes-Múgica M. Perspectives in Pediatric Pathology, Chapter 16. Klinefelter Syndrome and Other Anomalies in X and Y Chromosomes. Clinical and Pathological Entities. Pediatr Dev Pathol 2016; 19:259-77. [PMID: 25105890 DOI: 10.2350/14-06-1512-pb.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Manuel Nistal
- 1 Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo No. 2, Madrid 28029, Spain
| | - Ricardo Paniagua
- 2 Department of Cell Biology, Universidad de Alcala, Madrid, Spain
| | - Pilar González-Peramato
- 1 Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo No. 2, Madrid 28029, Spain
| | - Miguel Reyes-Múgica
- 3 Department of Pathology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| |
Collapse
|
11
|
Tomaszkiewicz M, Rangavittal S, Cechova M, Campos Sanchez R, Fescemyer HW, Harris R, Ye D, O'Brien PCM, Chikhi R, Ryder OA, Ferguson-Smith MA, Medvedev P, Makova KD. A time- and cost-effective strategy to sequence mammalian Y Chromosomes: an application to the de novo assembly of gorilla Y. Genome Res 2016; 26:530-40. [PMID: 26934921 PMCID: PMC4817776 DOI: 10.1101/gr.199448.115] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/21/2016] [Indexed: 01/25/2023]
Abstract
The mammalian Y Chromosome sequence, critical for studying male fertility and dispersal, is enriched in repeats and palindromes, and thus, is the most difficult component of the genome to assemble. Previously, expensive and labor-intensive BAC-based techniques were used to sequence the Y for a handful of mammalian species. Here, we present a much faster and more affordable strategy for sequencing and assembling mammalian Y Chromosomes of sufficient quality for most comparative genomics analyses and for conservation genetics applications. The strategy combines flow sorting, short- and long-read genome and transcriptome sequencing, and droplet digital PCR with novel and existing computational methods. It can be used to reconstruct sex chromosomes in a heterogametic sex of any species. We applied our strategy to produce a draft of the gorilla Y sequence. The resulting assembly allowed us to refine gene content, evaluate copy number of ampliconic gene families, locate species-specific palindromes, examine the repetitive element content, and produce sequence alignments with human and chimpanzee Y Chromosomes. Our results inform the evolution of the hominine (human, chimpanzee, and gorilla) Y Chromosomes. Surprisingly, we found the gorilla Y Chromosome to be similar to the human Y Chromosome, but not to the chimpanzee Y Chromosome. Moreover, we have utilized the assembled gorilla Y Chromosome sequence to design genetic markers for studying the male-specific dispersal of this endangered species.
Collapse
Affiliation(s)
- Marta Tomaszkiewicz
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Samarth Rangavittal
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Monika Cechova
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Rebeca Campos Sanchez
- Genetics Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Howard W Fescemyer
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Robert Harris
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Danling Ye
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Patricia C M O'Brien
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Rayan Chikhi
- University of Lille 1/CNRS 59655 Villeneuve d'Ascq, France; Department of Computer Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA; The Genome Sciences Institute of the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, Escondido, California 92027, USA
| | | | - Paul Medvedev
- Department of Computer Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA; The Genome Sciences Institute of the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Kateryna D Makova
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
12
|
Yu XW, Wei ZT, Jiang YT, Zhang SL. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int J Clin Exp Med 2015; 8:14634-46. [PMID: 26628946 PMCID: PMC4658835 DOI: pmid/26628946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/27/2015] [Indexed: 11/18/2022]
Abstract
Spermatogenesis is an essential reproductive process that is regulated by many Y chromosome specific genes. Most of these genes are located in a specific region known as the azoospermia factor region (AZF) in the long arm of the human Y chromosome. AZF microdeletions are recognized as the most frequent structural chromosomal abnormalities and are the major cause of male infertility. Assisted reproductive techniques (ART) such as intra-cytoplasmic sperm injection (ICSI) and testicular sperm extraction (TESE) can overcome natural fertilization barriers and help a proportion of infertile couples produce children; however, these techniques increase the transmission risk of genetic defects. AZF microdeletions and their associated phenotypes in infertile males have been extensively studied, and different AZF microdeletion types have been identified by sequence-tagged site polymerase chain reaction (STS-PCR), suspension array technology (SAT) and array-comparative genomic hybridization (aCGH); however, each of these approaches has limitations that need to be overcome. Even though the transmission of AZF microdeletions has been reported worldwide, arguments correlating ART and the incidence of AZF microdeletions and explaining the occurrence of de novo deletions and expansion have not been resolved. Using the newest findings in the field, this review presents a systematic update concerning progress in understanding the functions of AZF regions and their associated genes, AZF microdeletions and their phenotypes and novel approaches for screening AZF microdeletions. Moreover, the transmission characteristics of AZF microdeletions and the future direction of research in the field will be specifically discussed.
Collapse
Affiliation(s)
- Xiao-Wei Yu
- Prenatal Diagnosis Center, The First Hospital of Jinlin University Changchun 130021, Jinlin Province, China
| | - Zhen-Tong Wei
- Department of Gynecologic Tumors, The First Hospital of Jinlin University Changchun 130021, Jinlin Province, China
| | - Yu-Ting Jiang
- Prenatal Diagnosis Center, The First Hospital of Jinlin University Changchun 130021, Jinlin Province, China
| | - Song-Ling Zhang
- Department of Gynecologic Tumors, The First Hospital of Jinlin University Changchun 130021, Jinlin Province, China
| |
Collapse
|
13
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 5: intercellular junctions and contacts between germs cells and Sertoli cells and their regulatory interactions, testicular cholesterol, and genes/proteins associated with more than one germ cell generation. Microsc Res Tech 2010; 73:409-94. [PMID: 19941291 DOI: 10.1002/jemt.20786] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the testis, cell adhesion and junctional molecules permit specific interactions and intracellular communication between germ and Sertoli cells and apposed Sertoli cells. Among the many adhesion family of proteins, NCAM, nectin and nectin-like, catenins, and cadherens will be discussed, along with gap junctions between germ and Sertoli cells and the many members of the connexin family. The blood-testis barrier separates the haploid spermatids from blood borne elements. In the barrier, the intercellular junctions consist of many proteins such as occludin, tricellulin, and claudins. Changes in the expression of cell adhesion molecules are also an essential part of the mechanism that allows germ cells to move from the basal compartment of the seminiferous tubule to the adluminal compartment thus crossing the blood-testis barrier and well-defined proteins have been shown to assist in this process. Several structural components show interactions between germ cells to Sertoli cells such as the ectoplasmic specialization which are more closely related to Sertoli cells and tubulobulbar complexes that are processes of elongating spermatids embedded into Sertoli cells. Germ cells also modify several Sertoli functions and this also appears to be the case for residual bodies. Cholesterol plays a significant role during spermatogenesis and is essential for germ cell development. Lastly, we list genes/proteins that are expressed not only in any one specific generation of germ cells but across more than one generation.
Collapse
Affiliation(s)
- Louis Hermo
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
14
|
Ehrmann I, Dalgliesh C, Tsaousi A, Paronetto MP, Heinrich B, Kist R, Cairns P, Li W, Mueller C, Jackson M, Peters H, Nayernia K, Saunders P, Mitchell M, Stamm S, Sette C, Elliott DJ. Haploinsufficiency of the germ cell-specific nuclear RNA binding protein hnRNP G-T prevents functional spermatogenesis in the mouse. Hum Mol Genet 2008; 17:2803-18. [PMID: 18562473 DOI: 10.1093/hmg/ddn179] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human HNRNPGT, encoding the protein hnRNP G-T, is one of several autosomal retrogenes derived from RBMX. It has been suggested that HNRNPGT functionally replaces the sex-linked RBMX and RBMY genes during male meiosis. We show here that during normal mouse germ cell development, hnRNP G-T protein is strongly expressed during and after meiosis when proteins expressed from Rbmx or Rbmx-like genes are absent. Amongst these Rbmx-like genes, DNA sequence analyses indicate that two other mouse autosomal Rbmx-derived retrogenes have evolved recently in rodents and one already shows signs of degenerating into a non-expressed pseudogene. In contrast, orthologues of Hnrnpgt are present in all four major groups of placental mammals. The sequence of Hnrnpgt is under considerable positive selection suggesting it performs an important germ cell function in eutherians. To test this, we inactivated Hnrnpgt in ES cells and studied its function during spermatogenesis in chimaeric mice. Although germ cells heterozygous for this targeted allele could produce sperm, they did not contribute to the next generation. Chimaeric mice with a high level of mutant germ cells were infertile with low sperm counts and a high frequency of degenerate seminiferous tubules and abnormal sperm. Chimaeras made from a 1:1 mix of targeted and wild-type ES cell clones transmitted wild-type germ cells only. Our data show that haploinsufficiency of Hnrnpgt results in abnormal sperm production in the mouse. Genetic defects resulting in reduced levels of HNRNPGT could, therefore, be a cause of male infertility in humans.
Collapse
Affiliation(s)
- Ingrid Ehrmann
- Institute of Human Genetics, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zeng M, Sun H, Chen S, Wang X, Yang Y, Liu Y, Tao D, Yang Z, Zhang S, Ma Y. Identification of target messenger RNA substrates for mouse RBMY. Mol Hum Reprod 2008; 14:331-6. [PMID: 18492746 DOI: 10.1093/molehr/gan024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rbmy gene encodes a RNA-binding protein and its expression is limited to the nuclei of germ cells. Previous studies indicate that RBMY may function in pre-mRNA processing during spermatogenesis, although its precise target mRNAs remain unclear. By using specific nucleic acids associated with proteins and immunoprecipitation techniques, we have identified 12 potential target mRNAs bound by mouse RBMY protein from testis. We detect that both mRbmy-1 and mRbmy-2 transcripts co-exist in mouse testis and they differ mainly in the 5'UTR. Importantly, our result shows that mRBMY protein can bind to one of its own transcripts, mRbmy-2, suggesting that mRBMY may affect alternative splicing or regulate the expression of its own gene. Using electrophoretic mobility shift assay, we demonstrated that mRBMY protein can bind to the testis and sperm-specific spa17 mRNA and that the binding domain contains rich oligo(A), suggesting that mRBMY protein may have high affinity to oligo(A) rich sequences. In conclusion, the identification of RBMY target mRNAs will be helpful to further explore the biological function of RBMY in spermatogenesis.
Collapse
Affiliation(s)
- Mei Zeng
- Department of Medical Genetics, West China Hospital, Sichuan University, Renmin Nanlu, Section 3 #17, Chengdu 610041, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lavery R, Glennon M, Houghton J, Nolan A, Egan D, Maher M. Investigation of DAZ and RBMY1 gene expression in human testis by quantitative real-time PCR. ACTA ACUST UNITED AC 2007; 53:71-3. [PMID: 17453684 DOI: 10.1080/01485010600915228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study developed quantitative real-time PCR assays for the DAZ and RBMY1 genes to determine the copy number of RNA extracted from testicular biopsies from a cohort of normospermic controls (n=6) and azoospermic males (n=17) including two males with Y-chromosome microdeletions (AZFc and AZFb + c). All patients underwent testicular sperm extraction (TESE) for intracytoplasmic sperm injection (ICSI). Forty percent of the azoospermic cohort showed a significant reduction in the copies of at least one of the genes (DAZ P=0.003; RBMY1 P=0.009). The histopathology of these patients ranged from Sertoli cell only (SCO) to severe hypospermatogenesis with interstitial fibrosis. The patient with the AZFb + c deletion lacked expression of DAZ and RBMY1 and had a histopathology of SCO. The patient with the AZFc deletion had reduced expression of RBMY1 and no DAZ expression with a histopathology of spermatocyte arrest. The quantitative real-time PCR assays for DAZ and RBMY1 gave positive predictive values of 78% and 70%, respectively for the recovery of sperm from testicular biopsy.
Collapse
Affiliation(s)
- R Lavery
- National Diagnostics Centre, National University of Ireland, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Alternative splicing regulation has been shown to be critically important for several developmental pathways. It is particularly prevalent in the testis, which is the site of an extensive adult developmental programme. Alternative splicing is controlled by a splicing code, in which transcripts respond to subtle cell type-specific variations in positive and negative trans-acting RNA-binding proteins according to their unique set of binding sites for these proteins. Because of their unique combinations of cis-acting sequence elements, specific transcripts are able to respond individually to this code. In this review, we discuss how this code may be deciphered in germ cells to mediate a splicing response.
Collapse
Affiliation(s)
- David J Elliott
- Institute of Human Genetics, University of Newcastle, International Centre for Life, Central Parkway, Newcastle NE1 3BZ, UK.
| | | |
Collapse
|
18
|
Karcanias AC, Ichimura K, Mitchell MJ, Sargent CA, Affara NA. Analysis of sex chromosome abnormalities using X and Y chromosome DNA tiling path arrays. J Med Genet 2007; 44:429-36. [PMID: 17327287 PMCID: PMC2598010 DOI: 10.1136/jmg.2006.047852] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Array comparative genomic hybridisation is a powerful tool for the detection of copy number changes in the genome. METHODS A human X and Y chromosome tiling path array was developed for the analysis of sex chromosome aberrations. RESULTS Normal X and Y chromosome profiles were established by analysis with DNA from normal fertile males and females. Detection of infertile males with known Y deletions confirmed the competence of the array to detect AZFa, AZFb and AZFc deletions and to distinguish between different AZFc lesions. Examples of terminal and interstitial deletions of Xp (previously characterised through cytogenetic and microsatellite analysis) have been assessed using the arrays, thus both confirming and refining the established deletion breakpoints. Breakpoints in iso-Yq, iso-Yp and X-Y translocation chromosomes and X-Y interchanges in XX males are also amenable to analysis. DISCUSSION The resolution of the tiling path clone set used allows breakpoints to be placed within 100-200 kb, permitting more precise genotype/phenotype correlations. These data indicate that the combined X and Y tiling path arrays provide an effective tool for the investigation and diagnosis of sex chromosome copy number aberrations and rearrangements.
Collapse
Affiliation(s)
- A C Karcanias
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | | | |
Collapse
|
19
|
Martinez-Contreras R, Cloutier P, Shkreta L, Fisette JF, Revil T, Chabot B. hnRNP proteins and splicing control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:123-47. [PMID: 18380344 DOI: 10.1007/978-0-387-77374-2_8] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteins of the heterogeneous nuclear ribonucleoparticles (hnRNP) family form a structurally diverse group of RNA binding proteins implicated in various functions in metazoans. Here we discuss recent advances supporting a role for these proteins in precursor-messenger RNA (pre-mRNA) splicing. Heterogeneous nuclear RNP proteins can repress splicing by directly antagonizing the recognition of splice sites, or can interfere with the binding of proteins bound to enhancers. Recently, hnRNP proteins have been shown to hinder communication between factors bound to different splice sites. Conversely, several reports have described a positive role for some hnRNP proteins in pre-mRNA splicing. Moreover, cooperative interactions between bound hnRNP proteins may encourage splicing between specific pairs of splice sites while simultaneously hampering other combinations. Thus, hnRNP proteins utilize a variety of strategies to control splice site selection in a manner that is important for both alternative and constitutive pre-mRNA splicing.
Collapse
|
20
|
Noordam MJ, Repping S. The human Y chromosome: a masculine chromosome. Curr Opin Genet Dev 2006; 16:225-32. [PMID: 16650761 DOI: 10.1016/j.gde.2006.04.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 04/18/2006] [Indexed: 01/21/2023]
Abstract
Once considered to be a genetic wasteland of no scientific interest beyond sex determination, the human Y chromosome has made a significant comeback in the past few decades and is currently implicated in multiple diseases, including spermatogenic failure - absent or very low levels of sperm production. The Y chromosome contains over one hundred testis-specific transcripts, and several deletions have been described that remove some of these transcripts, thereby causing spermatogenic failure. Screening for such deletions in infertile men is now a standard part of clinical evaluation. Many other Y-chromosome structural variants, some of which affect gene copy number, have been reported recently, and future research will be necessary to address the phenotypic effect of these structural variants.
Collapse
Affiliation(s)
- Michiel J Noordam
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Academic Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
21
|
Collier B, Gorgoni B, Loveridge C, Cooke HJ, Gray NK. The DAZL family proteins are PABP-binding proteins that regulate translation in germ cells. EMBO J 2005; 24:2656-66. [PMID: 16001084 PMCID: PMC1176464 DOI: 10.1038/sj.emboj.7600738] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 06/10/2005] [Indexed: 11/09/2022] Open
Abstract
DAZL proteins are germ-cell-specific RNA-binding proteins essential for gametogenesis. The precise molecular role of these proteins in germ-cell development remains enigmatic; however, they appear to function in the cytoplasm. In order to directly address the function of vertebrate DAZL proteins, we have used Xenopus laevis oocytes as a model system. Here we demonstrate that members of this family, including Xdazl, mouse Dazl, human DAZL, human DAZ and human BOULE, have the ability to stimulate translation and function at the level of translation initiation. We show that DAZL proteins interact with poly(A)-binding proteins (PABPs), which are critical for the initiation of translation. Mapping and tethered function experiments suggest that these interactions are physiologically important. This leads to an attractive hypothesis whereby DAZL proteins activate translationally silent mRNAs during germ cell development through the direct recruitment of PABPs.
Collapse
Affiliation(s)
- Brian Collier
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, Scotland, UK
| | - Barbara Gorgoni
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, Scotland, UK
| | - Carolyn Loveridge
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, Scotland, UK
| | - Howard J Cooke
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, Scotland, UK
| | - Nicola K Gray
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, Scotland, UK
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, UK. Tel.: +44 131 3322471; Fax: +44 131 4678456; E-mail:
| |
Collapse
|
22
|
Sutherland LC, Rintala-Maki ND, White RD, Morin CD. RNA binding motif (RBM) proteins: a novel family of apoptosis modulators? J Cell Biochem 2005; 94:5-24. [PMID: 15514923 DOI: 10.1002/jcb.20204] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RBM5 is a known modulator of apoptosis, an RNA binding protein, and a putative tumor suppressor. Originally identified as LUCA-15, and subsequently as H37, it was designated "RBM" (for RNA Binding Motif) due to the presence of two RRM (RNA Recognition Motif) domains within the protein coding sequence. Recently, a number of proteins have been attributed with this same RBM designation, based on the presence of one or more RRM consensus sequences. One such protein, RBM3, was also recently found to have apoptotic modulatory capabilities. The high sequence homology at the amino acid level between RBM5, RBM6, and particularly, RBM10 suggests that they, too, may play an important role in regulating apoptosis. It is the intent of this article to ammalgamate the data on the ten originally identified RBM proteins in order to question the existence of a novel family of RNA binding apoptosis regulators.
Collapse
Affiliation(s)
- Leslie C Sutherland
- Tumour Biology Group, Northeastern Ontario Regional Cancer Centre, 41 Ramsey Lake Road, Sudbury, Ontario P3E 5J1, Canada.
| | | | | | | |
Collapse
|
23
|
Elliott DJ. The role of potential splicing factors including RBMY, RBMX, hnRNPG-T and STAR proteins in spermatogenesis. ACTA ACUST UNITED AC 2005; 27:328-34. [PMID: 15595951 DOI: 10.1111/j.1365-2605.2004.00496.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Investigations into the RBM gene family are uncovering networks of protein interactions which regulate RNA processing, and which might operate downstream of signal transduction pathways. Similar pathways likely operate in germ cells and somatic cells, with RBMY, hnRNPGT and T-STAR proteins providing germ cell-specific components. These pathways may be important for normal germ cell development, and might be compromised in men with Y chromosome deletions affecting RBMY gene expression. The STAR proteins have multiple functions in pre-mRNA splicing, signalling and cell cycle control. These processes might have to be very finely regulated during germ cell development, which involves both two sequential meiotic divisions (meiosis I and II) as well as mitotic (spermatogonial) cell divisions, and which is controlled by paracrine signalling within the testis from Sertoli cells.
Collapse
Affiliation(s)
- David J Elliott
- Institute of Human Genetics, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 3BZ, UK.
| |
Collapse
|
24
|
Vinci G, Raicu F, Popa L, Popa O, Cocos R, McElreavey K. A deletion of a novel heat shock gene on the Y chromosome associated with azoospermia. Mol Hum Reprod 2005; 11:295-8. [PMID: 15734897 DOI: 10.1093/molehr/gah153] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Deletions of the Y chromosome are a significant cause of spermatogenic failure. Three major deletion intervals have been defined and termed AZFa, AZFb and AZFc. Here, we report an unusual case of a proximal AZFb deletion that includes the Y chromosome palindromic sequence P4 and a novel heat shock factor (HSFY). This deletion neither include the genes EIF1AY, RPS4Y2 nor copies of the RBMY1 genes. The individual presented with idiopathic azoospermia. We propose that deletions of the testis-specific HSFY gene family may be a cause of unexplained cases of idiopathic male infertility. This deletion would not have been detected using current protocols for Y chromosome microdeletion screens, therefore we recommend that current screening protocols be extended to include this region and other palindrome sequences that contain genes expressed specifically in the testis.
Collapse
Affiliation(s)
- Giovanna Vinci
- Reproduction, Fertility and Populations, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Post-transcriptional mechanisms play an important role in the biology of germ cells, where they control key developmental decisions in cell division, differentiation and death. Because these post-transcriptional controls are cell-type-specific, and often utilize germ-cell-specific RNA-binding proteins, they provide useful diagnostic markers for male infertility and testicular cancer. Investigation of the genetics of male infertility in men and model organisms suggests that disruption of post-transcriptional control mechanisms can cause specific germ cell pathologies, and these studies point to future possible therapeutic routes for restoring spermatogenesis.
Collapse
Affiliation(s)
- Ingrid Ehrmann
- Institute of Human Genetics, International Centre for Life, Central Parkway, Newcastle NE1 3BZ, UK
| | | |
Collapse
|
26
|
Castro A, Zambrano N, Kaune H, Madariaga M, López P, Mericq V. YqTER deletion causes arrest of spermatogenesis in early puberty. J Pediatr Endocrinol Metab 2004; 17:1675-8. [PMID: 15645703 DOI: 10.1515/jpem.2004.17.12.1675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We report a 12-7/12 year-old male with obesity, eunuchoid proportions, genetic stigmata of Turner's syndrome and mild developmental delay. We investigated whether cytogenetic alterations could be responsible for his phenotype. Conventional karyotype in 70 peripheral blood cells was 45,X(15%)/46,XYqh-(85%). Dual FISH on 1,000 nuclei revealed 8% of X0 cells (DXZ1 X-centromeric probe) and 92% of XY cells (DYZ3 Y-centromeric probe). We studied Y chromosome microdeletions by PCR. The patient showed a terminal Yq deletion from the 5I interval including the AZFb and AZFc regions. FSH, LH and testosterone (468 ng/dl) were within the normal range for his age. At Tanner IV pubertal development the spermiogram showed azoospermia and the testicular aspirate spermatic arrest. The present report suggests that Y chromosome deletions including AZFb and AZFc regions may cause spermatogenic arrest in early puberty.
Collapse
Affiliation(s)
- Andrea Castro
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
27
|
Wang L, Wu C, Zheng Y, Qiu X, Wang L, Fan H, Han W, Lv B, Wang Y, Zhu X, Xu M, Ding P, Cheng S, Zhang Y, Song Q, Ma D. Molecular cloning and characterization of chemokine-like factor super family member 1 (CKLFSF1), a novel human gene with at least 23 alternative splicing isoforms in testis tissue. Int J Biochem Cell Biol 2004; 36:1492-501. [PMID: 15147728 DOI: 10.1016/j.biocel.2003.11.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 11/14/2003] [Accepted: 11/17/2003] [Indexed: 11/22/2022]
Abstract
Chemokine-like factor (CKLF) was isolated from PHA-stimulated U937 cells. It is composed of 152 amino acids and located on chromosome 16q22. Utilizing bioinformatics, based on CKLF cDNA and protein sequences, in combination with experimental validation, we identified a novel gene designated chemokine-like factor super family member 1 (CKLFSF1). CKLFSF1 maps on chromosome 16q22, and the full-length gene comprises of seven exons and six introns. Using RACE-PCR, we identified two potential alternative transcription start sites, 1A and 1B. Northern blot and RT-PCR analysis demonstrated that CKLFSF1 is predominantly expressed in human testis tissue, with only lower levels of expression in many other human tissues. RT-PCR and cDNA sequencing identified 23 alternatively spliced isoforms of CKLFSF1 in the testis tissue, which encode protein variants ranging from 36 to 169 amino acids in length. Immunohistochemistry analysis demonstrated that CKLFSF1 proteins are highly expressed in spermatocyte and in tissue fluid of human testes tissue. In light of these findings, we propose that CKLFSF1 may play an important role in spermatogenesis or testicular development.
Collapse
Affiliation(s)
- Lu Wang
- Peking University Center for Human Disease Genomics, 38 Xueyuan Road, Beijing 100083, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pieri PDC, Pereira DH, Glina S, Hallak J, McElreavey K, Moreira-Filho CA. A cost-effective screening test for detecting AZF microdeletions on the human Y chromosome. GENETIC TESTING 2003; 6:185-94. [PMID: 12490058 DOI: 10.1089/109065702761403342] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PCR-based screening of microdeletions in the azoospermic factor (AZF) on the Yq chromosome is an accepted means of identifying a common genetic cause of male infertility, responsible for 5-15% of cases associated with a low sperm count (</=5 x 10(6) sptz/ml). Based on an extensive analysis of the literature, we have established a cost-effective preliminary PCR-based diagnostic screening test, with a set of six pairs of primers ("set-of-6") that have the capability of detecting up to 95% of the Y microdeletion cases already published. These primers are: sY84 in AZFa, sY114, sY129, sY143 in AZFb, and sY149, sY254 in AZFc. Initially, the set-of-6 was tested with 13 other pairs of primers covering the three AZF subregions. A sample of 114 infertile men was tested and 10 (8.8%) microdeletions were found, 3 of which were among the 26 (11.5%) idiopathic azoospermic men. These results showed that all detected microdeletions would be identified using the set-of-6 only. Another sample of 34 patients was subsequently tested using the set-of-6 and 3 (8.8%) microdeletions were found in this group. A comparison of our results with those reported in the literature showed similar microdeletion detection frequencies, demonstrating that the set-of-6 primers provides a reliable, simple and cost-effective way of detecting AZF deletions.
Collapse
Affiliation(s)
- Patricia De C Pieri
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
29
|
Ferlin A, Moro E, Rossi A, Dallapiccola B, Foresta C. The human Y chromosome's azoospermia factor b (AZFb) region: sequence, structure, and deletion analysis in infertile men. J Med Genet 2003; 40:18-24. [PMID: 12525536 PMCID: PMC1735253 DOI: 10.1136/jmg.40.1.18] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Microdeletions of the Y chromosome long arm are the most common mutations in infertile males, where they involve one or more "azoospermia factors" (AZFa, b, and c). Understanding of the AZF structure and gene content and mapping of the deletion breakpoints in infertile men are still incomplete. We have assembled a complete 4.3 Mb map of AZFb and surrounding regions by means of 38 BAC clones. The proximal part of AZFb consists of large repeated sequences organised in palindromes, but most of it is single copy sequence. A number of known and novel genes and gene families map in this interval, and most of them are testis specific or have testis specific transcripts. STS mapping allowed us to identify four severely infertile subjects with a deletion in AZFb with similar breakpoints, therefore suggesting a common deletion mechanism. This deletion includes at least five single copy genes and two duplicated genes, but does not remove the historical AZFb candidate gene RBMY1. These data suggest that other genes in AZFb may have important roles in spermatogenesis. We had no evidence for homologous recombination between large repeats as a possible deletion mechanism, as shown for AZFa and AZFc. However, identical sequences in AZFb and AZFc exist, and this finding could explain deletions found in these regions.
Collapse
Affiliation(s)
- A Ferlin
- University of Padova, Department of Medical and Surgical Sciences, Clinica Medica 3, Centre for Male Gamete Cryopreservation, Via Ospedale 105, 35128 Padova, Italy
| | | | | | | | | |
Collapse
|
30
|
Repping S, Skaletsky H, Lange J, Silber S, van der Veen F, Oates RD, Page DC, Rozen S. Recombination between palindromes P5 and P1 on the human Y chromosome causes massive deletions and spermatogenic failure. Am J Hum Genet 2002; 71:906-22. [PMID: 12297986 PMCID: PMC419997 DOI: 10.1086/342928] [Citation(s) in RCA: 280] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2002] [Accepted: 07/10/2002] [Indexed: 11/04/2022] Open
Abstract
It is widely believed that at least three nonoverlapping regions of the human Y chromosome-AZFa, AZFb, and AZFc ("azoospermia factors" a, b, and c)-are essential for normal spermatogenesis. These intervals are defined by interstitial Y-chromosome deletions that impair or extinguish spermatogenesis. Deletion breakpoints, mechanisms, and lengths, as well as inventories of affected genes, have been elucidated for deletions of AZFa and of AZFc but not for deletions of AZFb or of AZFb plus AZFc. We studied three deletions of AZFb and eight deletions of AZFb plus AZFc, as assayed by the STSs defining these intervals. Guided by Y-chromosome sequence, we localized breakpoints precisely and were able to sequence nine of the deletion junctions. Homologous recombination can explain seven of these deletions but not the remaining two. This fact and our discovery of breakpoint hotspots suggest that factors in addition to homology underlie these deletions. The deletions previously thought to define AZFb were found to extend from palindrome P5 to the proximal arm of palindrome P1, 1.5 Mb within AZFc. Thus, they do not define a genomic region separate from AZFc. We also found that the deletions of AZFb plus AZFc, as assayed by standard STSs heretofore available, in fact extend from P5 to the distal arm of P1 and spare distal AZFc. Both classes of deletions are massive: P5/proximal-P1 deletions encompass up to 6.2 Mb and remove 32 genes and transcripts; P5/distal-P1 deletions encompass up to 7.7 Mb and remove 42 genes and transcripts. To our knowledge, these are the largest of all human interstitial deletions for which deletion junctions and complete intervening sequence are available. The restriction of the associated phenotype to spermatogenic failure indicates the remarkable functional specialization of the affected regions of the Y chromosome.
Collapse
Affiliation(s)
- Sjoerd Repping
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge; Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Academic Medical Center, Amsterdam; Infertility Center of St. Louis, St. Luke’s Hospital, St. Louis; and Department of Urology, Boston University Medical Center, Boston
| | - Helen Skaletsky
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge; Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Academic Medical Center, Amsterdam; Infertility Center of St. Louis, St. Luke’s Hospital, St. Louis; and Department of Urology, Boston University Medical Center, Boston
| | - Julian Lange
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge; Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Academic Medical Center, Amsterdam; Infertility Center of St. Louis, St. Luke’s Hospital, St. Louis; and Department of Urology, Boston University Medical Center, Boston
| | - Sherman Silber
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge; Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Academic Medical Center, Amsterdam; Infertility Center of St. Louis, St. Luke’s Hospital, St. Louis; and Department of Urology, Boston University Medical Center, Boston
| | - Fulco van der Veen
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge; Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Academic Medical Center, Amsterdam; Infertility Center of St. Louis, St. Luke’s Hospital, St. Louis; and Department of Urology, Boston University Medical Center, Boston
| | - Robert D. Oates
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge; Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Academic Medical Center, Amsterdam; Infertility Center of St. Louis, St. Luke’s Hospital, St. Louis; and Department of Urology, Boston University Medical Center, Boston
| | - David C. Page
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge; Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Academic Medical Center, Amsterdam; Infertility Center of St. Louis, St. Luke’s Hospital, St. Louis; and Department of Urology, Boston University Medical Center, Boston
| | - Steve Rozen
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge; Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Academic Medical Center, Amsterdam; Infertility Center of St. Louis, St. Luke’s Hospital, St. Louis; and Department of Urology, Boston University Medical Center, Boston
| |
Collapse
|