1
|
Alfandari A, Moskovich D, Weisz A, Katzav A, Kidron D, Beiner M, Josephy D, Asali A, Hants Y, Yagur Y, Weitzner O, Ellis M, Itchaki G, Ashur‐Fabian O. The selenoenzyme type I iodothyronine deiodinase: a new tumor suppressor in ovarian cancer. Mol Oncol 2024; 18:2298-2313. [PMID: 38429887 PMCID: PMC11467794 DOI: 10.1002/1878-0261.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/26/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024] Open
Abstract
The selenoenzyme type I iodothyronine deiodinase (DIO1) catalyzes removal of iodine atoms from thyroid hormones. Although DIO1 action is reported to be disturbed in several malignancies, no work has been conducted in high-grade serous ovarian carcinoma (HGSOC), the most lethal gynecologic cancer. We studied DIO1 expression in HGSOC patients [The Cancer Genome Atlas (TCGA) data and tumor tissues], human cell lines (ES-2 and Kuramochi), normal Chinese hamster ovarian cells (CHO-K1), and normal human fallopian tube cells (FT282 and FT109). To study its functional role, DIO1 was overexpressed, inhibited [by propylthiouracil (PTU)], or knocked down (KD), and cell count, proliferation, apoptosis, cell viability, and proteomics analysis were performed. Lower DIO1 levels were observed in HGSOC compared to normal cells and tissues. TCGA analyses confirmed that low DIO1 mRNA expression correlated with worse survival and therapy resistance in patients. Silencing or inhibiting the enzyme led to enhanced ovarian cancer proliferation, while an opposite effect was shown following DIO1 ectopic expression. Proteomics analysis in DIO1-KD cells revealed global changes in proteins that facilitate tumor metabolism and progression. In conclusion, DIO1 expression and ovarian cancer progression are inversely correlated, highlighting a tumor suppressive role for this enzyme and its potential use as a biomarker in this disease.
Collapse
Affiliation(s)
- Adi Alfandari
- Translational Oncology LaboratoryHematology Institute, Meir Medical CenterKfar SabaIsrael
- Department of Human Molecular Genetics and Biochemistry, Faculty of MedicineTel Aviv UniversityIsrael
- School of Medicine, Faculty of Medical and Health SciencesTel Aviv UniversityIsrael
| | - Dotan Moskovich
- Translational Oncology LaboratoryHematology Institute, Meir Medical CenterKfar SabaIsrael
- Department of Human Molecular Genetics and Biochemistry, Faculty of MedicineTel Aviv UniversityIsrael
- School of Medicine, Faculty of Medical and Health SciencesTel Aviv UniversityIsrael
| | - Avivit Weisz
- Department of PathologyMeir Medical CenterKfar SabaIsrael
| | - Aviva Katzav
- Department of PathologyMeir Medical CenterKfar SabaIsrael
| | - Debora Kidron
- School of Medicine, Faculty of Medical and Health SciencesTel Aviv UniversityIsrael
- Department of PathologyMeir Medical CenterKfar SabaIsrael
| | - Mario Beiner
- School of Medicine, Faculty of Medical and Health SciencesTel Aviv UniversityIsrael
- Division of Gynecologic OncologyMeir Medical CenterKfar SabaIsrael
| | - Dana Josephy
- Division of Gynecologic OncologyMeir Medical CenterKfar SabaIsrael
| | - Aula Asali
- Division of Gynecologic OncologyMeir Medical CenterKfar SabaIsrael
| | - Yael Hants
- Division of Gynecologic OncologyMeir Medical CenterKfar SabaIsrael
| | - Yael Yagur
- Department of Obstetrics and GynecologyMeir Medical CenterKfar SabaIsrael
| | - Omer Weitzner
- Department of Obstetrics and GynecologyMeir Medical CenterKfar SabaIsrael
| | - Martin Ellis
- Translational Oncology LaboratoryHematology Institute, Meir Medical CenterKfar SabaIsrael
- School of Medicine, Faculty of Medical and Health SciencesTel Aviv UniversityIsrael
| | - Gilad Itchaki
- Translational Oncology LaboratoryHematology Institute, Meir Medical CenterKfar SabaIsrael
- School of Medicine, Faculty of Medical and Health SciencesTel Aviv UniversityIsrael
| | - Osnat Ashur‐Fabian
- Translational Oncology LaboratoryHematology Institute, Meir Medical CenterKfar SabaIsrael
- Department of Human Molecular Genetics and Biochemistry, Faculty of MedicineTel Aviv UniversityIsrael
- School of Medicine, Faculty of Medical and Health SciencesTel Aviv UniversityIsrael
| |
Collapse
|
2
|
Zhao Y, Chen P, Lv HJ, Wu Y, Liu S, Deng X, Shi B, Fu J. Comprehensive Analysis of Expression and Prognostic Value of Selenoprotein Genes in Thyroid Cancer. Genet Test Mol Biomarkers 2022; 26:159-173. [PMID: 35481968 DOI: 10.1089/gtmb.2021.0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Low selenium levels are associated with an increased incidence and advanced stage of thyroid cancers (THCAs). In response to changes in selenium levels, a hierarchy of selenoprotein biosynthesis allows tissue-specific fine-tuning of the 25 selenoproteins. To determine the role of individual selenoproteins on thyroid carcinogenesis, we carried out a multiomic data mining study. Methods: The expression levels of individual selenoproteins and their correlations with prognosis in THCAs were analyzed using Oncomine, GEPIA, and Kaplan-Meier plotter platforms. Co-expression analyses using the cBioportal database were carried out to identify genes that are correlated with selenoproteins. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichments were performed for genes correlated with selenoproteins that were identified as clinically significant. Results and Discussion: DIO1, GPX3, SELENOO, SELENOP, SELENOS, and SELENOV were significantly downregulated in THCAs and were associated with poor prognoses. Biological processes including negative regulation of growth and angiogenesis were enriched in DIO1-positively and DIO1-negatively correlated genes, respectively. Many biological processes including negative regulation of growth and MAPK cascade were enriched in GPX3-positively and GPX3-negatively correlated genes, respectively. The antitumor effects of SELENOS might be attributed to their protection against endoplasmic reticulum (ER) stress. SELENOO was revealed to be correlated with ER stress, mitochondrial translation, and telomere maintenance. Biological processes of SELENOV-correlated genes were enriched in redox processes and ER calcium ion homeostasis. Moreover, cell adhesion and angiogenesis were also shown to be negatively regulated by SELENOV, providing an antimetastatic effect similar as DIO1. Conclusion: This study explored the distinct roles of the 25 selenoproteins in THCA pathogenesis, providing potential oncosuppressing effects of 6 selenoproteins.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pu Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hong-Jun Lv
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuan Wu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shu Liu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xueyang Deng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiao Fu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Abstract
Hormones are key drivers of cancer development, and alteration of the intratumoral concentration of thyroid hormone (TH) is a common feature of many human neoplasias. Besides the systemic control of TH levels, the expression and activity of deiodinases constitute a major mechanism for the cell-autonomous, prereceptoral control of TH action. The action of deiodinases ensures tight control of TH availability at intracellular level in a time- and tissue-specific manner, and alterations in deiodinase expression are frequent in tumors. Research over the past decades has shown that in cancer cells, a complex and dynamic expression of deiodinases is orchestrated by a network of growth factors, oncogenic proteins, and miRNA. It has become increasingly evident that this fine regulation exposes cancer cells to a dynamic concentration of TH that is functional to stimulate or inhibit various cellular functions. This review summarizes recent advances in the identification of the complex interplay between deiodinases and cancer and how this family of enzymes is relevant in cancer progression. We also discuss whether deiodinase expression could represent a diagnostic tool with which to define tumor staging in cancer treatment or even a therapeutic tool against cancer.
Collapse
Affiliation(s)
- Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II,” Naples, Italy
| | - Maria Angela De Stefano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II,” Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples “Federico II,” Naples, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples “Federico II,” Naples, Italy
- Correspondence: Domenico Salvatore, Department of Public Health, University of Naples “Federico II”, Napoli, Italy.
| |
Collapse
|
4
|
LRRC19-A Bridge between Selenium Adjuvant Therapy and Renal Clear Cell Carcinoma: A Study Based on Datamining. Genes (Basel) 2020; 11:genes11040440. [PMID: 32316597 PMCID: PMC7230350 DOI: 10.3390/genes11040440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is the most common and fatal subtype of renal cancer. Antagonistic associations between selenium and cancer have been reported in previous studies. Selenium compounds, as anti-cancer agents, have been reported and approved for clinical trials. The main active form of selenium in selenoproteins is selenocysteine (Sec). The process of Sec biosynthesis and incorporation into selenoproteins plays a significant role in biological processes, including anti-carcinogenesis. However, a comprehensive selenoprotein mRNA analysis in KIRC remains absent. In the present study, we examined all 25 selenoproteins and identified key selenoproteins, glutathione peroxidase 3 (GPX3) and type 1 iodothyronine deiodinase (DIO1), with the associated prognostic biomarker leucine-rich repeat containing 19 (LRRC19) in clear cell renal cell carcinoma cases from The Cancer Genome Atlas (TCGA) database. We performed validations for the key gene expression levels by two individual clear cell renal cell carcinoma cohorts, GSE781 and GSE6344, datasets from the Gene Expression Omnibus (GEO) database. Multivariate survival analysis demonstrated that low expression of LRRC19 was an independent risk factor for OS. Gene set enrichment analysis (GSEA) identified tyrosine metabolism, metabolic pathways, peroxisome, and fatty acid degradation as differentially enriched with the high LRRC19 expression in KIRC cases, which are involved in selenium therapy of clear cell renal cell carcinoma. In conclusion, low expression of LRRC19 was identified as an independent risk factor, which will advance our understanding concerning the selenium adjuvant therapy of clear cell renal cell carcinoma.
Collapse
|
5
|
Abstract
The deiodinase family of enzymes mediates the activation and inactivation of thyroid hormone. The role of these enzymes in the regulation of the systemic concentrations of thyroid hormone is well established and underpins the treatment of common thyroid diseases. Interest in this field has increased in the past 10 years as the deiodinases became implicated in tissue development and homeostasis, as well as in the pathogenesis of a wide range of human diseases. Three deiodinases have been identified, namely, types 1, 2 and 3 iodothyronine deiodinases, which differ in their catalytic properties and tissue distribution. Notably, the expression of these enzymes changes during the lifetime of an individual in relation to the different needs of each organ and to ageing. The systemic homeostatic role of deiodinases clearly emerges during changes in serum concentrations of thyroid hormone, as seen in patients with thyroid dysfunction. By contrast, the role of deiodinases at the tissue level allows thyroid hormone signalling to be finely tuned within a given cell in a precise time-space window without perturbing serum concentrations of thyroid hormone. This Review maps the overall functional role of the deiodinases and explores challenges and novel opportunities arising from the expanding knowledge of these 'master' components of the thyroid homeostatic system.
Collapse
Affiliation(s)
- Cristina Luongo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
6
|
Krashin E, Piekiełko-Witkowska A, Ellis M, Ashur-Fabian O. Thyroid Hormones and Cancer: A Comprehensive Review of Preclinical and Clinical Studies. Front Endocrinol (Lausanne) 2019; 10:59. [PMID: 30814976 PMCID: PMC6381772 DOI: 10.3389/fendo.2019.00059] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/22/2019] [Indexed: 01/06/2023] Open
Abstract
Thyroid hormones take major part in normal growth, development and metabolism. Over a century of research has supported a relationship between thyroid hormones and the pathophysiology of various cancer types. In vitro studies as well as research in animal models demonstrated an effect of the thyroid hormones T3 and T4 on cancer proliferation, apoptosis, invasiveness and angiogenesis. Thyroid hormones mediate their effects on the cancer cell through several non-genomic pathways including activation of the plasma membrane receptor integrin αvβ3. Furthermore, cancer development and progression are affected by dysregulation of local bioavailability of thyroid hormones. Case-control and population-based studies provide conflicting results regarding the association between thyroid hormones and cancer. However, a large body of evidence suggests that subclinical and clinical hyperthyroidism increase the risk of several solid malignancies while hypothyroidism may reduce aggressiveness or delay the onset of cancer. Additional support is provided from studies in which dysregulation of the thyroid hormone axis secondary to cancer treatment or thyroid hormone supplementation was shown to affect cancer outcomes. Recent preclinical and clinical studies in various cancer types have further shown promising outcomes following chemical reduction of thyroid hormones or inhibition or their binding to the integrin receptor. This review provides a comprehensive overview of the preclinical and clinical research conducted so far.
Collapse
Affiliation(s)
- Eilon Krashin
- Translational Hemato-Oncology Laboratory, Meir Medical Center, Kfar-Saba, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Martin Ellis
- Translational Hemato-Oncology Laboratory, Meir Medical Center, Kfar-Saba, Israel
- Meir Medical Center, Hematology Institute and Blood Bank, Kfar-Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Ashur-Fabian
- Translational Hemato-Oncology Laboratory, Meir Medical Center, Kfar-Saba, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Osnat Ashur-Fabian
| |
Collapse
|
7
|
Goemann IM, Marczyk VR, Romitti M, Wajner SM, Maia AL. Current concepts and challenges to unravel the role of iodothyronine deiodinases in human neoplasias. Endocr Relat Cancer 2018; 25:R625-R645. [PMID: 30400023 DOI: 10.1530/erc-18-0097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
Abstract
Thyroid hormones (THs) are essential for the regulation of several metabolic processes and the energy consumption of the organism. Their action is exerted primarily through interaction with nuclear receptors controlling the transcription of thyroid hormone-responsive genes. Proper regulation of TH levels in different tissues is extremely important for the equilibrium between normal cellular proliferation and differentiation. The iodothyronine deiodinases types 1, 2 and 3 are key enzymes that perform activation and inactivation of THs, thus controlling TH homeostasis in a cell-specific manner. As THs seem to exert their effects in all hallmarks of the neoplastic process, dysregulation of deiodinases in the tumoral context can be critical to the neoplastic development. Here, we aim at reviewing the deiodinases expression in different neoplasias and exploit the mechanisms by which they play an essential role in human carcinogenesis. TH modulation by deiodinases and other classical pathways may represent important targets with the potential to oppose the neoplastic process.
Collapse
Affiliation(s)
- Iuri Martin Goemann
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Vicente Rodrigues Marczyk
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mirian Romitti
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Simone Magagnin Wajner
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Luiza Maia
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
8
|
Atteia HH, Arafa MH, Prabahar K. Selenium nanoparticles prevents lead acetate-induced hypothyroidism and oxidative damage of thyroid tissues in male rats through modulation of selenoenzymes and suppression of miR-224. Biomed Pharmacother 2018; 99:486-491. [PMID: 29665650 DOI: 10.1016/j.biopha.2018.01.083] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/20/2017] [Accepted: 01/12/2018] [Indexed: 02/01/2023] Open
Abstract
Selenium nanoparticles (Se-NPs) are customizable drug delivery vehicles that show good bioavailability, higher efficacy and lower toxicity than ordinary Se. Pre-treatment of male rats with these NPs has been recently shown to exert a protective effect against chromium-induced thyroid dysfunction. This study, therefore, aimed to investigate and characterize the potential protective mechanism of Se-NPs against lead (Pb) acetate-induced thyrotoxicity. We found that prophylactic and concurrent treatment of Pb acetate-exposed rats with Nano-Se (0.5 mg/kg, i.p) for 15 wk significantly alleviated the decrease in free triiodothyronine (fT3) and free thyroxine (fT4) levels as well as fT3/fT4 ratio% and the increase in thyroid stimulating hormone (TSH) levels to approach control values. This was accompanied by a reduction in the accumulation of Pb in serum and thyroid tissues as well as maintenance of thyroidal pro-oxidant/antioxidant balance and iodothyronine deiodinase type 1 (ID1), an essential enzyme for metabolizing of T4 into active T3, gene expression. Surprisingly, miR-224, a direct complementary target of ID1 mRNA, expression in the thyroid tissues was significantly down-regulated in Nano-Se-pre- and co-treated Pb acetate intoxicated animals. Such changes in miR-224 expression were negatively correlated with the changes in ID1 gene expression and serum fT3 level. These results suggest that Se-NPs can rescue from Pb-induced impairment of thyroid function through the maintenance of selenoproteins and down-regulation of miR-224.
Collapse
Affiliation(s)
- Hebatallah Husseini Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Sharkia, Egypt.
| | - Manar Hamed Arafa
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Skarkia, Egypt
| | - Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
9
|
Cicatiello AG, Ambrosio R, Dentice M. Thyroid hormone promotes differentiation of colon cancer stem cells. Mol Cell Endocrinol 2017; 459:84-89. [PMID: 28342853 DOI: 10.1016/j.mce.2017.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 01/14/2023]
Abstract
Tumor formation and maintenance depend on a small fraction of cancer stem cells (CSCs) that can self-renew and generate a wide variety of differentiated cells. CSCs are resistant to chemotherapy and radiation, and can represent a reservoir of cancer cells that often cause relapse after treatment. Evidence suggests that CSCs also give rise to metastases. Thyroid hormone (TH) controls a variety of biological processes including the development and functioning of most adult tissues. Recent years has seen the emergence of an intimate link between TH and multiple steps of tumorigenesis. Thyroid hormone controls the balance between the proliferation and differentiation of CSCs, and may thus be a druggable anti-cancer agent. Here, we review current understanding of the effects of TH on colorectal CSCs, including the cross regulatory loops between TH and regulators of CSC stemness. Targeting TH in the tumor microenvironment may improve treatment strategies.
Collapse
Affiliation(s)
| | | | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Italy; CEINGE-Biotecnologie Avanzate S.c.ar.l., Naples, Italy.
| |
Collapse
|
10
|
Popławski P, Wiśniewski JR, Rijntjes E, Richards K, Rybicka B, Köhrle J, Piekiełko-Witkowska A. Restoration of type 1 iodothyronine deiodinase expression in renal cancer cells downregulates oncoproteins and affects key metabolic pathways as well as anti-oxidative system. PLoS One 2017; 12:e0190179. [PMID: 29272308 PMCID: PMC5741248 DOI: 10.1371/journal.pone.0190179] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022] Open
Abstract
Type 1 iodothyronine deiodinase (DIO1) contributes to deiodination of 3,5,3’,5’-tetraiodo-L-thyronine (thyroxine, T4) yielding of 3,5,3’-triiodothyronine (T3), a powerful regulator of cell differentiation, proliferation, and metabolism. Our previous work showed that loss of DIO1 enhances proliferation and migration of renal cancer cells. However, the global effects of DIO1 expression in various tissues affected by cancer remain unknown. Here, the effects of stable DIO1 re-expression were analyzed on the proteome of renal cancer cells, followed by quantitative real-time PCR validation in two renal cancer-derived cell lines. DIO1-induced changes in intracellular concentrations of thyroid hormones were quantified by L-MS/MS and correlations between expression of DIO1 and potential target genes were determined in tissue samples from renal cancer patients. Stable re-expression of DIO1, resulted in 26 downregulated proteins while 59 proteins were overexpressed in renal cancer cells. The ‘downregulated’ group consisted mainly of oncoproteins (e.g. STAT3, ANPEP, TGFBI, TGM2) that promote proliferation, migration and invasion. Furthermore, DIO1 re-expression enhanced concentrations of two subunits of thyroid hormone transporter (SLC7A5, SLC3A2), enzymes of key pathways of cellular energy metabolism (e.g. TKT, NAMPT, IDH2), sex steroid metabolism and anti-oxidative response (AKR1C2, AKR1B10). DIO1 expression resulted in elevated intracellular concentration of T4. Expression of DIO1-affected genes strongly correlated with DIO1 transcript levels in tissue samples from renal cancer patients as well as with their poor survival. This first study addressing effects of deiodinase re-expression on proteome of cancer cells demonstrates that induced DIO1 re-expression in renal cancer robustly downregulates oncoproteins, affects key metabolic pathways, and triggers proteins involved in anti-oxidative protection. This data supports the notion that suppressed DIO1 expression and changes in local availability of thyroid hormones might favor a shift from a differentiated to a more proliferation-prone state of cancer tissues and cell lines.
Collapse
Affiliation(s)
- Piotr Popławski
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Keith Richards
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
11
|
Goemann IM, Romitti M, Meyer ELS, Wajner SM, Maia AL. Role of thyroid hormones in the neoplastic process: an overview. Endocr Relat Cancer 2017; 24:R367-R385. [PMID: 28928142 DOI: 10.1530/erc-17-0192] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022]
Abstract
Thyroid hormones (TH) are critical regulators of several physiological processes, which include development, differentiation and growth in virtually all tissues. In past decades, several studies have shown that changes in TH levels caused by thyroid dysfunction, disruption of deiodinases and/or thyroid hormone receptor (TR) expression in tumor cells, influence cell proliferation, differentiation, survival and invasion in a variety of neoplasms in a cell type-specific manner. The function of THs and TRs in neoplastic cell proliferation involves complex mechanisms that seem to be cell specific, exerting effects via genomic and nongenomic pathways, repressing or stimulating transcription factors, influencing angiogenesis and promoting invasiveness. Taken together, these observations indicate an important role of TH status in the pathogenesis and/or development of human neoplasia. Here, we aim to present an updated and comprehensive picture of the accumulated knowledge and the current understanding of the potential role of TH status on the different hallmarks of the neoplastic process.
Collapse
Affiliation(s)
- Iuri Martin Goemann
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mirian Romitti
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Erika L Souza Meyer
- Department of Internal MedicineUniversidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Simone Magagnin Wajner
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Luiza Maia
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
12
|
Poplawski P, Rybicka B, Boguslawska J, Rodzik K, Visser TJ, Nauman A, Piekielko-Witkowska A. Induction of type 1 iodothyronine deiodinase expression inhibits proliferation and migration of renal cancer cells. Mol Cell Endocrinol 2017; 442:58-67. [PMID: 27940296 DOI: 10.1016/j.mce.2016.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/29/2016] [Accepted: 12/07/2016] [Indexed: 01/12/2023]
Abstract
Type 1 iodothyronine deiodinase (DIO1) regulates peripheral metabolism of thyroid hormones that control cellular proliferation, differentiation and metabolism. The significance of DIO1 in cancer is unknown. In this study we hypothesized that diminished expression of DIO1, observed in renal cancer, contributes to the carcinogenic process in the kidney. Here, we demonstrate that ectopic expression of DIO1 in renal cancer cells changes the expression of genes controlling cell cycle, including cyclin E1 and E2F5, and results in inhibition of proliferation. The expression of genes encoding collagens (COL1A1, COL4A2, COL5A1), integrins (ITGA4, ITGA5, ITGB3) and transforming growth factor-β-induced (TGFBI) is significantly altered in renal cancer cells with induced expression of DIO1. Finally, we show that overexpression of DIO1 inhibits migration of renal cancer cells. In conclusion, we demonstrate for the first time that loss of DIO1 contributes to renal carcinogenesis and that its induced expression protects cells against cancerous proliferation and migration.
Collapse
Affiliation(s)
- Piotr Poplawski
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Joanna Boguslawska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Katarzyna Rodzik
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Theo J Visser
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Alicja Nauman
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813, Warsaw, Poland; Laboratory of Human Cancer Genetics, Centre of New Technologies, CENT, University of Warsaw, 02-089, Warsaw, Poland
| | - Agnieszka Piekielko-Witkowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813, Warsaw, Poland.
| |
Collapse
|
13
|
Varlamova EG, Cheremushkina IV. Contribution of mammalian selenocysteine-containing proteins to carcinogenesis. J Trace Elem Med Biol 2017; 39:76-85. [PMID: 27908428 DOI: 10.1016/j.jtemb.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Oxidative stress caused by a sharp growth of free radicals in the organism is a major cause underlying the occurrence of all kinds of malignant formations. Selenium is an important essential trace element found in selenoproteins in the form of selenocysteine, an amino acid differing from cysteine for the presence of selenium instead of sulfur and making such proteins highly active. To date the role of selenium has been extensively investigated through studying the functions of selenoproteins in carcinogenesis. Analysis of the obtained results clearly demonstrates that selenoproteins can act as oncosuppressors, but can also, on the contrary, favor the formation of malignant tumors.
Collapse
Affiliation(s)
- Elena Gennadyevna Varlamova
- Federal State Institution of Science Institute of Cell Biophysics, Russian Academy of Sciences, Moscow Region, Institutskaya st. 3, 142290, Pushchino, Russia.
| | - Irina Valentinovna Cheremushkina
- Federal State Educational Institution of Higher Education Voronezh State University of Engineering Technology, Prospect revolution st. 19, 394000, Voronezh, Russia.
| |
Collapse
|
14
|
Czarnecka AM, Matak D, Szymanski L, Czarnecka KH, Lewicki S, Zdanowski R, Brzezianska-Lasota E, Szczylik C. Triiodothyronine regulates cell growth and survival in renal cell cancer. Int J Oncol 2016; 49:1666-78. [PMID: 27632932 DOI: 10.3892/ijo.2016.3668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/25/2016] [Indexed: 11/05/2022] Open
Abstract
Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.
Collapse
Affiliation(s)
- Anna M Czarnecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Damian Matak
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Lukasz Szymanski
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Karolina H Czarnecka
- Department of Molecular Bases of Medicine, Medical University of Lodz, Lodz, Poland
| | - Slawomir Lewicki
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Robert Zdanowski
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | | | - Cezary Szczylik
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
15
|
Thyroid Hormones as Renal Cell Cancer Regulators. JOURNAL OF SIGNAL TRANSDUCTION 2016; 2016:1362407. [PMID: 27034829 PMCID: PMC4808550 DOI: 10.1155/2016/1362407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/23/2016] [Indexed: 12/27/2022]
Abstract
It is known that thyroid hormone is an important regulator of cancer development and metastasis. What is more, changes across the genome, as well as alternative splicing, may affect the activity of the thyroid hormone receptors. Mechanism of action of the thyroid hormone is different in every cancer; therefore in this review thyroid hormone and its receptor are presented as a regulator of renal cell carcinoma.
Collapse
|
16
|
Kornasiewicz O, Dębski M, Grat M, Lenartowicz B, Stępnowska M, Szałas A, Bar-Andziak E, Krawczyk M. Enzymatic activity of type 1 iodothyronine deiodinase in selected liver tumors. Arch Med Sci 2014; 10:801-5. [PMID: 25276167 PMCID: PMC4175756 DOI: 10.5114/aoms.2013.34323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 10/19/2012] [Accepted: 02/28/2013] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Type 1 iodothyronine deiodinase (D1) converts thyroxin (T4) into tri-iodothyronine (T3). Strong evidence indicates that thyroid hormone metabolism is disturbed in neoplasms such as thyroid and breast cancer. However, there is limited data concerning the function of the D1 enzyme in liver tumors. We aimed to estimate the enzymatic activity of D1 in two different common liver tumors. MATERIAL AND METHODS We obtained 20 tumor samples from patients who had undergone a liver resection. Of the tissue samples, there were 13 benign lesions of focal nodular hyperplasia (FNH) and 7 malignant lesions of hepatocellular carcinomas (HCC). The D1 activity was assessed by measuring the amount of radioactive iodine released in reaction to D1-catalysed deiodination. Groups were compared by the Mann-Whitney non-parametrical test for independent trials, and the Kruskal Wallis test. RESULTS The enzymatic activity of D1 was not significantly altered in the FNH group (median = 536 fmol/mg of protein/min; p = 0.972) and HCC group (367 fmol/mg; p = 0.128) when compared to matched normal liver parenchyma controls (546 fmol/mg and 556 fmol/mg, respectively). CONCLUSIONS Liver parenchyma expresses high levels of D1. The results clearly revealed that D1 activity was not significantly different between benign and malignant tumors (FNH and HCC) compared to healthy liver parenchyma cells.
Collapse
Affiliation(s)
- Oskar Kornasiewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Poland
| | - Marcin Dębski
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Poland
| | - Michal Grat
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Poland
| | - Barbara Lenartowicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Poland
| | - Marta Stępnowska
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Poland
| | - Anna Szałas
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Poland
| | - Ewa Bar-Andziak
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Poland
| | - Marek Krawczyk
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Poland
| |
Collapse
|
17
|
Farahati J, Roggenbuck D, Gilman E, Schütte M, Jagminaite E, Seyed Zakavi R, Löning T, Heissen E. Anti-thyroid peroxidase antibodies are associated with the absence of distant metastases in patients with newly diagnosed breast cancer. Clin Chem Lab Med 2012; 50:709-14. [PMID: 22149743 DOI: 10.1515/cclm.2011.819] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The presence of thyroid peroxidase antibodies (TPOab) are reported to be associated with improved outcome among breast cancer patients. We evaluated the correlation between TPOab and diagnostic parameters among newly diagnosed breast cancer patients. METHODS Three hundred and fourteen newly diagnosed patients with breast cancer, diagnosed and treated in Bethesda Essen between January 2002 and June 2006, were included in this study; 258 (82.2%) without TPOab (≤100 IU/mL) and 56 (17.8%) with TPOab (>100 IU/mL). Blood analysis was performed to measure serum levels of carcinoembryonic antigen (CEA), cancer antigen 15-3 (CA-15-3), free triiodothyronine (fT3), free thyroxine (fT4), thyroid-stimulating hormone (TSH) and TPOab by radioimmunoassay. Data regarding age, tumor size, grading, TNM classification, receptor status, lymph node, and distant metastases were collected and analyzed from patient reports. Statistics were performed using Pearson’s χ2-test and logistic regression analysis. RESULTS There were no incidences of distant metastasis among 56 patients with TPOab, whereas 17 (6.6%) of 258 cases without TPOab displayed distant metastases (p=0.04). Logistic regression showed an inverse association of TPOab with CA-15-3 and CEA levels (p<0.001, respectively). Both groups, with and without TPOab, revealed no significant differences with respect to age, tumor size, grading, TNM classification, fT3, fT4, and receptor status. TPOab positive patients had higher TSH levels (2.55±3.58), compared to TPOab negative cases (1.20±1.15) (p<0.001). CONCLUSIONS TPOab occurrence is associated with significantly lower frequency of distant metastases in breast cancer. TPOab level inversely correlates with the conventional tumor markers CA-15-3 and CEA.
Collapse
Affiliation(s)
- Jamshid Farahati
- Thyroid Center, Institute of Radiology, Nuclear Medicine and Radiotherapy, Bottrop, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Pereira VS, Marassi MP, Rosenthal D, Vaisman M, Corrêa da Costa VM. Positive correlation between type 1 and 2 iodothyronine deiodinases activities in human goiters. Endocrine 2012; 41:532-8. [PMID: 22207295 DOI: 10.1007/s12020-011-9587-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 12/14/2011] [Indexed: 11/30/2022]
Abstract
Type 1 (D1) and 2 (D2) iodothyronine deiodinases are selenocysteine-containing enzymes that catalyze the deiodination of T4 to T3 in the thyroid and in peripheral tissues. Despite their importance to the plasma T3 pool in human beings, there are few studies about their behavior in human thyroids. In order to better understand iodothyronine deiodinase regulation in the thyroid gland, we studied thyroid tissue samples from follicular adenoma (AD, n = 5), toxic diffuse goiter (TDG, n = 6), nontoxic multinodular goiter (NMG, n = 40), papillary thyroid carcinoma (PTC, n = 8), and surrounding normal tissues (NT, n = 7) from 36 patients submitted to elective thyroidectomy. D1 and D2 activities were determined by quantification of the radioiodine released by ¹²⁵I-rT3 or ¹²⁵I-T4 under standardized conditions, and expressed as pmol rT3 deiodinated per minute and mg protein (pmol rT3 min⁻¹ mg⁻¹ ptn) and fmol T4 deiodinated per minute and mg protein (fmol T4 min⁻¹ mg⁻¹ ptn), respectively. D1 activity detected in TDG and AD tissues were significantly higher than in NT, PTC or NMG samples. D2 activity was also significantly higher in TDG and AD samples than in PTC, NMG, or NT. There was great variability in D1 and D2 enzymatic activities from distinct patients as well as from different areas from the same goiter. There was a positive correlation (P < 0,0001, r = 0.4942) between D1 and D2 activities when all samples were taken into account, suggesting that-in the thyroid-these two iodothyronine deiodinases may have related regulatory mechanisms, even if conditioned by other as yet unknown factors.
Collapse
Affiliation(s)
- Valmara S Pereira
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, bloco G, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, 21949-900, Brazil
| | | | | | | | | |
Collapse
|
19
|
Casula S, Bianco AC. Thyroid hormone deiodinases and cancer. Front Endocrinol (Lausanne) 2012; 3:74. [PMID: 22675319 PMCID: PMC3365412 DOI: 10.3389/fendo.2012.00074] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/15/2012] [Indexed: 12/24/2022] Open
Abstract
Deiodinases constitute a group of thioredoxin fold-containing selenoenzymes that play an important function in thyroid hormone homeostasis and control of thyroid hormone action. There are three known deiodinases: D1 and D2 activate the pro-hormone thyroxine (T4) to T3, the most active form of thyroid hormone, while D3 inactivates thyroid hormone and terminates T3 action. A number of studies indicate that deiodinase expression is altered in several types of cancers, suggesting that (i) they may represent a useful cancer marker and/or (ii) could play a role in modulating cell proliferation - in different settings thyroid hormone modulates cell proliferation. For example, although D2 is minimally expressed in human and rodent skeletal muscle, its expression level in rhabdomyosarcoma (RMS)-13 cells is threefold to fourfold higher. In basal cell carcinoma (BCC) cells, sonic hedgehog (Shh)-induced cell proliferation is accompanied by induction of D3 and inactivation of D2. Interestingly a fivefold reduction in the growth of BCC in nude mice was observed if D3 expression was knocked down. A decrease in D1 activity has been described in renal clear cell carcinoma, primary liver cancer, lung cancer, and some pituitary tumors, while in breast cancer cells and tissue there is an increase in D1 activity. Furthermore D1 mRNA and activity were found to be decreased in papillary thyroid cancer while D1 and D2 activities were significantly higher in follicular thyroid cancer tissue, in follicular adenoma, and in anaplastic thyroid cancer. It is conceivable that understanding how deiodinase dysregulation in tumor cells affect thyroid hormone signaling and possibly interfere with tumor progression could lead to new antineoplastic approaches.
Collapse
Affiliation(s)
- Sabina Casula
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of MedicineMiami, FL, USA
| | - Antonio C. Bianco
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of MedicineMiami, FL, USA
- *Correspondence: Antonio C. Bianco, University of Miami Miller School of Medicine, Batchelor Research Building, 1400 N.W. 10th Avenue, Suite 601, Miami, FL 33136, USA. e-mail:
| |
Collapse
|
20
|
Abstract
Thyroid hormones (TH) regulate key cellular processes, including proliferation, differentiation, and apoptosis in virtually all human cells. Disturbances in TH pathway and the resulting deregulation of these processes have been linked with neoplasia. The concentrations of TH in peripheral tissues are regulated via the activity of iodothyronine deiodinases. There are 3 types of these enzymes: type 1 and type 2 deiodinases are involved in TH activation while type 3 deiodinase inactivates TH. Expression and activity of iodothyronine deiodinases are disturbed in different types of neoplasia. According to the limited number of studies in cancer cell lines and mouse models changes in intratumoral and extratumoral T3 concentrations may influence proliferation rate and metastatic progression. Recent findings showing that increased expression of type 3 deiodinases may lead to enhanced tumoral proliferation support the idea that deiodinating enzymes have the potential to influence cancer progression. This review summarizes the observations of impaired expression and activity in different cancer types, published to date, and the mechanisms behind these alterations, including impaired regulation via TH receptors, transforming growth factor-β, and Sonic-hedgehog pathway. Possible roles of deiodinases as cancer markers and potential modulators of tumor progression are also discussed.
Collapse
Affiliation(s)
- A Piekiełko-Witkowska
- Department of Biochemistry and Molecular Biology, The Medical Centre of Postgraduate Education, Warsaw, Poland.
| | | |
Collapse
|
21
|
Boguslawska J, Wojcicka A, Piekielko-Witkowska A, Master A, Nauman A. MiR-224 targets the 3'UTR of type 1 5'-iodothyronine deiodinase possibly contributing to tissue hypothyroidism in renal cancer. PLoS One 2011; 6:e24541. [PMID: 21912701 PMCID: PMC3166326 DOI: 10.1371/journal.pone.0024541] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/12/2011] [Indexed: 02/07/2023] Open
Abstract
Type 1 iodothyronine deiodinase (DIO1) catalyses the conversion of prohormone thyroxine to the active thyroid hormone 3,3′,5-triiodothyronine (T3), important regulator of cell proliferation and differentiation. DIO1 expression is reduced in the most common type of kidney neoplasia, clear cell Renal Cell Carcinoma (ccRCC). MicroRNAs are small, non-coding RNAs that regulate gene expression at posttranscriptional levels. The aim of this study was to analyze the potential regulation of DIO1 expression by microRNAs in ccRCC. Bioinformatic analysis revealed that 3′UTR of the human DIO1 gene transcript contains miR-224 and miR-383 target sites, which are conserved across mammalian species. Semi-quantitative real-time PCR was used to analyze the expression of miR-224 and miR-383 in 32 samples of ccRCC tumors (T) and in 32 matched control (C) samples. We observed statistically significant (p = 0.0002) more than four fold increase in miR-224 expression and nearly two fold increase in miR-383 expression in samples T compared to samples C. Tumor specific changes in expression of miR-224 negatively correlated with changes in DIO1 expression and intracellular T3 concentration. Transfection of HeLa cell line with miR-224 and miR-383 suppressed the activity of a luciferase reporter containing the 3′UTR of DIO1. This was abolished when constructs mutated at the miR-224 and miR-383 target sites were used instead, indicating that miR-224 and miR-383 directly bind to DIO1 3′UTR. Finally, induced expression of miR-224 in Caki-2 cells resulted in significant (p<0.01) reduction of DIO1 mRNA. This study provides a novel miRNA-mediated regulatory mechanism of DIO1 expression in ccRCC.
Collapse
Affiliation(s)
- Joanna Boguslawska
- Department of Biochemistry and Molecular Biology, The Medical Centre of Postgraduate Education, Warsaw, Poland
| | - Anna Wojcicka
- Department of Biochemistry and Molecular Biology, The Medical Centre of Postgraduate Education, Warsaw, Poland
| | | | - Adam Master
- Department of Biochemistry and Molecular Biology, The Medical Centre of Postgraduate Education, Warsaw, Poland
| | - Alicja Nauman
- Department of Biochemistry and Molecular Biology, The Medical Centre of Postgraduate Education, Warsaw, Poland
- * E-mail:
| |
Collapse
|
22
|
Untranslated regions of thyroid hormone receptor beta 1 mRNA are impaired in human clear cell renal cell carcinoma. Biochim Biophys Acta Mol Basis Dis 2010; 1802:995-1005. [PMID: 20691260 DOI: 10.1016/j.bbadis.2010.07.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 07/26/2010] [Accepted: 07/29/2010] [Indexed: 12/12/2022]
Abstract
Thyroid hormone receptor β1 (TRβ1) is a hormone-dependent transcription factor activated by 3,5,3'-l-triiodothyronine (T3). TRβ1 functions as a tumor suppressor and disturbances of the THRB gene are frequent findings in cancer. Translational control mediated by untranslated regions (UTRs) regulates cell proliferation, metabolism and responses to cellular stress, processes that are involved in carcinogenesis. We hypothesized that reduced TRβ1 expression in clear cell renal cell cancer (ccRCC) results from regulatory effects of TRβ1 5' and 3'UTRs on protein translation. We determined TRβ1 expression and alternative splicing of TRβ1 5' and 3'UTRs in ccRCC and control tissue together with expression of the type 1 deiodinase enzyme (coded by DIO1, a TRβ1 target gene). Tissue concentrations of T3 (which are generated in part by D1) and expression of miRNA-204 (an mRNA inhibitor for which a putative interaction site was identified in the TRβ1 3'UTR) were also determined. TRβ1 mRNA and protein levels were reduced by 70% and 91% in ccRCC and accompanied by absent D1 protein, a 58% reduction in tissue T3 concentration and 2-fold increase in miRNA-204. Structural analysis of TRβ1 UTR variants indicated that reduced TRβ1 expression may be maintained in ccRCC by posttranscriptional mechanisms involving 5'UTRs and miRNA-204. The tumor suppressor activity of TRβ1 indicates that reduced TRβ1 expression and tissue hypothyroidism in ccRCC tumors is likely to be involved in the process of carcinogenesis or in maintaining a proliferative advantage to malignant cells.
Collapse
|
23
|
The enzymatic activity of type 1 iodothyronine deiodinase (D1) is low in liver hemangioma: a preliminary study. Arch Immunol Ther Exp (Warsz) 2010; 58:77-80. [PMID: 20049650 PMCID: PMC2816262 DOI: 10.1007/s00005-009-0056-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 08/07/2009] [Indexed: 11/18/2022]
Abstract
Type 1 iodothyronine deiodinase (D1) is a crucial enzyme which converts the prohormone thyroxine (T4) into active tri-iodothyronine (T3). There has been strong evidence that the metabolism of thyroid hormones is disturbed in some neoplastic tissues such as thyroid, renal, and breast cancer. However, there are few available data about D1 enzyme activity in benign tumors such as hemangioma, which is the most common primary liver tumor. Hence this study aimed to determine the enzymatic activity of D1 in hemangiomas in relation to healthy liver tissue. Seven tumors and healthy control tissues were obtained from patients who had liver resection due to hemangioma. The activity was assessed by measurement of radioactive iodine released by deiodination catalyzed by D1. It was found that D1 activity was significantly lower in the hemagiomas than in the healthy surrounding tissue (p = 0.0017). The results indicated that thyroid hormones play important roles not only in the regulation of cell metabolism, but also in cell growth, division, and apoptosis. The active form T3 acts through its nuclear receptors and influences the up- and down-regulation of target genes. Healthy liver tissue expresses a high level of D1, but disturbed D1 activity may result in changes in the local concentration of T3 which may impair gene transcription. These finding demonstrate a low enzymatic activity of D1 in liver hemangioma and suggest an as yet unknown role of thyroid hormones in this type of benign liver tumor.
Collapse
|
24
|
Gereben B, Bianco AC. Covering the base-pairs in iodothyronine deiodinase-1 biology: holes remain in the lineup. Thyroid 2009; 19:1027-9. [PMID: 19803788 DOI: 10.1089/thy.2009.1593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Piekielko-Witkowska A, Master A, Wojcicka A, Boguslawska J, Brozda I, Tanski Z, Nauman A. Disturbed expression of type 1 iodothyronine deiodinase splice variants in human renal cancer. Thyroid 2009; 19:1105-13. [PMID: 19534619 DOI: 10.1089/thy.2008.0284] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alternative splicing, one of the sources of protein diversity, is often disturbed in cancer. Type 1 iodothyronine deiodinase (DIO1) catalyzes deiodination of thyroxine generating triiodothyronine, an important regulator of cell proliferation and differentiation. The expression of DIO1 is disturbed in different types of cancer. The aim of the study was to analyze the alternative splicing of DIO1 and its possible disturbance in renal cancer. METHODS Using real-time PCR, we analyzed 19 tissue samples (T) of renal cancer and 19 matched control samples (C) of the opposite pole of the kidney, not infiltrated by tumor, and 6 control samples (N) (nonneoplastic kidney abnormalities). RESULTS Cloning of DIO1 mRNA isoforms revealed 11 different transcripts, among them 7 new splice variants, not previously reported. The expression of all variants of DIO1 was dramatically (>90%) and significantly (p < or = 0.0003) lowered in samples T compared to control samples C. The ratio of mRNA isoforms encoding DIO1 protein variants possessing or lacking the active center was lowered in samples T compared with control samples C, suggesting disturbed alternative splicing of DIO1. The expression of mRNA of splicing factors SF2/ASF (splicing factor-2/alternative-splicing factor) and hnRNPA1 (heterogeneous ribonucleoprotein A1), regulating 5'-splice site selection, was significantly but not proportionally lowered in samples T compared to samples C. The mRNA ratio of splicing factors SF2/ASF and hnRNPA1 correlated with the ratio of mRNA isoforms encoding DIO1 protein variants possessing or lacking the active center in controls C but not in samples T. CONCLUSIONS Our results show that the expression and alternative splicing of DIO1 mRNA is disturbed in renal cancer, possibly due to changes in expression of splicing factors SF2/ASF and hnRNPA1.
Collapse
Affiliation(s)
- Agnieszka Piekielko-Witkowska
- Department of Biochemistry and Molecular Biology, The Medical Center of Postgraduate Education, 01-813 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
26
|
Poplawski P, Nauman A. Thyroid hormone - triiodothyronine - has contrary effect on proliferation of human proximal tubules cell line (HK2) and renal cancer cell lines (Caki-2, Caki-1) - role of E2F4, E2F5 and p107, p130. Thyroid Res 2008; 1:5. [PMID: 19014670 PMCID: PMC2583984 DOI: 10.1186/1756-6614-1-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 10/13/2008] [Indexed: 11/26/2022] Open
Abstract
Background Triiodothyronine regulates proliferation acting as stimulator or inhibitor. E2F4 and E2F5 in complexes with pocket proteins p107 or p130 stop cells in G1, repressing transcription of genes important for cell cycle progression. p107 and p130 inhibits activity of cyclin/cdk2 complexes. Expression of all those proteins could be regulated by triiodothyronine. In clear cell renal cell carcinoma many disturbances in T3 signaling pathway was described, in that type of cancer also expression of some key G1 to S phase progression regulators was shown. Methods We investigated role of T3 and its receptors in regulation of proliferation of HK2, Caki-2, Caki-1 cell lines (cell counting, cytometric analysis of DNA content) and expression of thyroid hormone receptors, E2F4, E2F5, p107 and p130 (western blot and semi-quantitative real time PCR). Statistical analysis was performed using one-way ANOVA. Results and Conclusion We show that T3 inhibits proliferation of HK2, and stimulates it in Caki lines. Those differences are result of disturbed expression of TR causing improper regulation of E2F4, E2F5, p107 and p130 in cancer cells.
Collapse
Affiliation(s)
- Piotr Poplawski
- Department of Biochemistry and Molecular Biology, The Medical Centre of Postgraduate Education, Warsaw, Poland.
| | | |
Collapse
|
27
|
Turowska O, Nauman A, Pietrzak M, Popławski P, Master A, Nygard M, Bondesson M, Tanski Z, Puzianowska-Kuznicka M. Overexpression of E2F1 in clear cell renal cell carcinoma: a potential impact of erroneous regulation by thyroid hormone nuclear receptors. Thyroid 2007; 17:1039-48. [PMID: 17910524 DOI: 10.1089/thy.2007.0075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We show here that the promoter of E2F1 gene, encoding one of the key regulators of cell proliferation, is overly active in the presence of low amounts of triiodothyronine (T3) and in the presence of mutant thyroid hormone receptor. We also show that T3-thyroid hormone receptor pathway of regulation of molecular processes is disturbed in clear cell renal cell carcinoma (ccRCC) on several levels, including overexpression of thyroid hormone receptors and the disturbance of their binding to DNA and to the hormone. In comparison to the cancer-free kidneys and peritumoral respective control tissues, E2F1 mRNA and protein levels are significantly increased in cancer tissues. A significant correlation between E2F1 mRNA and protein levels has been found in both control types and ccRCCs. No correlation was observed between the amount of E2F1 mRNA and the amount of thyroid hormone receptors or their DNA or T3 binding activity, suggesting that the function of thyroid hormone receptors could be markedly disturbed in both tumor and peritumoral cells. In summary, we show that ccRCC is characterized by the overexpression of E2F1, which is likely a result of a deregulated control of T3-dependent molecular processes.
Collapse
Affiliation(s)
- Olga Turowska
- Department of Biochemistry and Molecular Biology, Medical Center of Postgraduate Education, 99 Marymoncka Street, Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Meyer ELS, Wagner MS, Maia AL. [Iodothyronine deiodinases expression in thyroid neoplasias]. ARQUIVOS BRASILEIROS DE ENDOCRINOLOGIA E METABOLOGIA 2007; 51:690-700. [PMID: 17891232 DOI: 10.1590/s0004-27302007000500006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 03/10/2007] [Indexed: 11/22/2022]
Abstract
The iodothyronine deiodinases constitute a family of selenoenzymes that catalyze the removal of iodine from the outer ring or inner ring of the thyroid hormones. The activating enzymes, deiodinases type I (D1) and type II (D2), are highly expressed in normal thyroid gland. Benign or malignant neoplastic transformation of the thyroid cells is associated with changes on the expression of these enzymes, suggesting that D1 or D2 can be markers of cellular differentiation. Abnormalities on the expression of both enzymes and also of the deiodinase type III (D3), that inactivates thyroid hormones, have been found in other human neoplasias. So far, the mechanism or implications of these findings on tumor pathogenesis are not well understood. Nevertheless, its noteworthy that abnormal expression of D2 can cause thyrotoxicosis in patients with metastasis of follicular thyroid carcinoma and that increased D3 expression in large hemangiomas causes severe hypothyroidism.
Collapse
Affiliation(s)
- Erika L Souza Meyer
- Setor de Tireóide, Serviço de Endocrinologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
29
|
Debski MG, Pachucki J, Ambroziak M, Olszewski W, Bar-Andziak E. Human breast cancer tissue expresses high level of type 1 5'-deiodinase. Thyroid 2007; 17:3-10. [PMID: 17274741 DOI: 10.1089/thy.2006.0012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Type 1 5'-deiodinase is one of two isoenzymes that participate in conversion of prohormone thyroxine into triiodothyronine (T3). A decrease in type 1 5'-deiodinase expression was observed in renal clear cell carcinoma, thyroid cancer, and lung cancer. The aim of this study was to evaluate type 1 5'-deiodinase activity and mRNA level in breast cancer tissue and non-cancerous surrounding breast tissue. Material was collected from 36 patients undergoing radical mastectomy or local tumor resection. In all non-cancerous breast tissues, type 1 50-deiodinase activity was found to be at a very low or immeasurable level, and type 1 5'-deiodinase mRNA was detected only in 2 out of the 36 samples. By contrast, 20 out of the 36 breast cancer tissues, mainly grades G1 and G2, expressed abundant type 1 5'-deiodinase activity and/or a high mRNA level. Our data demonstrated the presence of type 1 5'-deiodinase in well-differentiated breast cancer tissue. High enzymatic activity of type 1 50-deiodinase can potentially lead to an increase in the production of T3, which may affect target gene transcription, including genes responsible for energy expenditure, growth, differentiation, and proliferation.
Collapse
Affiliation(s)
- Marcin Grzegorz Debski
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Banacha, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
30
|
Jang C, Obeyesekere VR, Dilley RJ, Alford FP, Inder WJ. 11Beta hydroxysteroid dehydrogenase type 1 is expressed and is biologically active in human skeletal muscle. Clin Endocrinol (Oxf) 2006; 65:800-5. [PMID: 17121533 DOI: 10.1111/j.1365-2265.2006.02669.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE No data exist regarding the distribution and oxoreductase enzyme activity of 11beta hydroxysteroid dehydrogenase type 1 (11beta HSD-1) in fresh human skeletal muscle. We aimed to investigate the mRNA and protein expression of 11beta HSD-1 in fresh skeletal muscle, confirm its biological activity and determine its relationship with hexose-6-phosphate dehydrogenase (H6PDH). We also examined the muscle fibre localization of 11beta HSD-1. DESIGN Eleven non-diabetic community volunteers underwent muscle biopsy of vastus lateralis. MEASUREMENTS (i) 11beta HSD-1 and H6PDH mRNA expression by quantitative reverse transcription polymerase chain reaction (RT-PCR); (ii) protein localization and fibre type specificity by immunohistochemistry; and (iii) enzyme oxoreductase activity by percentage conversion of 3H cortisone to cortisol. RESULTS 11beta HSD-1 mRNA was expressed at low levels compared to human liver. Mean DeltaCT of skeletal muscle in 11 subjects was 19.57 (range 18.40-20.79) compared to DeltaCT of 12.75 in human liver, which equates to an approximate 100-fold higher level of expression. H6PDH mRNA was also detected with a mean DeltaCT of 14.46 (range 13.13-16.60), approximately 35-fold more abundant than 11beta HSD-1 in skeletal muscle. There was a significant correlation between 11beta HSD-1 and H6PDH (r = 0.67, P = 0.03). 11beta HSD-1 immunostaining was present in all muscle specimens, with similar distribution among fast and slow twitch fibres. 11beta HSD-1 oxoreductase activity was demonstrated, with mean conversion of cortisone to cortisol of 17.7% per 200 mg of muscle per 24 h (range 7.1-29.5%). CONCLUSIONS 11beta HSD-1 mRNA and protein is expressed in fresh human skeletal muscle along with readily demonstrable oxoreductase activity. 11beta HSD-1 localization is not muscle fibre type specific. High levels of skeletal muscle H6PDH should ensure that oxoreductase activity predominates in vivo.
Collapse
Affiliation(s)
- Christina Jang
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|
31
|
Ambroziak M, Pachucki J, Stachlewska-Nasfeter E, Nauman J, Nauman A. Disturbed expression of type 1 and type 2 iodothyronine deiodinase as well as titf1/nkx2-1 and pax-8 transcription factor genes in papillary thyroid cancer. Thyroid 2005; 15:1137-46. [PMID: 16279847 DOI: 10.1089/thy.2005.15.1137] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Type 1 and type 2 iodothyronine 5' deiodinases (D1 and D2, respectively) catalyze the conversion of thyroxine (T(4)) to triiodothyronine (T(3)). Similar to other genes crucial for T(3) generation, D1 and D2 expression might be disturbed in papillary thyroid cancer (PTC) possible as a result of impairments in thyroid transcription factors Titf1/Nkx2-1 and Pax-8. The aim of the study was to investigate changes in the expression of D1 and D2 in PTC compared to changes in the expression of Titf1/Nkx2-1 and Pax-8. Although D1 and D2 activities were decreased in tumor samples (PTC) compared to control C samples (tissues from a nontumorous part of the gland), the differences were not statistically significant. Contrary to that, their mRNA levels were significantly decreased in PTC samples compared to C samples (p = 0.017 and p = 0.012, respectively). Interestingly there was clear discrepancy between enzymatic activity and mRNA level of both deiodinases. There was a statistically significant correlation between D1 and Pax-8 (r = 0.464, p = 0.039), D2 and Pax-8 (r = 0.461, p = 0.041), D2 and Titf1/Nkx2-1 mRNA levels (r = 0.526, p = 0.017). Our results show that changes in D1 and D2 expression in PTC, including the discrepancy between deiodinases activity and mRNA level, might possibly related to impaired Titf1/Nkx2-1 and Pax-8 action.
Collapse
Affiliation(s)
- Michal Ambroziak
- Department of Biochemistry, Medical Centre of Postgraduate Education, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
32
|
de Souza Meyer EL, Dora JM, Wagner MS, Maia AL. Decreased type 1 iodothyronine deiodinase expression might be an early and discrete event in thyroid cell dedifferentation towards papillary carcinoma. Clin Endocrinol (Oxf) 2005; 62:672-8. [PMID: 15943828 DOI: 10.1111/j.1365-2265.2005.02277.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Type I iodothyronine deiodinase (D1) catalyses the 5' monodeiodination of T4 and is highly expressed in normal human thyroid gland. We have investigated D1 expression in a series of benign and malignant differentiated thyroid neoplasias. DESIGN Surgically isolated thyroid tumour fragments were used. D1 expression was determined by reverse transcription polymerase chain reaction (RT-PCR) and enzymatic assay. PATIENTS Tumours and adjacent normal tissues were obtained from 28 unselected patients (papillary carcinoma, n = 14; follicular adenoma, n = 7; follicular carcinoma, n = 6; anaplastic carcinoma, n = 1). MEASUREMENTS D1 mRNA levels were determined using specific primers for the human D1 gene and enzymatic assays were performed using T4 as substrate. RESULTS In papillary thyroid carcinoma (PTC), D1 mRNA and activity levels were decreased compared with the surrounding tissue (0.25 +/- 0.24 vs. 1.09 +/- 0.54 arbitrary units (AU), P < 0.001 and 0.08 +/- 0.07 vs. 0.24 +/- 0.15 pmol T4/min/mg protein, P = 0.045, respectively). Decreased D1 expression was consistent and was observed in all histological subtypes and clinical stages analysed, including microcarcinomas. By contrast, significantly higher D1 mRNA levels and enzyme activity were present in follicular adenoma (1.9 +/- 1.5 vs. 0.83 +/- 0.58 AU, P = 0.028 and 2.67 +/- 1.42 vs. 0.22 +/- 0.06 pmol T4/min/mg protein, P = 0.044, respectively) and in follicular thyroid carcinoma (FTC) than in surrounding normal tissue (1.2 +/- 0.46 vs. 0.67 +/- 0.18 AU, P = 0.038 and 1.20 +/- 0.58 vs. 0.20 +/- 0.10 pmol T4/min/mg protein, P < 0.001, respectively). Type II iodothyronine deiodinase (D2) activity was also significantly higher in metastatic FTC samples than in normal thyroid tissues (5.20 +/- 0.81 vs. 0.30 +/- 0.27 fmol T4/min/mg protein, P < 0.001). CONCLUSIONS These findings suggest that thyroid cell dedifferentiation promotes changes in D1 gene expression by pretranscriptional mechanisms and indicate that decreased D1 expression might be an early and discrete event in thyroid cell dedifferentiation towards papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Erika L de Souza Meyer
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
33
|
Menth M, Schmutzler C, Mentrup B, Hoang-Vu C, Takahashi K, Honjoh T, Köhrle J. Selenoprotein expression in Hürthle cell carcinomas and in the human Hürthle cell carcinoma line XTC.UC1. Thyroid 2005; 15:405-16. [PMID: 15929660 DOI: 10.1089/thy.2005.15.405] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hürthle cell carcinomas (HTC) are characterized by mitochondrial amplification and enhanced oxygen metabolism. To clarify if defects in enzymes scavenging reactive oxygen species are involved in the pathogenesis of HTC, we analyzed selenium (Se)-dependent expression of various detoxifying selenoproteins in the HTC cell line XTC.UC1. Glutathione peroxidase and thioredoxin reductase activity was found both in cell lysates and conditioned media of XTC.UC1 cells and was increased by Na(2)SeO(3). Western blot analysis demonstrated the presence of thioredoxin reductase both in cell lysates and conditioned media and of glutathione peroxidase 3 in conditioned media. Type I 5'-deiodinase, another selenoprotein that catalyzes thyroid hormone metabolism, was detectable only in cell lysates by enzyme assay and Western blot, and responded to stimulation by both Na(2)SeO(3) and retinoic acid. A selenoprotein P signal was detected in conditioned media by Western blot, but was not enhanced by Na(2)SeO(3) treatment. In situ hybridization revealed glutathione peroxidase mRNAs in HTC specimen; glutathione peroxidase 3 mRNA levels were reduced. These data suggest adequate expression and Se-dependent regulation of a couple of selenoproteins involved in antioxidant defense and thyroid hormone metabolism in XTC.UC1 cells, so far giving no evidence of a role of these proteins in the pathogenesis of HTCs.
Collapse
Affiliation(s)
- Marianne Menth
- Abteilung für Molekulare Innere Medizin und Klinische Forschergruppe der Medizinischen Poliklinik, Universität Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Ambroziak M, Pachucki J, Chojnowski K, Wiechno W, Nauman J, Nauman A. Pax-8 expression correlates with type II 5' deiodinase expression in thyroids from patients with Graves' disease. Thyroid 2003; 13:141-8. [PMID: 12699588 DOI: 10.1089/105072503321319440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Transcription factors TTF-1 and Pax-8 control the expression of thyroid-specific genes crucial for thyroid function. It has been postulated that they may play a role in thyrotropin (TSH)-mediated augmentation of gene expression observed in some thyroid diseases including Grave's hyperthyroidism. Recently, we and others described the expression of two genes participating in thyroid hormone metabolism type I and type II deiodinase (D1 and D2, respectively) that are upregulated by TSH, although the mechanisms responsible for this effect are likely to be different. The aim of this study was to investigate whether there is a correlation between TTF-1 and Pax-8 mRNA levels and type I or type II 5' deiodinases expression in Graves' disease. D1 activity and mRNA level, as well as D2 activity and mRNA level, were significantly increased in Graves' disease in comparison to control tissues. D1, but not D2, activity correlated with its mRNA level in Graves' disease and toxic multinodular goitre. The TTF-1 mRNA level was not different between Graves' disease and control thyroids and no correlation between TTF-1 mRNA level and either D1 or D2 mRNA levels were found. The Pax-8 mRNA level was significantly increased in Graves' disease in comparison to control tissues and correlated with D2, but not D1, mRNA levels among all investigated groups of tissues. Our data suggest that transcription factor Pax-8 could be involved in the upregulation of D2 expression in the thyroid of Graves' patients.
Collapse
Affiliation(s)
- Michał Ambroziak
- Department of Biochemistry, Medical Centre of Postgraduate Education, Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
35
|
Tannahill LA, Visser TJ, McCabe CJ, Kachilele S, Boelaert K, Sheppard MC, Franklyn JA, Gittoes NJL. Dysregulation of iodothyronine deiodinase enzyme expression and function in human pituitary tumours. Clin Endocrinol (Oxf) 2002; 56:735-43. [PMID: 12072042 DOI: 10.1046/j.1365-2265.2002.01541.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Thyroid hormones (THs) perform essential roles in pituitary function. They regulate anterior pituitary hormone secretion and are also key determinants of pituitary cell proliferation and differentiation. The critical role of deiodinase enzymes, which serve as prereceptor regulators of TH action, remains largely unexplored. Three deiodinase enzymes metabolize active and inactive THs and thereby determine tissue concentrations of the biologically active ligand, tri-iodothyronine (T3). We hypothesized that aberrant expression of deiodinase enzymes and/or altered enzyme activity in pituitary tumours may change tissue concentrations of THs and influence their growth and secretory characteristics. STUDY DESIGN AND PATIENTS We studied 105 pituitary tumours and 10 normal pituitaries for expression of deiodinase enzyme mRNAs encoding types 1 (D1), 2 (D2) and 3 (D3) using real-time RT-PCR. Enzyme activity data from 20 pituitary samples were also obtained. RESULTS Pituitary tumours expressed significantly increased D3 mRNA (6.5-fold, P < 0.0005) compared with normal pituitaries. D2 mRNA was also increased 2.6-fold (P = 0.005) in pituitary tumours compared with normals. The rare TSH-secreting pituitary tumour subtype expressed a 13.1-fold excess of D3 mRNA and reduced D2 mRNA (0.1-fold of normal pituitaries). D2 mRNA expression in ACTH-secreting tumours was similarly reduced to 0.1-fold that in normal pituitaries. CONCLUSIONS Pituitary adenomas express abnormal levels of deiodinase enzymes compared to normal pituitaries. These abnormalities may have functional consequences on pituitary tumour growth. In the case of TSH-secreting pituitary adenomas, the observed pattern of deiodinase mRNA expression may explain the 'resistance' of this tumour type to TH feedback.
Collapse
Affiliation(s)
- L A Tannahill
- Division of Medical Sciences, University of Birmingham, Queen Elizabeth Hospital, Edgbaston, UK
| | | | | | | | | | | | | | | |
Collapse
|