1
|
Zito G, Coppola A, Pizzolanti G, Giordano C. Heterogeneity of Stem Cells in the Thyroid. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:81-93. [PMID: 31487020 DOI: 10.1007/978-3-030-24108-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Identification of thyroid stem cells in the past few years has made important contributions to our understanding of the cellular and molecular mechanisms that induce tissue regeneration and repair. Embryonic stem (ES) cells and induced-pluripotent stem cells have been used to establish reliable protocols to obtain mature thyrocytes and functional follicles for the treatment of thyroid diseases in mice. In addition, the discovery of resident thyroid progenitor cells, along with other sources of stem cells, has defined in detail the mechanisms responsible for tissue repair upon moderate or severe organ injury.In this chapter, we highlight in detail the current state of research on thyroid stem cells by focusing on (1) the description of the first experiments performed to obtain thyroid follicles from embryonic stem cells, (2) the identification of resident stem cells in the thyroid gland, and (3) the definition of the current translational in vivo and in vitro models used for thyroid tissue repair and regeneration.
Collapse
Affiliation(s)
- Giovanni Zito
- Biomedical Department of Internal and Specialist Medicine (DI.BI.MIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, University of Palermo, Palermo, Italy.,Advanced Technologies Network (ATeN) Center, Laboratory of Stem Cells and Cellular Cultures, University of Palermo, Palermo, Italy
| | - Antonina Coppola
- Biomedical Department of Internal and Specialist Medicine (DI.BI.MIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, University of Palermo, Palermo, Italy.,Advanced Technologies Network (ATeN) Center, Laboratory of Stem Cells and Cellular Cultures, University of Palermo, Palermo, Italy
| | - Giuseppe Pizzolanti
- Biomedical Department of Internal and Specialist Medicine (DI.BI.MIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, University of Palermo, Palermo, Italy.,Advanced Technologies Network (ATeN) Center, Laboratory of Stem Cells and Cellular Cultures, University of Palermo, Palermo, Italy
| | - Carla Giordano
- Biomedical Department of Internal and Specialist Medicine (DI.BI.MIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, University of Palermo, Palermo, Italy. .,Advanced Technologies Network (ATeN) Center, Laboratory of Stem Cells and Cellular Cultures, University of Palermo, Palermo, Italy.
| |
Collapse
|
2
|
EMT/MET at the Crossroad of Stemness, Regeneration and Oncogenesis: The Ying-Yang Equilibrium Recapitulated in Cell Spheroids. Cancers (Basel) 2017; 9:cancers9080098. [PMID: 28758926 PMCID: PMC5575601 DOI: 10.3390/cancers9080098] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/20/2017] [Accepted: 07/26/2017] [Indexed: 12/21/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is an essential trans-differentiation process, which plays a critical role in embryonic development, wound healing, tissue regeneration, organ fibrosis, and cancer progression. It is the fundamental mechanism by which epithelial cells lose many of their characteristics while acquiring features typical of mesenchymal cells, such as migratory capacity and invasiveness. Depending on the contest, EMT is complemented and balanced by the reverse process, the mesenchymal-to-epithelial transition (MET). In the saving economy of the living organisms, the same (Ying-Yang) tool is integrated as a physiological strategy in embryonic development, as well as in the course of reparative or disease processes, prominently fibrosis, tumor invasion and metastasis. These mechanisms and their related signaling (e.g., TGF-β and BMPs) have been effectively studied in vitro by tissue-derived cell spheroids models. These three-dimensional (3D) cell culture systems, whose phenotype has been shown to be strongly dependent on TGF-β-regulated EMT/MET processes, present the advantage of recapitulating in vitro the hypoxic in vivo micro-environment of tissue stem cell niches and their formation. These spheroids, therefore, nicely reproduce the finely regulated Ying-Yang equilibrium, which, together with other mechanisms, can be determinant in cell fate decisions in many pathophysiological scenarios, such as differentiation, fibrosis, regeneration, and oncogenesis. In this review, current progress in the knowledge of signaling pathways affecting EMT/MET and stemness regulation will be outlined by comparing data obtained from cellular spheroids systems, as ex vivo niches of stem cells derived from normal and tumoral tissues. The mechanistic correspondence in vivo and the possible pharmacological perspective will be also explored, focusing especially on the TGF-β-related networks, as well as others, such as SNAI1, PTEN, and EGR1. This latter, in particular, for its ability to convey multiple types of stimuli into relevant changes of the cell transcriptional program, can be regarded as a heterogeneous "stress-sensor" for EMT-related inducers (growth factor, hypoxia, mechano-stress), and thus as a therapeutic target.
Collapse
|
3
|
Chimenti I, Pagano F, Angelini F, Siciliano C, Mangino G, Picchio V, De Falco E, Peruzzi M, Carnevale R, Ibrahim M, Biondi‐Zoccai G, Messina E, Frati G. Human Lung Spheroids as In Vitro Niches of Lung Progenitor Cells with Distinctive Paracrine and Plasticity Properties. Stem Cells Transl Med 2016; 6:767-777. [PMID: 28297570 PMCID: PMC5442776 DOI: 10.5966/sctm.2015-0374] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 08/09/2016] [Indexed: 02/05/2023] Open
Abstract
Basic and translational research on lung biology has discovered multiple progenitor cell types, specialized or facultative, responsible for turnover, renewal, and repair. Isolation of populations of resident lung progenitor cells (LPCs) has been described by multiple protocols, and some have been successfully applied to healthy human lung tissue. We aimed at understanding how different cell culture conditions may affect, in vitro, the phenotype of LPCs to create an ideal niche‐like microenvironment. The influence of different substrates (i.e., fibronectin, gelatin, laminin) and the impact of a three‐dimensional/two‐dimensional (3D/2D) culture switch on the biology of LPCs isolated as lung spheroids (LSs) from normal adult human lung biopsy specimens were investigated. We applied a spheroid culture system as the selective/inductive step for progenitor cell culture, as described in many biological systems. The data showed a niche‐like proepithelial microenvironment inside the LS, highly sensitive to the 3D culture system and significantly affecting the phenotype of adult LPCs more than culture substrate. LSs favor epithelial phenotypes and LPC maintenance and contain cells more responsive to specific commitment stimuli than 2D monolayer cultures, while secreting a distinctive set of paracrine factors. We have shown for the first time, to our knowledge, how culture as 3D LSs can affect LPC epithelial phenotype and produce strong paracrine signals with a distinctive secretomic profile compared with 2D monolayer conditions. These findings suggest novel approaches to maintain ex vivo LPCs for basic and translational studies. Stem Cells Translational Medicine2017;6:767–777
Collapse
Affiliation(s)
- Isotta Chimenti
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Francesca Pagano
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Francesco Angelini
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Camilla Siciliano
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Giorgio Mangino
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Vittorio Picchio
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Elena De Falco
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Mariangela Peruzzi
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Roberto Carnevale
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
| | - Mohsen Ibrahim
- Department of Medical‐Surgical Science and Translational Medicine, “La Sapienza” University of Rome, Rome, Italy
| | - Giuseppe Biondi‐Zoccai
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
- Department of AngioCardioNeurology, Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli, Italy
| | - Elisa Messina
- Department of Pediatrics and Neuropsychiatry, “Umberto I” Hospital, Rome, Italy
| | - Giacomo Frati
- Department of Medical‐Surgical Sciences and Biotechnology, “Sapienza” University of Rome, Rome, Italy
- Department of AngioCardioNeurology, Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli, Italy
| |
Collapse
|
4
|
Yu T, Qing Q, Deng N, Min XH, Zhao LN, Li JY, Xia ZS, Chen QK. CXCR4 positive cell-derived Pdx1-high/Shh-low cells originated from embryonic stem cells improve the repair of pancreatic injury in mice. Cell Biol Int 2015; 39:995-1006. [PMID: 25820869 DOI: 10.1002/cbin.10470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/14/2015] [Accepted: 03/18/2015] [Indexed: 01/05/2023]
Abstract
Treatments for pancreatic injuries have been significantly improved recently, but full recovery of pancreatic function remains difficult. Embryonic stem cells have great potentialities for self-renewal and multiple differentiations. In this study, we explored an approach to induce the differentiation of pancreatic progenitor cells from embryonic stem cells in vitro. Male mouse embryonic stem cells were cultured by the hanging-drop method to form embryoid bodies. The definitive endoderm marked by CXCR4 in embryoid bodies was sorted by magnetic activated cell sorting and subsequently administrated with b-FGF, exendin-4, and cyclopamine to induce the differentiation of putative pancreatic progenitor cells, which was monitored by Pdx1, and Shh expressions. The putative pancreatic progenitor cells were transplanted into female BALB/c mice with pancreatitis induced by L-Arginine. Male donor cells were located by detecting sex-determining region of Y-chromosome DNA. Definitive endoderm cells (CXCR4(+) cells) were sorted from 5-day embryoid bodies. After 3-day administration with b-FGF, exendin-4, and cyclopamine, Pdx1-high/Shh-low cells were differentiated from CXCR4(+) cells. These cells developed into more amylase-secreted cells in vitro and could specifically reside in the damaged pancreas acinar area in mice with acute pancreatitis to enhance the regeneration. The putative pancreatic progenitor cells (Pdx1-high/Shh-low cells) derived from mouse embryonic stem cells through the administration of b-FGF, exendin-4, and cyclopamine on the CXCR4(+) cells in vitro could improve the regeneration of injured pancreatic acini in vivo.
Collapse
Affiliation(s)
- Tao Yu
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qing Qing
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Na Deng
- Department of Gastroenterology, Yuebei People's Hospital, Shaoguan, Guangdong, People's Republic of China
| | - Xiao-Hui Min
- Department of Infectious Disease, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Li-Na Zhao
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jie-Yao Li
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhong-Sheng Xia
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qi-Kui Chen
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
5
|
Wang H, Rana S, Giese N, Büchler MW, Zöller M. Tspan8, CD44v6 and alpha6beta4 are biomarkers of migrating pancreatic cancer-initiating cells. Int J Cancer 2013; 133:416-26. [PMID: 23338841 DOI: 10.1002/ijc.28044] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/02/2013] [Indexed: 12/14/2022]
Abstract
Pancreatic adenocarcinoma (PaCa) being the deadliest cancer is partly due to early metastatic spread. Thus, we searched for PaCa-initiating cell (PaCIC) markers with emphasis on markers contributing to metastatic progression. PaCIC were enriched from long-term and freshly established lines by repeated selection for spheroid or holoclone growth in advance of evaluating PaCIC markers. Sphere and holoclone formation steeply increased by recloning and remained stable thereafter. Cells not forming spheres or holoclones died on recloning. PaCIC enrichment in spheres and holoclones was accompanied by increased motility, anchorage independence and upregulated CXCR4 expression. After subcutaneous injection in NOD/SCID mice tumorigenicity and, impressively, recovery of metastasizing tumor cells in peripheral blood, spleen, bone marrow, lung and pancreas was strongly increased in spheres and holoclones. PaCIC enrichment in spheres and holoclones was accompanied, besides CXCR4, by upregulated CD44v6, alpha6beta4, weakly CD133 and tetraspanin Tspan8 expression. Notably, CD44v6, alpha6beta4, CXCR4 and Tspan8 expressing PaCa cells had a growth advantage in vivo and became dominating in migrating and in distant organs settled tumor cells. This is the first report showing that CD44v6, alpha6beta4, Tspan8 and CXCR4 are biomarkers in PaCIC allowing for long-term survival, expansion and migration in immunocompromised mice. The stability of the percentage of PaCIC in long-term and freshly established lines after a roughly 8-fold enrichment by cloning indicates PaCIC, though required for long-term survival, concomitantly depending on support by non-CIC.
Collapse
Affiliation(s)
- Haobin Wang
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
6
|
Chimenti I, Gaetani R, Barile L, Forte E, Ionta V, Angelini F, Frati G, Messina E, Giacomello A. Isolation and expansion of adult cardiac stem/progenitor cells in the form of cardiospheres from human cardiac biopsies and murine hearts. Methods Mol Biol 2012; 879:327-38. [PMID: 22610568 DOI: 10.1007/978-1-61779-815-3_19] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The successful isolation and ex vivo expansion of resident cardiac stem/progenitor cells from human heart biopsies has allowed us to study their biological characteristics and their applications in therapeutic approaches for the repair of ischemic/infarcted heart, the preparation of tissue-engineered cardiac grafts and, possibly, the design of cellular kits for drug screening applications. From the first publication of the original method in 2004, several adjustments and slight changes have been introduced to optimize and adjust the procedure to the evolving experimental and translational needs. Moreover, due to the wide applicability of such a method (which is based on the exploitation of intrinsic functional properties of cells with regenerative properties that are present in most tissues), the key steps of this procedure have been used to derive several kinds of tissue-specific adult stem cells for preclinical or clinical purposes.In order to define the original procedure, complete with the up-to-date modifications introduced through the years, an exhaustive description of the current protocol is performed in this chapter, with particular attention in highlighting critical steps and troubleshoots. The procedure described here consists of modular steps, that could be employed to derive cells from any kind of tissue biopsy, and needs to be considered the gold standard of all the so-called "explant methods" or "cardiosphere methods," and it represents a milestone in the clinical translation of autologous cell therapy.
Collapse
Affiliation(s)
- Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnology, Sapienza University of Rome, Latina, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Continuing advances in stem cell science have prompted researchers to envisage the potential application of stem cells for the management of several debilitating disorders, thus raising the expectations of transplant clinicians. In particular, in order to find a source of adult stem cells alternative to embryonic stem cells (ESCs) for the exploration of novel strategies in regenerative medicine, researchers have attempted to identify and characterise adult stem/progenitor cells resident in compact organs, since these populations appear to be responsible for physiological tissue renewal and regeneration after injury. In particular, recent studies have also reported evidence for the existence of adult stem/progenitor cell populations in both mouse and human thyroids. Here, I provide a review of published findings about ESC lines capable of generating thyroid follicular cells, thyroid somatic stem cells and cancer stem cells within the thyroid. The three subjects are analysed by also considering the criticism recently raised against their existence and potential utility. I comment specifically on the significance of resident thyroid stem cells in the developmental biology of the gland and their putative role in the pathogenesis of thyroid disorders and on the protocols employed for their identification. I finally provide my opinion on whether from basic science results obtained to date it is possible to extrapolate any convincing basic for future treatment of thyroid disorders.
Collapse
Affiliation(s)
- Alessandra Fierabracci
- Research Laboratories, Ospedale Pediatrico Bambino Gesù Research Institute, Children's Hospital Bambino Gesù, Piazza S. Onofrio 4, Rome, Italy.
| |
Collapse
|
8
|
In vivo generation of beta-cell-like cells from CD34(+) cells differentiated from human embryonic stem cells. Exp Hematol 2010; 38:516-525.e4. [PMID: 20227460 DOI: 10.1016/j.exphem.2010.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 02/24/2010] [Accepted: 03/03/2010] [Indexed: 12/17/2022]
Abstract
OBJECTIVE CD34(+) cells, present within the bone marrow, have previously been shown to possess pancreatic endocrine potential. Based on this observation, we explored the capacity of CD34(+) cells derived in culture from the differentiation of human embryonic stem cells (hESC), for their in vivo pancreatic endocrine capacity. MATERIALS AND METHODS Sheep were transplanted with hESC-derived CD34(+) cells, as well as nonsorted differentiated cultures. Transplantations were carried out with in utero intraperitoneal injections prior to development of the immune system in the fetus so that tolerance toward foreign antigens was acquired during gestation and persisted in the adult. RESULTS All cell populations that were tested demonstrated human cellular activity and long-term presence up to 5 years. However, the in vivo beta-cell-like activity achieved from the transplantation of the sorted CD34(+) cell population was not augmented by transplanting the entire cell population from which the CD34(+) cells were isolated. Human DNA and insulin messenger RNA were detected in sheep pancreases. An average of 1.51 ng/mL human C-peptide was detected in serum from eight animals transplanted with differentiated cell populations and assayed up to 55 months posttransplantation. Transplantation of as few as 23,500 cells resulted in long-term sustainable beta-cell-like activity. Teratomas were absent in the transplanted animals. CONCLUSION Our data suggest that hESC-derived CD34(+) cells have a potential for long-term in vivo endocrine cellular activity that could prove useful in regenerative medicine. Because the same cell population has previously been shown to contain hematopoietic potential, it could be used for the induction of immunological tolerance and bone marrow chimerism prior to cellular therapy for diabetes.
Collapse
|