1
|
Falah G, Kurolap A, Paperna T, Ekhilevitch N, Moustafa N, Damouny-Naoum N, Amir Y, Sharvit L, Moghrabi R, Hassoun G, Fares F, Baris Feldman H, Atzmon G. The d3GHR carrier epigenome in Druze clan longevity. Sci Rep 2024; 14:21419. [PMID: 39271799 PMCID: PMC11399368 DOI: 10.1038/s41598-024-72240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
The Druze are a distinct group known for their close community, traditions, and consanguineous marriages, dating back to the eleventh century. This practice has led to unique genetic variations, impacting both pathology and gene-associated phenotypes. Some Druze clans, particularly those with exceptional long-lived family heads (ELLI), attracted attention. Given that the bulk of these ELLI were men, the d3GHR polymorphism was the first obvious possibility. Among the 73 clan members, 8.2% carried the d3GHR isoform, with nearly 11% being males. There was a significant age-related increase (p = 0.04) in this isoform among males, leading to examination of potential environmental mediators affecting gene regulation among these carriers during life (namely epigenetic). We focused on DNA methylation due to its crucial role in gene regulation, development, and disease progression. We analyzed DNA samples from 14 clan members with different GHR genotypes, finding a significant (p < 0.05) negative correlation between DNA methylation levels and age. Employing a biological age clock, we observed a significant + 4.229 years favoring the d3GHR group over the WT and heterozygous groups. In conclusion, this study highlights the advantage of d3GHR carriers among this unique Druze clan and underscores the importance of genotype-environment interaction in epigenetic regulation and its impact on health.
Collapse
Affiliation(s)
- Ghadeer Falah
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Alina Kurolap
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tamar Paperna
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Nina Ekhilevitch
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Nivin Moustafa
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | | | - Yam Amir
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Lital Sharvit
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Rihan Moghrabi
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Gamal Hassoun
- Institute of Allergy, Clinical Immunology & AIDS, Rambam Health Care Campus, Haifa, Israel
| | - Fuad Fares
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Hagit Baris Feldman
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Atzmon
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Chiloiro S, Costanza F, Giampietro A, Infante A, Mattogno PP, Angelini F, Gullì C, Lauretti L, Rigante M, Olivi A, De Marinis L, Doglietto F, Bianchi A, Pontecorvi A. GH receptor polymorphisms guide second-line therapies to prevent acromegaly skeletal fragility: preliminary results of a pilot study. Front Endocrinol (Lausanne) 2024; 15:1414101. [PMID: 39280003 PMCID: PMC11395836 DOI: 10.3389/fendo.2024.1414101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/07/2024] [Indexed: 09/18/2024] Open
Abstract
Background Skeletal fragility is characterized by increased frequency of vertebral fractures (VFs) in acromegaly. Several trials were conducted to identify modifiable risk factors and predictors of VFs, with limited data on the prognostic role of GH receptor (GHR) isoforms. In this study, we investigated the potential role of GHR polymorphism on the occurrence of incidental VFs (i-VFs), in patients treated with second-line medical therapies. Methods A longitudinal, retrospective, observational study was conducted on a cohort of 45 acromegalic patients not-responsive to first-generation somatostatin receptor ligands (fg-SRLs) and treated with GHR antagonist (Pegvisomant) or with the second-generation SRLs (Pasireotide long-acting release). Results Second line treatments were Pegvisomant plus fg-SRLs in 26 patients and Pasireotide LAR in 19 patients. From the group treated with fg-SRLs+Peg-V, the fl-GHR isoform was identified in 18 patients (69.2%) and the d3-GHR isoform in 8 patients (30.8%). I-VFs arose exclusively in fl-GHR isoform carriers (p=0.039). From the group treated with Pasireotide LAR, the fl-GHR isoform was identified in 11 patients (57.9%), and the d3-GHR isoform in 8 patients (42.1%). I-VFs arose exclusively in d3-GHR isoform carriers (p=0.018). Patients with fl-GHR isoform had a higher risk for i-VFs if treated with fg-SRL+Peg-V (OR: 1.6 95%IC: 1.1-2.3, p=0.04), and a lower risk if treated with Pasi-LAR (OR: 0.26 IC95%: 0.11-0.66, p=0.038). Conclusions Our data support a predictive role of the GHR isoforms for the occurrence of i-VFs in acromegalic patients treated with second-line drugs, tailored to the individual patient. The knowledge of the GHR polymorphism may facilitate the choice of second-line therapies, improving the therapeutic approach, in the context of personalized medicine.
Collapse
Affiliation(s)
- Sabrina Chiloiro
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Flavia Costanza
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Antonella Giampietro
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Amato Infante
- Dipartimento di Diagnostica per Immagini e radioterapia oncologica, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Pier Paolo Mattogno
- Dipartimento di Neurochirugia, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
- Dipartimento di Science dell’invecchiamento, neuroscienze, delle scienze del capo-collo, ed ortopediche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Flavia Angelini
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Consolato Gullì
- Dipartimento di Diagnostica per Immagini e radioterapia oncologica, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Liverana Lauretti
- Dipartimento di Neurochirugia, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
- Dipartimento di Science dell’invecchiamento, neuroscienze, delle scienze del capo-collo, ed ortopediche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mario Rigante
- Unità di Otorinologingoiatria, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Alessandro Olivi
- Dipartimento di Neurochirugia, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
- Dipartimento di Science dell’invecchiamento, neuroscienze, delle scienze del capo-collo, ed ortopediche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Laura De Marinis
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Francesco Doglietto
- Dipartimento di Neurochirugia, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
- Dipartimento di Science dell’invecchiamento, neuroscienze, delle scienze del capo-collo, ed ortopediche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Bianchi
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Alfredo Pontecorvi
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| |
Collapse
|
3
|
Falah G, Sharvit L, Atzmon G. The Exon 3-Deleted Growth Hormone Receptor (d3GHR) Polymorphism-A Favorable Backdoor Mechanism for the GHR Function. Int J Mol Sci 2023; 24:13908. [PMID: 37762211 PMCID: PMC10531306 DOI: 10.3390/ijms241813908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Growth hormone (GH) is a peptide hormone that plays a crucial role in controlling growth, development, and lifespan. Molecular regulation of GH is accomplished via the GH receptor (GHR), which is the main factor influencing human development and is essential to optimal functioning of the GH/IGF-I axis. Two GHR isoforms have been studied, according to the presence (flGHR) or absence (d3GHR) of exon 3. The d3GHR isoform, which lacks exon 3 has recently been related to longevity; individuals carrying this isoform have higher receptor activity, improved signal transduction, and alterations in the treatment response and efficacy compared with those carrying the wild type (WT) isoform (flGHR). Further, studies performed in patients with acromegaly, Prader-Willi syndrome, Turner syndrome, small for gestational age (SGA), and growth hormone deficiency (GHD) suggested that the d3GHR isoform may have an impact on the relationship between GH and IGF-I levels, height, weight, BMI, and other variables. Other research, however, revealed inconsistent results, which might have been caused by confounding factors, including limited sample sizes and different experimental methods. In this review, we lay out the complexity of the GHR isoforms and provide an overview of the major pharmacogenetic research conducted on this ongoing and unresolved subject.
Collapse
Affiliation(s)
- Ghadeer Falah
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (G.F.); (L.S.)
| | - Lital Sharvit
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (G.F.); (L.S.)
| | - Gil Atzmon
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (G.F.); (L.S.)
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Chiloiro S, Bianchi A, Giampietro A, Pontecorvi A, Raverot G, Marinis LD. Second line treatment of acromegaly: Pasireotide or Pegvisomant? Best Pract Res Clin Endocrinol Metab 2022; 36:101684. [PMID: 35931640 DOI: 10.1016/j.beem.2022.101684] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acromegaly is a chronic disease with an increased mortality in case of persistently active disease. The treatment of acromegaly is mainly based on the surgical resection of the GH secreting pituitary tumor and, in cases with persistent disease, on the medical therapy with first generation somatostatin analogues (first gen-SSAs). Data from national registries, meta-analysis and epidemiology studies showed that 24%-65% of acromegaly patients treated with first gen-SSA did not reach the control of disease, requiring second line therapies, as the second gen-SSAs and the GH receptor antagonist. According to the high efficacy of these treatments and their molecular mechanisms of action, the choice of second line therapies should be personalized. In this review, we summarize the evidence on clinical, molecular and morphological aspects that may predict the response to second line therapies, in order to integrate and translate in the clinical practice for a patient-tailored therapeutic approach.
Collapse
Affiliation(s)
- Sabrina Chiloiro
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo A. Gemelli, number 8, Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Antonio Bianchi
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo A. Gemelli, number 8, Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonella Giampietro
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo A. Gemelli, number 8, Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alfredo Pontecorvi
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo A. Gemelli, number 8, Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gérald Raverot
- Fédération d'endocrinologie, Centre de référence Maladies Rares Hypophysaires (HYPO), Hospices Civils de Lyon, Groupement hospitalier Est, Bron, France; Université Lyon 1, Lyon, France; Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, 69372, Lyon, France
| | - Laura De Marinis
- Pituitary Unit, Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo A. Gemelli, number 8, Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
5
|
Chhabra Y, Lee CMM, Müller AF, Brooks AJ. GHR signalling: Receptor activation and degradation mechanisms. Mol Cell Endocrinol 2021; 520:111075. [PMID: 33181235 DOI: 10.1016/j.mce.2020.111075] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Growth hormone (GH) actions via initiating cell signalling through the GH receptor (GHR) are important for many physiological processes, in addition to its well-known role in regulating growth. The activation of JAK-STAT signalling by GH is well characterized, however knowledge on GH activation of SRC family kinases (SFKs) is still limited. In this review we summarise the collective knowledge on the activation, regulation, and downstream signalling of GHR. We highlight studies on GH activation of SFKs and the important outcome of this signalling pathway with a focus on the different degradation mechanisms that can regulate GHR availability since this is an area that warrants further study considering its role in tumour progression.
Collapse
Affiliation(s)
- Yash Chhabra
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21231, USA
| | - Christine M M Lee
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Alexandra Franziska Müller
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Andrew J Brooks
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
6
|
Chen G, Chen J, Wu J, Ren X, Li L, Lu S, Cheng T, Tan L, Liu M, Luo Q, Liang S, Nie Q, Zhang X, Luo W. Integrative Analyses of mRNA Expression Profile Reveal SOCS2 and CISH Play Important Roles in GHR Mutation-Induced Excessive Abdominal Fat Deposition in the Sex-Linked Dwarf Chicken. Front Genet 2021; 11:610605. [PMID: 33519913 PMCID: PMC7841439 DOI: 10.3389/fgene.2020.610605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/30/2020] [Indexed: 01/28/2023] Open
Abstract
Sex-linked dwarf (SLD) chicken, which is caused by a recessive mutation of the growth hormone receptor (GHR), has been widely used in the Chinese broiler industry. However, it has been found that the SLD chicken has more abdominal fat deposition than normal chicken. Excessive fat deposition not only reduced the carcass quality of the broilers but also reduced the immunity of broilers to diseases. To find out the key genes and the precise regulatory pathways that were involved in the GHR mutation-induced excessive fat deposition, we used high-fat diet (HFD) and normal diet to feed the SLD chicken and normal chicken and analyzed the differentially expressed genes (DEGs) among the four groups. Results showed that the SLD chicken had more abdominal fat deposition and larger adipocytes size than normal chicken and HFD can promote abdominal fat deposition and induce adipocyte hypertrophy. RNA sequencing results of the livers and abdominal fats from the above chickens revealed that many DEGs between the SLD and normal chickens were enriched in fat metabolic pathways, such as peroxisome proliferator-activated receptor (PPAR) signaling, extracellular matrix (ECM)-receptor pathway, and fatty acid metabolism. Importantly, by constructing and analyzing the GHR-downstream regulatory network, we found that suppressor of cytokine signaling 2 (SOCS2) and cytokine-inducible SH2-containing protein (CISH) may involve in the GHR mutation-induced abdominal fat deposition in chicken. The ectopic expression of SOCS2 and CISH in liver-related cell line leghorn strain M chicken hepatoma (LMH) cell and immortalized chicken preadipocytes (ICP) revealed that these two genes can regulate fatty acid metabolism, adipocyte differentiation, and lipid droplet accumulation. Notably, overexpression of SOCS2 and CISH can rescue the hyperactive lipid metabolism and excessive lipid droplet accumulation of primary liver cell and preadipocytes that were isolated from the SLD chicken. This study found some genes and pathways involved in abdominal fat deposition of the SLD chicken and reveals that SOCS2 and CISH are two key genes involved in the GHR mutation-induced excessive fat deposition of the SLD chicken.
Collapse
Affiliation(s)
- Genghua Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jiahui Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jingwen Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xueyi Ren
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Limin Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Shiyi Lu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Tian Cheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Liangtian Tan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Manqing Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Qingbin Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Shaodong Liang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Bianchi A, Giampietro A, Tartaglione L, Chiloiro S, Gentilella R, Bima C, Anile C, Olivi A, Pontecorvi A, De Marinis L. Short- and long-term responsiveness to low dose growth hormone (GH) in adult GH deficiency: Role of GH receptor polymorphism. J Neuroendocrinol 2019; 31:e12692. [PMID: 30712287 DOI: 10.1111/jne.12692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 12/17/2018] [Accepted: 01/29/2019] [Indexed: 11/28/2022]
Abstract
In patients with growth hormone (GH) deficiency (GHD), low doses of recombinant human GH (rhGH) have a similar or better long-term clinical effect than higher doses. Pharmacogenetic studies suggest that GH receptor (GHR) polymorphism only influences some metabolic parameters. Nonetheless, there is no clear scientific evidence proving the effects of lower rhGH dose regimens on metabolic parameters. The aim of our prospective study was to evaluate the effects of GHR polymorphism in adult GHD patients treated with low rhGH dose during short- (6 and 12 months) and long-term (5 years) follow-up. Sixty-nine GHD adult patients were studied, before and during treatment with rhGH, using a standardised low-dose protocol calculated on the basis of body weight (0.01-0.03 mg kg-1 week-1 ) and monitored by an insulin-like growth factor (IGF)-I plasma assay, as well as anthropometric and metabolic parameters. The GHR genotype (flfl, fld3 or d3d3) was determined from the peripheral blood. d3-GHR carriers showed a more effective short- and long-term response to low rhGH dose with respect to low-density lipoprotein reduction, body composition and blood pressure (homozygous patients only); d3-GHR homozygosity is related to a significant IGF-I increase during short-term follow-up. Regression analysis demonstrated that rhGH dose, age at diagnosis and GHR genotype are the major determinants of IGF-I increase at 6 and 12 months of replacement therapy. The d3d3-GHR genotype may influence some metabolic effects during the short- and long-term follow-up of low rhGH dose and could be an independent determinant of the increase of IGF- I during short-term follow-up.
Collapse
Affiliation(s)
- Antonio Bianchi
- Pituitary Unit, Division of Endocrinology and Diabetes, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
| | - Antonella Giampietro
- Pituitary Unit, Division of Endocrinology and Diabetes, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
| | - Linda Tartaglione
- Pituitary Unit, Division of Endocrinology and Diabetes, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
| | - Sabrina Chiloiro
- Pituitary Unit, Division of Endocrinology and Diabetes, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
| | | | - Chiara Bima
- Pituitary Unit, Division of Endocrinology and Diabetes, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
| | - Carmelo Anile
- Division of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
| | - Alessandro Olivi
- Division of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
| | - Alfredo Pontecorvi
- Pituitary Unit, Division of Endocrinology and Diabetes, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
| | - Laura De Marinis
- Pituitary Unit, Division of Endocrinology and Diabetes, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome, Italy
| |
Collapse
|
8
|
Abstract
Growth hormone (GH) has a large number of metabolic effects, involving lipid and glucose homoeostasis, lean and fat mass. Growth hormone deficiency (GHD) is associated with a metabolic profile similar to the Metabolic Syndrome which is characterized by dyslipidemia, insulin resistance, haemostatic alterations, oxidative stress, and chronic inflammation. GH replacement treatment in GHD children improves these cardiovascular risk factors, while cessation of GH is associated with a deterioration of most of these risk factors. However, it is unclear whether the changes of these risk factors are associated with an increased risk of cardiovascular diseases especially after discontinuing GH treatment. GH treatment itself can lead to insulin resistance, which probably also influences the cardiovascular health status. Therefore, longitudinal studies with the primary outcome cardiovascular diseases are needed in GHD children. Furthermore, new approaches such as metabolomic studies might be helpful to understand the relationship between GHD, GH treatment, and cardiovascular diseases.
Collapse
Affiliation(s)
- Juliane Rothermel
- Department of Paediatric Endocrinology, Diabetes and Nutrition Medicine, Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Germany
| | - Thomas Reinehr
- Department of Paediatric Endocrinology, Diabetes and Nutrition Medicine, Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Germany.
| |
Collapse
|
9
|
Ramos-Leví AM, Bernabeu I, Sampedro-Núñez M, Marazuela M. Genetic Predictors of Response to Different Medical Therapies in Acromegaly. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 138:85-114. [PMID: 26940388 DOI: 10.1016/bs.pmbts.2015.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the era of predictive medicine, management of diseases is evolving into a more personal and individualized approach, as more data are available regarding clinical, biochemical, radiological, molecular, histopathological, and genetic aspects. In the particular setting of acromegaly, which is a rare, chronic, debilitating, and disfiguring disease, an optimized approach deems even more necessary, especially because of an associated increased morbidity and mortality, the impact on patients' quality of life, and the increased cost of frequently necessary life-long treatments. In this paper, we review the available studies that address potential genetic influences on acromegaly, their role in the outcome, and response to treatments, as well as their contribution to the risk of developing side effects. We focus mainly on pharmacogenetic factors involved during treatment with dopamine agonists, somatostatin analogs, and pegvisomant. Specifically, mutations in dopamine receptors, somatostatin receptors, growth hormone receptors, and metabolic pathways involved in growth hormone action; polymorphisms in the insulin-like growth factor and the insulin-like growth factor binding proteins; and polymorphisms in other genes that may determine differences in the frequency of developing adverse events.
Collapse
Affiliation(s)
- Ana M Ramos-Leví
- Department of Endocrinology and Nutrition, Hospital Universitario la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ignacio Bernabeu
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario de Santiago de Compostela, Servicio Gallego de Salud (SERGAS); Universidad de Santiago de Compostela, La Coruña, Spain
| | - Miguel Sampedro-Núñez
- Department of Endocrinology and Nutrition, Hospital Universitario la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mónica Marazuela
- Department of Endocrinology and Nutrition, Hospital Universitario la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
10
|
Chen Z, Yang S, He Y, Song C, Liu Y. Effect of sericin on diabetic hippocampal growth hormone/insulin-like growth factor 1 axis. Neural Regen Res 2014; 8:1756-64. [PMID: 25206472 PMCID: PMC4145953 DOI: 10.3969/j.issn.1673-5374.2013.19.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/07/2013] [Indexed: 01/23/2023] Open
Abstract
Previous studies have shown that sericin extracted from silk cocoon significantly reduces blood glucose levels and protects the nervous system against diabetes mellitus. In this study, a rat type 2 diabetes mellitus model was established by intraperitoneal injection of 25 mg/kg streptozotocin for 3 successive days, following which the rats were treated with sericin for 35 days. After treatment, the blood glucose levels of the diabetic rats decreased significantly, the growth hormone level in serum and its expression in the hippocampus decreased significantly, while the insulin-like growth factor-1 level in serum and insulin-like growth factor-1 and growth hormone receptor expression in the hippocampus increased significantly. The experimental findings indicate that sericin improves disorders of the growth hormone/insulin-like growth factor 1 axis to alleviate hippocampal damage in diabetic rats.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Human Anatomy, Chengde Medical College, Chengde 067000, Hebei Province, China
| | - Songhe Yang
- Department of Human Anatomy, Chengde Medical College, Chengde 067000, Hebei Province, China
| | - Yaqiang He
- Department of Human Anatomy, Chengde Medical College, Chengde 067000, Hebei Province, China
| | - Chengjun Song
- Department of Human Anatomy, Chengde Medical College, Chengde 067000, Hebei Province, China
| | - Yongping Liu
- Department of Biochemistry, Chengde Medical College, Chengde 067000, Hebei Province, China
| |
Collapse
|
11
|
Prodam F, Savastio S, Genoni G, Babu D, Giordano M, Ricotti R, Aimaretti G, Bona G, Bellone S. Effects of growth hormone (GH) therapy withdrawal on glucose metabolism in not confirmed GH deficient adolescents at final height. PLoS One 2014; 9:e87157. [PMID: 24498035 PMCID: PMC3907518 DOI: 10.1371/journal.pone.0087157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/18/2013] [Indexed: 11/18/2022] Open
Abstract
CONTEXT OBJECTIVE Growth hormone deficiency (GHD) is associated with insulin resistance and diabetes, in particular after treatment in children and adults with pre-existing metabolic risk factors. Our aims were. i) to evaluate the effect on glucose metabolism of rhGH treatment and withdrawal in not confirmed GHD adolescents at the achievement of adult height; ii) to investigate the impact of GH receptor gene genomic deletion of exon 3 (d3GHR). DESIGN SETTING We performed a longitudinal study (1 year) in a tertiary care center. METHODS 23 GHD adolescent were followed in the last year of rhGH treatment (T0), 6 (T6) and 12 (T12) months after rhGH withdrawal with fasting and post-OGTT evaluations. 40 healthy adolescents were used as controls. HOMA-IR, HOMA%β, insulinogenic (INS) and disposition (DI) indexes were calculated. GHR genotypes were determined by multiplex PCR. RESULTS In the group as a whole, fasting insulin (p<0.05), HOMA-IR (p<0.05), insulin and glucose levels during OGTT (p<0.01) progressively decreased from T0 to T12 becoming similar to controls. During rhGH, a compensatory insulin secretion with a stable DI was recorded, and, then, HOMAβ and INS decreased at T6 and T12 (p<0.05). By evaluating the GHR genotype, nDel GHD showed a decrease from T0 to T12 in HOMA-IR, HOMAβ, INS (p<0.05) and DI. Del GHD showed a gradual increase in DI (p<0.05) and INS with a stable HOMA-IR and higher HDL-cholesterol (p<0.01). CONCLUSIONS In not confirmed GHD adolescents the fasting deterioration in glucose homeostasis during rhGH is efficaciously coupled with a compensatory insulin secretion and activity at OGTT. The presence of at least one d3GHR allele is associated with lower glucose levels and higher HOMA-β and DI after rhGH withdrawal. Screening for the d3GHR in the pediatric age may help physicians to follow and phenotype GHD patients also by a metabolic point of view.
Collapse
Affiliation(s)
- Flavia Prodam
- Division of Pediatrics, Department of Health Sciences, University of “Piemonte Orientale Amedeo Avogadro”, Novara, Italy
- Endocrinology, Department of Clinical and Experimental Medicine, University of Piemonte Orientale, Novara, Italy
- I.C.O.S. (Interdisciplinary Center for Obesity Study), Novara, Italy
- * E-mail:
| | - Silvia Savastio
- Division of Pediatrics, Department of Health Sciences, University of “Piemonte Orientale Amedeo Avogadro”, Novara, Italy
| | - Giulia Genoni
- Division of Pediatrics, Department of Health Sciences, University of “Piemonte Orientale Amedeo Avogadro”, Novara, Italy
| | - Deepak Babu
- Laboratory of Human Genetics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Mara Giordano
- I.C.O.S. (Interdisciplinary Center for Obesity Study), Novara, Italy
- Laboratory of Human Genetics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Roberta Ricotti
- Division of Pediatrics, Department of Health Sciences, University of “Piemonte Orientale Amedeo Avogadro”, Novara, Italy
| | - Gianluca Aimaretti
- Endocrinology, Department of Clinical and Experimental Medicine, University of Piemonte Orientale, Novara, Italy
| | - Gianni Bona
- Division of Pediatrics, Department of Health Sciences, University of “Piemonte Orientale Amedeo Avogadro”, Novara, Italy
- I.C.O.S. (Interdisciplinary Center for Obesity Study), Novara, Italy
| | - Simonetta Bellone
- Division of Pediatrics, Department of Health Sciences, University of “Piemonte Orientale Amedeo Avogadro”, Novara, Italy
- Endocrinology, Department of Clinical and Experimental Medicine, University of Piemonte Orientale, Novara, Italy
- I.C.O.S. (Interdisciplinary Center for Obesity Study), Novara, Italy
| |
Collapse
|