1
|
Clinical, immunological and genomic characteristics of children with X-linked agammaglobulinemia from Kerala, South India. Hum Immunol 2022; 83:335-345. [DOI: 10.1016/j.humimm.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022]
|
2
|
Liu N, Yang X, Wang S, Dong R, Li Y, Lv Y, Liu Y, Gai Z. PBMC-derived integration-free iPSCs line SDQLCHi039-A from a patient with X-linked agammaglobulinemia carrying a novel 9-bp in-frame deletion in BTK gene. Stem Cell Res 2021; 51:102165. [PMID: 33453577 DOI: 10.1016/j.scr.2021.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/03/2021] [Indexed: 11/25/2022] Open
Abstract
X-linked agammaglobulinemia (XLA, OMIM #300755) is one of the most common pediatric primary immunodeficiencies characterized by failure to produce mature B lymphocytes and hypogammaglobulinemia, caused by mutation of the gene encoding Bruton's tyrosine kinase (BTK, OMIM *300300), a key regulator in B-cell development. Patientssuffering XLA are prone to recurrentbacterial infection. We established an induced pluripotent stem cells (iPSCs) line from a 3-year-5-month-old boy with XLA caused by a hemizygous in-frame 9-bp deletion in BTK (c.1530-1538delATACCTGGA, p.Y510_E513delEYLEinsE). The iPSCs was verified based on pluripotency markers, original gene mutation and demonstrated trilineage differentiation potential in vitro.
Collapse
Affiliation(s)
- Ning Liu
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, China; Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan 250012, China
| | - Xiaomeng Yang
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, China
| | - Sulan Wang
- Blood Transfusion Department, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, China
| | - Rui Dong
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, China
| | - Yue Li
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, China
| | - Yuqiang Lv
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, China
| | - Yi Liu
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, China.
| | - Zhongtao Gai
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, Shandong 250022, China
| |
Collapse
|
3
|
Chen XF, Wang WF, Zhang YD, Zhao W, Wu J, Chen TX. Clinical characteristics and genetic profiles of 174 patients with X-linked agammaglobulinemia: Report from Shanghai, China (2000-2015). Medicine (Baltimore) 2016; 95:e4544. [PMID: 27512878 PMCID: PMC4985333 DOI: 10.1097/md.0000000000004544] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
X-linked agammaglobulinemia (XLA) is a humoral primary immunodeficiency. XLA patients typically present with very low numbers of peripheral B cells and a profound deficiency of all immunoglobulin isotypes. Most XLA patients carry mutations in Bruton tyrosine kinase (BTK) gene.The genetic background and clinical features of 174 Chinese patients with XLA were investigated. The relationship between specific BTK gene mutations and severity of clinical manifestations was also examined. Mutations were graded from mild to severe based on structural and functional prediction through bioinformatics analysis.One hundred twenty-seven mutations were identified in 142 patients from 124 families, including 45 novel mutations and 82 recurrent mutations that were distributed over the entire BTK gene sequence. Variation in phenotypes was observed, and there was a tendency of association between genotype and age of disease onset.This report constitutes the largest group of patients with BTK mutations in China. A genotype-phenotype correlation was observed in this study. Early diagnosis of congenital agammaglobulinemia should be based on clinical symptoms, family history, and molecular analysis of the BTK gene.
Collapse
Affiliation(s)
- Xia-Fang Chen
- Department of Allergy and Immunology, Shanghai Children's Medical Center
- Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Wei-Fan Wang
- Department of Allergy and Immunology, Shanghai Children's Medical Center
| | - Yi-Dan Zhang
- Department of Internal Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Wei Zhao
- Division of Allergy and Immunology, Department of Pediatrics, Virginia Commonwealth University, Richmond, VA
| | - Jing Wu
- Department of Allergy and Immunology, Shanghai Children's Medical Center
- Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Tong-Xin Chen
- Department of Allergy and Immunology, Shanghai Children's Medical Center
- Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai
| |
Collapse
|
4
|
Boushaki S, Tahiat A, Meddour Y, Chan KW, Chaib S, Benhalla N, Smati L, Bensenouci A, Lau YL, Magdinier F, Djidjik R. Prevalence of BTK mutations in male Algerian patterns with agammaglobulinemia and severe B cell lymphopenia. Clin Immunol 2015; 161:286-90. [PMID: 26387629 DOI: 10.1016/j.clim.2015.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 11/28/2022]
Abstract
X linked agammaglobulinemia (XLA) is the first described primary immunodeficiency and the most common form of agammaglobulinemia. It is characterized by susceptibility to recurrent infections, profound decrease of all immunoglobulin isotypes and very low level of B lymphocytes in peripheral blood. The disorder is caused by mutations in the Bruton's Tyrosine Kinase (BTK). Nine male patients suspected to have XLA from nine unrelated families were enrolled in this study. We performed sequencing of the BTK gene in all nine patients, and in the patients' relatives when possible. The XLA diagnosis was confirmed for six patients with six different mutations; we identified a novel mutation (c.1522G>A) and five known mutations. One third of nine unrelated patients do not have mutations in BTK and thus likely suffer from autosomal recessive agammaglobulinemia in the setting of consanguinity. Our results support that the autosomal recessive agammaglobulinemia can be more common in Algeria.
Collapse
Affiliation(s)
- Soraya Boushaki
- Immunology Department, Beni Messous Teaching Hospital, Algiers, Algeria; Unit of Genetics, Laboratory of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Sciences and Technology "HouariBoumediene" Algiers, Algeria
| | - Azzedine Tahiat
- Immunology Department, Beni Messous Teaching Hospital, Algiers, Algeria
| | - Yanis Meddour
- Immunology Department, Central Hospital of the Army, Algiers, Algeria
| | - Koon Wing Chan
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Samia Chaib
- Immunology Department, Central Hospital of the Army, Algiers, Algeria
| | - Nafissa Benhalla
- Pediatrics Department A, Beni Messous Teaching Hospital, Algiers, Algeria
| | - Leila Smati
- Pediatrics Department, Bologhine Hospital, Algiers, Algeria
| | | | - Yu-Lung Lau
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Frédérique Magdinier
- Laboratoire de Génétique Médicale et Génomique Fonctionnelle, INSERM UMR S-910, Aix Marseille Université, Faculté de Médecine de la Timone, Marseille, France
| | - Réda Djidjik
- Immunology Department, Beni Messous Teaching Hospital, Algiers, Algeria; Laboratory of Immunology, Faculty of Medicine, University of Algiers 1, Algeria.
| |
Collapse
|
5
|
Teocchi MA, Domingues Ramalho V, Abramczuk BM, D'Souza-Li L, Santos Vilela MM. BTK mutations selectively regulate BTK expression and upregulate monocyte XBP1 mRNA in XLA patients. Immun Inflamm Dis 2015; 3:171-81. [PMID: 26417435 PMCID: PMC4578518 DOI: 10.1002/iid3.57] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/14/2022] Open
Abstract
Mutations in the Bruton agammaglobulinemia tyrosine kinase (BTK) gene are responsible for X-linked agammaglobulinemia (XLA). Unfolded or misfolded proteins can trigger stress pathways in the endoplasmic reticulum (ER), known as unfolded protein response (UPR). The aim was to clarify the involvement of UPR in XLA pathophysiology. By reverse transcription-quantitative PCR, we evaluated the expression of BTK and 12 UPR-related genes in eight patients. Moreover, we assessed the BTK protein expression and pattern in the patients' monocytes by flow cytometry and fluorescence immunocytochemistry. We found a reduced BTK expression in patients with stop codon mutations (P < 0.02). However, missense mutations did not affect BTK expression. Flow cytometry showed a reduction of BTK in patients which was corroborated by an absent or nonfunctional protein synthesis revealed by immunocytochemistry. In contrast with the other UPR-related genes, X-box binding protein 1 (XBP1) was markedly upregulated in the patients (P < 0.01), suggesting Toll-like receptor (TLR) activation since BTK directly interacts with TLRs as a negative regulator and XBP1 can be activated in direct response to TLR ligation. Different BTK mutations can be identified by the BTK expression. Inasmuch as UPR-related genes were downregulated or unaltered in patients, we speculate the involvement of the TLRs-XBP1 axis in the XLA pathophysiology. Such data could be the basis for further studies of this novel pathomechanism concerning XLA.
Collapse
Affiliation(s)
- Marcelo A Teocchi
- Center for Investigation in Pediatrics, University of Campinas (UNICAMP) Campinas, São Paulo, Brazil
| | - Vanessa Domingues Ramalho
- Center for Investigation in Pediatrics, University of Campinas (UNICAMP) Campinas, São Paulo, Brazil
| | - Beatriz M Abramczuk
- Center for Investigation in Pediatrics, University of Campinas (UNICAMP) Campinas, São Paulo, Brazil
| | - Lília D'Souza-Li
- Center for Investigation in Pediatrics, University of Campinas (UNICAMP) Campinas, São Paulo, Brazil ; Department of Pediatrics, Faculty of Medical Sciences, University of Campinas (UNICAMP) Campinas, São Paulo, Brazil
| | - Maria Marluce Santos Vilela
- Center for Investigation in Pediatrics, University of Campinas (UNICAMP) Campinas, São Paulo, Brazil ; Department of Pediatrics, Faculty of Medical Sciences, University of Campinas (UNICAMP) Campinas, São Paulo, Brazil
| |
Collapse
|
6
|
|
7
|
Tóth B, Volokha A, Mihas A, Pac M, Bernatowska E, Kondratenko I, Polyakov A, Erdos M, Pasic S, Bataneant M, Szaflarska A, Mironska K, Richter D, Stavrik K, Avcin T, Márton G, Nagy K, Dérfalvi B, Szolnoky M, Kalmár A, Belevtsev M, Guseva M, Rugina A, Kriván G, Timár L, Nyul Z, Mosdósi B, Kareva L, Peova S, Chernyshova L, Gherghina I, Serban M, Conley ME, Notarangelo LD, Smith CIE, van Dongen J, van der Burg M, Maródi L. Genetic and demographic features of X-linked agammaglobulinemia in Eastern and Central Europe: a cohort study. Mol Immunol 2009; 46:2140-6. [PMID: 19419768 DOI: 10.1016/j.molimm.2009.03.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 03/05/2009] [Accepted: 03/14/2009] [Indexed: 12/12/2022]
Abstract
Primary immunodeficiency disorders are a recognized public health problem worldwide. The prototype of these conditions is X-linked agammaglobulinemia (XLA) or Bruton's disease. XLA is caused by mutations in Bruton's tyrosine kinase gene (BTK), preventing B cell development and resulting in the almost total absence of serum immunoglobulins. The genetic profile and prevalence of XLA have not previously been studied in Eastern and Central European (ECE) countries. We studied the genetic and demographic features of XLA in Belarus, Croatia Hungary, Poland, Republic of Macedonia, Romania, Russia, Serbia, Slovenia, and Ukraine. We collected clinical, immunological, and genetic information for 122 patients from 109 families. The BTK gene was sequenced from the genomic DNA of patients with a high susceptibility to infection, almost no CD19(+) peripheral blood B cells, and low or undetectable levels of serum immunoglobulins M, G, and A, compatible with a clinical and immunological diagnosis of XLA. BTK sequence analysis revealed 98 different mutations, 46 of which are reported for the first time here. The mutations included single nucleotide changes in the coding exons (35 missense and 17 nonsense), 23 splicing defects, 13 small deletions, 7 large deletions, and 3 insertions. The mutations were scattered throughout the BTK gene and most frequently concerned the SH1 domain; no missense mutation was detected in the SH3 domain. The prevalence of XLA in ECE countries (total population 145,530,870) was found to be 1 per 1,399,000 individuals. This report provides the first comprehensive overview of the molecular genetic and demographic features of XLA in Eastern and Central Europe.
Collapse
Affiliation(s)
- Beáta Tóth
- Department of Infectious and Pediatric Immunology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Conley ME, Farmer DM, Dobbs AK, Howard V, Aiba Y, Shurtleff SA, Kurosaki T. A minimally hypomorphic mutation in Btk resulting in reduced B cell numbers but no clinical disease. Clin Exp Immunol 2008; 152:39-44. [PMID: 18241230 DOI: 10.1111/j.1365-2249.2008.03593.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Reduced B cell numbers and a mutation in Btk are considered sufficient to make the diagnosis of X-linked agammaglobulinaemia. In the process of conducting family studies, we identified a 58-year-old healthy man with an amino acid substitution, Y418H, in the adenosine-5'-triphosphate binding site of Btk. Immunofluorescence studies showed that this man had 0.85% CD19+ B cells (normal 4-18%) in the peripheral circulation and his monocytes were positive for Btk. He had borderline low serum immunoglobulins but normal titres to tetanus toxoid and multiple pneumococcal serotypes. To determine the functional consequences of the amino acid substitution, a Btk- chicken B cell line, DT40, was transfected with expression vectors producing wild-type Btk or Y418H Btk. The transfected cells were stimulated with anti-IgM and calcium flux and inositol triphosphate (IP3) production were measured. Cells bearing the mutant protein demonstrated consistently a 15-20% decrease in both calcium flux and IP3 production. These findings indicate that even a modest decrease in Btk function can impair B cell proliferation or survival. However, a mutation in Btk and reduced numbers of B cells are not always associated with clinical disease.
Collapse
Affiliation(s)
- M E Conley
- Department of Pediatrics, University of Tennessee College of Medicine, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Väliaho J, Smith CIE, Vihinen M. BTKbase: the mutation database for X-linked agammaglobulinemia. Hum Mutat 2006; 27:1209-17. [PMID: 16969761 DOI: 10.1002/humu.20410] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
X-linked agammaglobulinemia (XLA) is a hereditary immunodeficiency caused by mutations in the gene encoding Bruton tyrosine kinase (BTK). XLA patients have a decreased number of mature B cells and a lack of all immunoglobulin isotypes, resulting in susceptibility to severe bacterial infections. XLA-causing mutations are collected in a mutation database (BTKbase), which is available at http://bioinf.uta.fi/BTKbase. For each patient the following information is given (when available): the identification of the entry, a plain English description of the mutation followed by a reference, formal characterization of the mutation, and the various parameters from the patient. BTKbase is implemented with the MUTbase program suite, which provides an easy, interactive, and quality controlled submission of information to mutation databases. BTKbase version 8 lists mutation entries of 1,111 patients from 973 unrelated families showing 602 unique molecular events. The localization of the mutations on the gene and protein for BTK can be analyzed by clicking sequences on the web pages. The distribution of the mutations in the five structural domains is approximately proportional to the length of the domains, except for the Tec homology (TH) domain. The most frequently affected sites are CpG dinucleotides. The majority of the missense mutations are structural-disturbing Bruton tyrosine kinase (Btk) folding or decreasing stability. Many of the mutations affect functionally significant, conserved residues. The structural consequences of the mutations in all the domains have been studied based on crystallographic and nuclear magnetic resonance (NMR) structures as well as computer-aided molecular modeling.
Collapse
Affiliation(s)
- Jouni Väliaho
- Institute of Medical Technology, University of Tampere, Finland
| | | | | |
Collapse
|
10
|
Speletas M, Kanariou M, Kanakoudi-Tsakalidou F, Papadopoulou-Alataki E, Arvanitidis K, Pardali E, Constantopoulos A, Kartalis G, Vihinen M, Sideras P, Ritis K. Analysis of Btk mutations in patients with X-linked agammaglobulinaemia (XLA) and determination of carrier status in normal female relatives: a nationwide study of Btk deficiency in Greece. Scand J Immunol 2001; 54:321-7. [PMID: 11555397 DOI: 10.1046/j.1365-3083.2001.00967.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bruton's tyrosine kinase (Btk) is a nonreceptor tyrosine kinase, critical for B-cell development and function. Mutations that inactivate this kinase were found in families with X-linked agammaglobulinaemia (XLA). In this study the Btk gene was analyzed in 13 registered Greek patients with XLA phenotype originated from 12 unrelated families, in order to provide a definite diagnosis of the XLA. The structure of Btk was analyzed at the cDNA level using the recently developed method, NIRCA (Non-Isotopic-Rnase-Cleavage-Assay). Alterations were detected in all patients and sequencing analysis confirmed the results and defined six novel XLA-associated Btk mutations (three missense mutations: C337G, L346R, L452P; one nonsense mutation: Y392X, and two frameshift alterations: c1211-1212delA, c1306-1307insA). Having defined the genetic alteration in the affected males of these families, the information was used to design polymerase chain reaction (PCR) primers and the Btk segments containing the mutated sequences were amplified from peripheral blood derived genomic DNA of potential female carriers. The PCR products were directly sequenced and carrier status was determined in 12 out of 16 phenotypically normal females analyzed. This protocol can be used once the nature of the Btk mutation has been defined in one of the affected males and provides a convenient, simple and reliable way to determine the carrier status of other female family members. Molecular genetic analysis constitutes a determinative tool for the definitive diagnosis of XLA and may allow accurate carrier and prenatal diagnosis for genetic counselling.
Collapse
Affiliation(s)
- M Speletas
- First Division of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hansson H, Okoh MP, Smith CI, Vihinen M, Härd T. Intermolecular interactions between the SH3 domain and the proline-rich TH region of Bruton's tyrosine kinase. FEBS Lett 2001; 489:67-70. [PMID: 11231015 DOI: 10.1016/s0014-5793(00)02438-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The SH3 domain of Bruton's tyrosine kinase (Btk) is preceded by the Tec homology (TH) region containing proline-rich sequences. We have studied a protein fragment containing both the Btk SH3 domain and the proline-rich sequences of the TH region (PRR-SH3). Intermolecular NMR cross-relaxation measurements, gel permeation chromatography profiles, titrations with proline-rich peptides, and (15)N NMR relaxation measurements are all consistent with a monomer-dimer equilibrium with a dissociation constant on the order of 60 microM. The intermolecular interactions do, at least in part, involve proline-rich sequences in the TH region. This behavior of Btk PRR-SH3 may have implications for the functional action of Btk.
Collapse
Affiliation(s)
- H Hansson
- Department of Biotechnology, Royal Institute of Technology, Center for Structural Biochemistry, Novum, Sweden
| | | | | | | | | |
Collapse
|
12
|
Orrico A, Galli L, Falciani M, Bracci M, Cavaliere ML, Rinaldi MM, Musacchio A, Sorrentino V. A mutation in the pleckstrin homology (PH) domain of the FGD1 gene in an Italian family with faciogenital dysplasia (Aarskog-Scott syndrome). FEBS Lett 2000; 478:216-20. [PMID: 10930571 DOI: 10.1016/s0014-5793(00)01857-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aarskog-Scott Syndrome (AAS) is an X-linked disorder characterised by short stature and multiple facial, limb and genital abnormalities. A gene, FGD1, altered in a patient with AAS phenotype, has been identified and found to encode a protein with homology to Rho/Rac guanine nucleotide exchange factors (Rho/Rac GEF). However, since this original report on identification of a mutated FGD1 gene in an AAS patient, no additional mutations in the FGD1 gene have been described. We analysed 13 independent patients with clinical diagnosis of AAS. One patient presented a mutation that results in a nucleotide change in exon 10 of the FGD1 gene (G2559>A) substituting a Gln for Arg in position 610. The mutation was found to segregate with the AAS phenotype in affected males and carrier females in the family of this patient. Interestingly, Arg-610 is located within one of the two pleckstrin homology (PH) domains of the FGD1 gene and it corresponds to a highly conserved residue which has been involved in InsP binding in PH domains of other proteins. The same residue is often mutated in the Bruton's tyrosine kinase (Btk) gene in patients with an X-linked agammaglobulinemia. The Arg610Gln mutation represents the first case of a mutation in the PH domain of the FGD1 gene and additional evidence that mutations in PH domains can be associated to human diseases.
Collapse
Affiliation(s)
- A Orrico
- U.O. Genetica Medica, Policlinico 'Le Scotte', Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Vihinen M, Villa A, Mella P, Schumacher RF, Savoldi G, O'Shea JJ, Candotti F, Notarangelo LD. Molecular modeling of the Jak3 kinase domains and structural basis for severe combined immunodeficiency. Clin Immunol 2000; 96:108-18. [PMID: 10900158 DOI: 10.1006/clim.2000.4880] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hereditary severe combined immunodeficiency (SCID) includes a heterogeneous group of diseases that profoundly affect both cellular and humoral immune responses and require treatment by bone marrow transplantation. Characterization of the cellular and molecular bases of SCID is essential to provide accurate genetic counseling and prenatal diagnosis, and it may offer the grounds for alternative forms of treatment. The Jak3 gene is mutated in most cases of autosomal recessive T(-)B(+) SCID in humans. Jak3 belongs to the family of intracellular Janus tyrosine kinases. It is physically and functionally coupled to the common gamma chain, gammac, shared by several cytokine receptors. We have established the JAK3base registry for disease and mutation information. In order to study the structural consequences of the Jak3 mutations, the structure of the human Jak3 kinase and pseudokinase domains was modeled. Residues involved in ATP and Mg(2+) binding were highly conserved in the kinase domain whereas the substrate binding region is somewhat different compared to other kinases. We have identified the first naturally occurring mutations disrupting the function of the human Jak3 kinase domain. The structural basis of all of the known Jak3 mutations reported so far is discussed based on the modeled structure. The model of the Jak3 protein also permits us to study Jak3 phosphorylation at the structural level and may thus serve in the design of novel immune suppressive drugs.
Collapse
Affiliation(s)
- M Vihinen
- Institute of Medical Technology, University of Tampere, FIN-33014, Finland
| | | | | | | | | | | | | | | |
Collapse
|
14
|
X-Chromosome Inactivation and Mutation Pattern in the Bruton’s Tyrosine Kinase Gene in Patients with X-linked Agammaglobulinemia. Mol Med 2000. [DOI: 10.1007/bf03401778] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
15
|
Curtis SK, Hebert MD, Saha BK. Twin carriers of X-linked agammaglobulinemia (XLA) due to germline mutation in the Btk gene. AMERICAN JOURNAL OF MEDICAL GENETICS 2000; 90:229-32. [PMID: 10678660 DOI: 10.1002/(sici)1096-8628(20000131)90:3<229::aid-ajmg8>3.0.co;2-q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report on an X-linked agammaglobulinemia (XLA) family in which mothers of two affected cousins were monozygotic twins. We analyzed the Btk gene of several members in three generations of the family by SSCP analysis, DNA sequencing, and RFLP analysis following polymerase chain reaction-amplification of the individual exons. We identified a missense point mutation, G1817C (R562P), in exon 17 of the Btk gene in the affected cousins. The same mutation was also present in both mothers (twin sisters) of the cousins identifying them as carriers. However, the mutation was absent in all other relatives including the grandmother of the cousins (mother of the twin sisters). This strongly suggests that the mutation in the Btk gene had originated in one of the germ lines or in the zygote. This may be the first demonstration of a germ line (or zygotic) mutation in XLA.
Collapse
Affiliation(s)
- S K Curtis
- Department of Pathology, Emory University School of Medicine, Altanta, Georgia, USA
| | | | | |
Collapse
|
16
|
Abstract
A susceptibility gene in the MHC class III region may underlie the defective B-cell differentiation in familial IgA deficiency and common variable immunodeficiency. Mutations in Bruton's tyrosine kinase, immunoglobulin heavy chain and lambda 5/14.1 surrogate light chain loci disrupt B-cell development to cause profound antibody deficiency. Mutational, biochemical and transgenic studies offer insight into the function of these and other 'antibody deficiency genes'.
Collapse
Affiliation(s)
- M E Conley
- Department of Pediatrics, University of Tennessee School of Medicine, Memphis 38105, USA
| | | |
Collapse
|