1
|
Jänig W. The Lovén reflex: the renaissance of a long-forgotten reflex involving autonomic and nociceptive pathways. Clin Auton Res 2021; 31:149-152. [PMID: 33515141 DOI: 10.1007/s10286-020-00755-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Wilfrid Jänig
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098, Kiel, Germany.
| |
Collapse
|
2
|
Dramatically Amplified Thoracic Sympathetic Postganglionic Excitability and Integrative Capacity Revealed with Whole-Cell Patch-Clamp Recordings. eNeuro 2019; 6:ENEURO.0433-18.2019. [PMID: 31040159 PMCID: PMC6514441 DOI: 10.1523/eneuro.0433-18.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/02/2022] Open
Abstract
Thoracic paravertebral sympathetic postganglionic neurons (tSPNs) comprise the final integrative output of the distributed sympathetic nervous system controlling vascular and thermoregulatory systems. Considered a non-integrating relay, what little is known of tSPN intrinsic excitability has been determined by sharp microelectrodes with presumed impalement injury. We thus undertook the first electrophysiological characterization of tSPN cellular properties using whole-cell recordings and coupled results with a conductance-based model to explore the principles governing their excitability in adult mice of both sexes. Recorded membrane resistance and time constant values were an order of magnitude greater than values previously obtained, leading to a demonstrable capacity for synaptic integration in driving recruitment. Variation in membrane resistivity was the primary determinant controlling cell excitability with vastly lower currents required for tSPN recruitment. Unlike previous microelectrode recordings in mouse which observed inability to sustain firing, all tSPNs were capable of repetitive firing. Computational modeling demonstrated that observed differences are explained by introduction of a microelectrode impalement injury conductance. Overall, tSPNs largely linearly encoded injected current magnitudes over a broad frequency range with distinct subpopulations differentiable based on repetitive firing signatures. Thus, whole-cell recordings reveal tSPNs have more dramatically amplified excitability than previously thought, with greater intrinsic capacity for synaptic integration and with the ability for maintained firing to support sustained actions on vasomotor tone and thermoregulatory function. Rather than acting as a relay, these studies support a more responsive role and possible intrinsic capacity for tSPNs to drive sympathetic autonomic function.
Collapse
|
3
|
Hyperhidrose – Ätiopathogenese, Diagnostik, Klinik und Therapie. Hautarzt 2018; 69:857-869. [DOI: 10.1007/s00105-018-4265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Macefield VG, Wallin BG. Physiological and pathophysiological firing properties of single postganglionic sympathetic neurons in humans. J Neurophysiol 2017; 119:944-956. [PMID: 29142091 DOI: 10.1152/jn.00004.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has long been known from microneurographic recordings in human subjects that the activity of postganglionic sympathetic axons occurs as spontaneous bursts, with muscle sympathetic nerve activity (MSNA) exhibiting strong cardiac rhythmicity via the baroreflex and skin sympathetic nerve activity showing much weaker cardiac modulation. Here we review the firing properties of single sympathetic neurons, obtained using highly selective microelectrodes. Individual vasoconstrictor neurons supplying muscle or skin, or sudomotor neurons supplying sweat glands, always discharge with a low firing probability (~30%) and at very low frequencies (~0.5 Hz). Moreover, they usually fire only once per cardiac interval but can fire greater than four times within a burst. Modeling has shown that this pattern can best be explained by individual neurons being driven by, on average, two preganglionic inputs. Unitary recordings of muscle vasoconstrictor neurons have been made in several pathophysiological states, including heart failure, hypertension, obstructive sleep apnea, bronchiectasis, chronic obstructive pulmonary disease, depression, and panic disorder. The augmented MSNA in each of these diseases features an increase in firing probability and discharge frequency of individual muscle vasoconstrictor neurons above that seen in healthy subjects, yet firing rates rarely exceed 1 Hz. However, unlike patients with heart failure, all patients with respiratory disease or panic disorder, and patients with hyperhidrosis, exhibited an increase in multiple within-burst firing, which emphasizes the different modes by which the sympathetic nervous system grades its output in pathophysiological states of high sympathetic nerve activity.
Collapse
Affiliation(s)
- Vaughan G Macefield
- School of Medicine, Western Sydney University , Sydney , Australia.,Neuroscience Research Australia, Sydney , Australia.,Baker Heart and Diabetes Institute , Melbourne , Australia
| | - B Gunnar Wallin
- Department of Clinical Neurophysiology, Institute of Neuroscience and Physiology, Sahlgren Academy at University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
5
|
Kirillova-Woytke I, Baron R, Jänig W. Reflex inhibition of cutaneous and muscle vasoconstrictor neurons during stimulation of cutaneous and muscle nociceptors. J Neurophysiol 2014; 111:1833-45. [PMID: 24501261 DOI: 10.1152/jn.00798.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cutaneous (CVC) and muscle (MVC) vasoconstrictor neurons exhibit typical reflex patterns to physiological stimulation of somatic and visceral afferent neurons. Here we tested the hypothesis that CVC neurons are inhibited by stimulation of cutaneous nociceptors but not of muscle nociceptors and that MVC neurons are inhibited by stimulation of muscle nociceptors but not of cutaneous nociceptors. Activity in the vasoconstrictor neurons was recorded from postganglionic axons isolated from the sural nerve or the lateral gastrocnemius-soleus nerve in anesthetized rats. The nociceptive afferents were excited by mechanical stimulation of the toes of the ipsilateral hindpaw (skin), by hypertonic saline injected into the ipsi- or contralateral gastrocnemius-soleus muscle, or by heat or noxious cold stimuli applied to the axons in the common peroneal nerve or tibial nerve. The results show that CVC neurons are inhibited by noxious stimulation of skin but not by noxious stimulation of skeletal muscle and that MVC neurons are inhibited by noxious stimulation of skeletal muscle but not by noxious stimulation of skin. These inhibitory reflexes are mostly lateralized and are most likely organized in the spinal cord. Stimulation of nociceptive cold-sensitive afferents does not elicit inhibitory or excitatory reflexes in CVC or MVC neurons. The reflex inhibition of activity in CVC or MVC neurons generated by stimulation of nociceptive cutaneous or muscle afferents during tissue injury leads to local increase of blood flow, resulting in an increase of transport of immunocompetent cells, proteins, and oxygen to the site of injury and enhancing the processes of healing.
Collapse
|
6
|
Jänig W. Sympathetic nervous system and inflammation: a conceptual view. Auton Neurosci 2014; 182:4-14. [PMID: 24525016 DOI: 10.1016/j.autneu.2014.01.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 12/27/2022]
Abstract
The peripheral sympathetic nervous system is organized into function-specific pathways that transmit the activity from the central nervous system to its target tissues. The transmission of the impulse activity in the sympathetic ganglia and to the effector tissues is target cell specific and guarantees that the centrally generated command is faithfully transmitted. This is the neurobiological basis of autonomic regulations in which the sympathetic nervous system is involved. Each sympathetic pathway is connected to distinct central circuits in the spinal cord, lower and upper brain stem and hypothalamus. In addition to its conventional functions, the sympathetic nervous system is involved in protection of body tissues against challenges arising from the environment as well as from within the body. This function includes the modulation of inflammation, nociceptors and above all the immune system. Primary and secondary lymphoid organs are innervated by sympathetic postganglionic neurons and processes in the immune tissue are modulated by activity in these sympathetic neurons via adrenoceptors in the membranes of the immune cells (see Bellinger and Lorton, 2014). Are the primary and secondary lymphoid organs innervated by a functionally specific sympathetic pathway that is responsible for the modulation of the functioning of the immune tissue by the brain? Or is this modulation of immune functions a general function of the sympathetic nervous system independent of its specific functions? Which central circuits are involved in the neural regulation of the immune system in the context of neural regulation of body protection? What is the function of the sympatho-adrenal system, involving epinephrine, in the modulation of immune functions?
Collapse
Affiliation(s)
- Wilfrid Jänig
- Physiologisches Institut, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany.
| |
Collapse
|
7
|
Zaydens E, Taylor JA, Cohen MA, Eden UT. Characterization and modeling of muscle sympathetic nerve spiking. IEEE Trans Biomed Eng 2013; 60:2914-24. [PMID: 23744662 DOI: 10.1109/tbme.2013.2266342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Muscle sympathetic nerve activity is a primary source of cardiovascular control in humans. Traditional analyses smooth away the fine temporal structure of the sympathetic recordings, limiting our understanding of sympathetic activation mechanisms. We use multifiber spike trains extracted from standard microneurography voltage trace to characterize the sympathetic spiking at rest and during sympathoexcitation. Our analysis corroborates known features of sympathetic activity, such as bursting behavior, cardiac rhythmicity, and long conduction delays. It also elucidates new features such as large heartbeat-to-heartbeat variability of firing rates and precise pattern of spiking within cardiac cycles. We find that at low firing rates, spikes occur uniformly throughout the cardiac cycle, but at higher rates, they tend to cluster in bursts around a particular latency. This latency shortens and the clusters tighten as the firing rates grow. Sympathoexcitation increases firing rates and shifts the burst latency later. Negative rate/latency correlation and the sympathoexcitatory shift suggest that spike production of the individual fibers contributes significantly to the control of the sympathetic bursts strength. Access to fine scale temporal information, more physiologically accurate description of nerve activity, and new hypotheses about the nervous outflow control establishes sympathetic spiking as a valuable tool for the cardiovascular research.
Collapse
|
8
|
Fatouleh R, Macefield VG. Cardiorespiratory coupling of sympathetic outflow in humans: a comparison of respiratory and cardiac modulation of sympathetic nerve activity to skin and muscle. Exp Physiol 2013; 98:1327-36. [PMID: 23625953 DOI: 10.1113/expphysiol.2013.072421] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study?Muscle sympathetic nerve activity (MSNA) is well known to be modulated by the arterial baroreceptors and respiration, but what are the magnitudes of cardiac and respiratory modulation of skin sympathetic nerve activity (SSNA), which primarily subserves thermoregulation?What is the main finding and what is its importance?Using direct microelectrode recordings of MSNA and SSNA in awake humans, we show that the magnitude of respiratory modulation of SSNA is identical to that of MSNA, the primary difference between the two sources of sympathetic outflow being the greater cardiac modulation of MSNA. This emphasises the role of the baroreceptors in entraining sympathetic outflow to muscle. It is well known that microelectrode recordings of skin sympathetic nerve activity (SSNA) in awake human subjects reveal spontaneous bursts of activity with no overt modulation by changes in blood pressure or respiration, in contrast to the clear cardiac and respiratory modulation of muscle sympathetic nerve activity (MSNA). However, cross-correlation analysis has revealed that, like individual muscle vasoconstrictor neurones, the firing of individual cutaneous vasoconstrictor neurones is temporally coupled to both the cardiac and respiratory rhythms during cold-induced cutaneous vasoconstriction, and the same is true of single sudomotor neurones during heat-induced sweating. Here, we used cross-correlation analysis to determine whether SSNA exhibits cardiac and respiratory modulation in thermoneutral conditions and to compare respiratory and cardiac modulation of SSNA with that of MSNA. Oligounitary recordings of spontaneous SSNA (n = 20) and MSNA (n = 18) were obtained during quiet, unrestrained breathing. Respiration was recorded by a strain-gauge transducer around the chest and ECG recorded by surface electrodes. Respiratory and cardiac modulation of SSNA and MSNA were quantified by fitting polynomial equations to the cross-correlation histograms constructed between the sympathetic spikes and respiration or ECG. The amplitude of the respiratory modulation (52.5 ± 3.4%) of SSNA was not significantly different from the amplitude of the cardiac modulation (46.6 ± 3.2%). Both were comparable to the respiratory modulation of MSNA (47.7 ± 4.2%), while cardiac modulation of MSNA was significantly higher (89.8 ± 1.5%). We conclude that SSNA and MSNA share similar levels of respiratory modulation, the primary difference between the two sources of sympathetic outflow being the marked cardiac modulation of MSNA provided by the baroreceptors.
Collapse
Affiliation(s)
- Rania Fatouleh
- School of Medicine, University of Western Sydney, NSW, Australia
| | | |
Collapse
|
9
|
Iriki M, Simon E. Differential control of efferent sympathetic activity revisited. J Physiol Sci 2012; 62:275-98. [PMID: 22614392 PMCID: PMC10717676 DOI: 10.1007/s12576-012-0208-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/21/2012] [Indexed: 11/27/2022]
Abstract
This article reviews 40 years of research (1970-2010) into the capability of the efferent sympathetic nervous system to display differential responsiveness. Discovered first were antagonistic changes of activity in sympathetic filaments innervating functionally different sections of the cardiovascular system in response to thermal stimulation. During the subsequent four decades of investigation, a multitude of differential sympathetic efferent response patterns were identified, ranging from opposing activity changes at the level of multi-fiber filaments innervating different organs to the level of single fibers controlling functionally different structures in the same organ. Differential sympathetic responsiveness was shown to be displayed in response to exogenous or artificial stimulation of afferent sensory fibers transmitting particular exogenous stimuli, especially those activating peripheral nociceptors. Moreover, sympathetic differentiation was found to be characteristic of autonomic responses to environmental changes by which homeostasis in the broadest sense would be challenged. Heat or cold loads or their experimental equivalents, altered composition of inspired air or changes in blood gas composition, imbalances of body fluid control, and exposure to agents challenging the immune system were shown to elicit differential efferent sympathetic response patterns which often displayed a high degree of specificity. In summary, autonomic adjustments to changes of biometeorological parameters may be considered as representative of the capability of the sympathetic nervous system to exert highly specific efferent control of organ functions by which bodily homeostasis is maintained.
Collapse
|
10
|
Maillard H, Fenot M, Bara C, Célérier P. Intérêt de l’oxybutynine à dose modérée dans l’hyperhidrose étendue. Ann Dermatol Venereol 2011; 138:652-6. [DOI: 10.1016/j.annder.2011.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/13/2011] [Accepted: 07/01/2011] [Indexed: 11/26/2022]
|
11
|
Jänig W. The fascination of complex regional pain syndrome. Exp Neurol 2009; 221:1-4. [PMID: 19799902 DOI: 10.1016/j.expneurol.2009.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 10/20/2022]
Abstract
Complex regional pain syndrome (CRPS) is a pain disorder involving the somatosensory, the somatomotor and the sympathetic nervous systems. Based on experiments conducted by Bove (2009), it is suggested that changes in impulse activity in small-diameter afferents and postganglionic axons generated by neuritis can contribute to signs of early CRPS. The potential mechanisms involved are discussed. These mechanisms include the possibility that CRPS, a disorder of the central nervous system, may be caused by a nerve inflammation.
Collapse
Affiliation(s)
- Wilfrid Jänig
- Physiologisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| |
Collapse
|
12
|
Abstract
Central nervous processing of environmental stimuli requires integration of sensory information with ongoing autonomic control of cardiovascular function. Rhythmic feedback of cardiac and baroreceptor activity contributes dynamically to homeostatic autonomic control. We examined how the processing of brief somatosensory stimuli is altered across the cardiac cycle to evoke differential changes in bodily state. Using functional magnetic resonance imaging of brain and noninvasive beat-to-beat cardiovascular monitoring, we show that stimuli presented before and during early cardiac systole elicited differential changes in neural activity within amygdala, anterior insula and pons, and engendered different effects on blood pressure. Stimulation delivered during early systole inhibited blood pressure increases. Individual differences in heart rate variability predicted magnitude of differential cardiac timing responses within periaqueductal gray, amygdala and insula. Our findings highlight integration of somatosensory and phasic baroreceptor information at cortical, limbic and brainstem levels, with relevance to mechanisms underlying pain control, hypertension and anxiety.
Collapse
|
13
|
Schlereth T, Dieterich M, Birklein F. Hyperhidrosis--causes and treatment of enhanced sweating. DEUTSCHES ARZTEBLATT INTERNATIONAL 2009; 106:32-7. [PMID: 19564960 DOI: 10.3238/arztebl.2009.0032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 11/03/2008] [Indexed: 11/27/2022]
Abstract
BACKGROUND Basically two types of sweating exist: thermoregulatory and emotional sweating. They are controlled by different centers: thermo regulatory sweating is regulated predominantly by the hypothalamus, emotional sweating predominantly by the limbic system. Enhanced sweating, called hyperhidrosis, can be generalized or focal. Primary focal hyperhidrosis is the most common type and affects the axillae, hands, feet, and face--areas principally involved in emotional sweating. Secondary hyperhidrosis develops due to dysfunction of the central or peripheral nervous system. METHODS Review based on a selective search of the literature via Medline and on the guidelines of the Association of the Scientific Medical Societies in Germany (Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften [AWMF]). RESULTS Various conservative and surgical treatments exist for hyperhidrosis. Conservative treatment options are the local application of aluminum chloride, tap water iontophoresis, and the intracutaneous injection of botulinum toxin. Surgical approaches include endoscopic sympathectomy and axillary tumescent curettage and liposuction, removing the sweat glands. Systemic drugs (e.g. anticholinergic substances) can be used in the treatment of generalized hyperhidrosis. CONCLUSION A step-by-step approach is recommended for the treatment of hyperhidrosis. Local treatment options with few and minor side effects should be tried first.
Collapse
Affiliation(s)
- Tanja Schlereth
- Klinik für Neurologie, Johannes Gutenberg-Universität Mainz, Germany.
| | | | | |
Collapse
|
14
|
Asahina M, Sakakibara R, Liu Z, Ito T, Yamanaka Y, Nakazawa K, Shimizu E, Hattori T. The raphe magnus/pallidus regulates sweat secretion and skin vasodilation of the cat forepaw pad: A preliminary electrical stimulation study. Neurosci Lett 2007; 415:283-7. [PMID: 17289264 DOI: 10.1016/j.neulet.2007.01.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/11/2007] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
In the human palm/sole, mental or physical stimuli induce an increase in sweat secretion and a decrease in skin blood flow (SkBF). However, the central pathways of these responses remain unclear. We measured sweat secretion and SkBF in the cat footpad by electrically stimulating the raphe. Stimulation of the rostral raphe magnus/pallidus elicited a reduction in SkBF without affecting sweat secretion. Stimulation of the mid to caudal raphe magnus/pallidus elicited an increase in both sweat secretion and SkBF. The raphe magnus/pallidus may play a crucial role in skin vasomotor and sudomotor responses in the cat footpad.
Collapse
Affiliation(s)
- Masato Asahina
- Department of Neurology, Chiba University School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Organization of the Sympathetic Nervous System. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1567-7443(07)00204-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
16
|
Passatore M, Roatta S. Influence of sympathetic nervous system on sensorimotor function: whiplash associated disorders (WAD) as a model. Eur J Appl Physiol 2006; 98:423-49. [PMID: 17036216 DOI: 10.1007/s00421-006-0312-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2006] [Indexed: 12/26/2022]
Abstract
There is increasing interest about the possible involvement of the sympathetic nervous system (SNS) in initiation and maintenance of chronic muscle pain syndromes of different aetiology. Epidemiological data show that stresses of different nature, e.g. work-related, psychosocial, etc., typically characterised by SNS activation, may be a co-factor in the development of the pain syndrome and/or negatively affect its time course. In spite of their clear traumatic origin, whiplash associated disorders (WAD) appear to share many common features with other chronic pain syndromes affecting the musculo-skeletal system. These features do not only include symptoms, like type of pain or sensory and motor dysfunctions, but possibly also some of the pathophysiological mechanisms that may concur to establish the chronic pain syndrome. This review focuses on WAD, particular emphasis being devoted to sensorimotor symptoms, and on the actions exerted by the sympathetic system at muscle level. Besides its well-known action on muscle blood flow, the SNS is able to affect the contractility of muscle fibres, to modulate the proprioceptive information arising from the muscle spindle receptors and, under certain conditions, to modulate nociceptive information. Furthermore, the activity of the SNS itself is in turn affected by muscle conditions, such as its current state of activity, fatigue and pain signals originating in the muscle. The possible involvement of the SNS in the development of WAD is discussed in light of the several positive feedback loops in which it is implicated.
Collapse
Affiliation(s)
- Magda Passatore
- Department of Neuroscience, Physiology Division, University of Torino Medical School, Corso Raffaello 30, 10125, Torino, Italy.
| | | |
Collapse
|
17
|
|
18
|
Abstract
OBJECTIVES Complex regional pain syndromes (CRPS) can be relieved by sympathetic blockade. Different sympathetic efferent output channels innervate distinct effector organs (ie, cutaneous vasoconstrictor, muscle vasoconstrictor. and sudomotor neurons, as well as neurons innervating deep somatic tissues like bone, joints, and tendons). The aim of the present study was to elucidate in CRPS patients the sympathetically maintained pain (SMP) component that exclusively depends on cutaneous sympathetic activity compared with the SMP depending on the sympathetic innervation of deep somatic tissues. METHODS The sympathetic outflow to the painful skin was modulated selectively in awake humans. High and low cutaneous vasoconstrictor activity was produced in 12 CRPS type 1 patients by whole-body cooling and warming (thermal suit). Spontaneous pain was quantified during high and low cutaneous vasoconstrictor activity. By comparing the cutaneous SMP component with the change in pain that was achieved by modulation of the entire sympathetic outflow (sympathetic ganglion block), the SMP component originating in deep somatic structures was estimated. RESULTS The relief of spontaneous pain after sympathetic blockade was more pronounced than changes in spontaneous pain that could be induced by selective sympathetic cutaneous modulation. The entire SMP component (cutaneous and deep) changes considerably over time. It is most prominent in the acute stages of CRPS. CONCLUSIONS Sympathetic afferent coupling takes place in the skin and in the deep somatic tissues, but especially in the acute stages of CRPS, the pain component that is influenced by the sympathetic innervation of deep somatic structures is more important than the cutaneous activation. The entire sympathetic maintained pain component is not constant in the course of the disease but decreases over time.
Collapse
Affiliation(s)
- Jörn Schattschneider
- Klinik für Neurologie, Sektion für Schmerzforschung und therapie, Univeritätsklinikum Schleswig-Holstein, Campus Kiel, Germany
| | | | | | | | | |
Collapse
|
19
|
Coote JH. The organisation of cardiovascular neurons in the spinal cord. Rev Physiol Biochem Pharmacol 2005; 110:147-285. [PMID: 3285441 DOI: 10.1007/bfb0027531] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
|
21
|
Hellström F, Roatta S, Thunberg J, Passatore M, Djupsjöbacka M. Responses of muscle spindles in feline dorsal neck muscles to electrical stimulation of the cervical sympathetic nerve. Exp Brain Res 2005; 165:328-42. [PMID: 15883803 DOI: 10.1007/s00221-005-2309-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 02/08/2005] [Indexed: 10/25/2022]
Abstract
Previous studies performed in jaw muscles of rabbits and rats have demonstrated that sympathetic outflow may affect the activity of muscle spindle afferents (MSAs). The resulting impairment of MSA information has been suggested to be involved in the genesis and spread of chronic muscle pain. The present study was designed to investigate sympathetic influences on muscle spindles in feline trapezius and splenius muscles (TrSp), as these muscles are commonly affected by chronic pain in humans. Experiments were carried out in cats anesthetized with alpha-chloralose. The effect of electrical stimulation (10 Hz for 90 s or 3 Hz for 5 min) of the peripheral stump of the cervical sympathetic nerve (CSN) was investigated on the discharge of TrSp MSAs (units classified as Ia-like and II-like) and on their responses to sinusoidal stretching of these muscles. In some of the experiments, the local microcirculation of the muscles was monitored by laser Doppler flowmetry. In total, 46 MSAs were recorded. Stimulation of the CSN at 10 Hz powerfully depressed the mean discharge rate of the majority of the tested MSAs (73%) and also affected the sensitivity of MSAs to sinusoidal changes of muscle length, which were evaluated in terms of amplitude and phase of the sinusoidal fitting of unitary activity. The amplitude was significantly reduced in Ia-like units and variably affected in II-like units, while in general the phase was affected little and not changed significantly in either group. The discharge of a smaller percentage of tested units was also modulated by 3-Hz CSN stimulation. Blockade of the neuromuscular junctions by pancuronium did not induce any changes in MSA responses to CSN stimulation, showing that these responses were not secondary to changes in extrafusal or fusimotor activity. Further data showed that the sympathetically induced modulation of MSA discharge was not secondary to the concomitant reduction of muscle blood flow induced by the stimulation. Hence, changes in sympathetic outflow can modulate the afferent signals from muscle spindles through an action exerted directly on the spindles, independent of changes in blood flow. It is suggested that such an action may be one of the mechanisms mediating the onset of chronic muscle pain in these muscles in humans.
Collapse
Affiliation(s)
- F Hellström
- Centre for Musculoskeletal Research, Gävle University, Umeå, Sweden
| | | | | | | | | |
Collapse
|
22
|
Smith MP, Beacham D, Ensor E, Koltzenburg M. Cold-sensitive, menthol-insensitive neurons in the murine sympathetic nervous system. Neuroreport 2004; 15:1399-403. [PMID: 15194861 DOI: 10.1097/01.wnr.0000126559.35631.54] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Several mechanisms have been implicated in underlying the perception of cold, most notably the activation of TRPM8 and TRPA1. We have used ratiometric calcium imaging to reveal a population of neurons in the superior cervical ganglion (SCG) of the mouse that respond to cooling but are insensitive to menthol. Furthermore we show that the expression of the mRNA transcripts encoding the recently identified noxious cold-sensitive channel TRPA1 but not TRPM8 are expressed in the SCG. These data provide evidence for a population of cold-responsive neurons in the SCG whose cold-responsiveness could be mediated by the activation of TRPA1 and suggest that the sympathetic nervous system may play a direct role in mediating sympathetic responses to cold temperatures.
Collapse
Affiliation(s)
- Martin Payne Smith
- Neural Plasticity Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| | | | | | | |
Collapse
|
23
|
Abstract
Mental stress may cause a dissociation of sympathetic outflow to different regions. However, it remains unclear how the sympathetic outflow to jaw muscles is related to other sympathetic outflow under mental stress. The objective of this study was to clarify the temporal relationship between the finger sweat expulsion elicited by mental stress and the hemodynamic and electromyographic changes in the masseter muscle. Healthy adult female volunteers participated in this study. Masseteric hemodynamic changes were closely time-related to mental stress, showing a decrease in oxygen saturation of muscle blood around the onset of mental stress. In contrast, EMG activity of jaw-closing muscles was not time-related to mental stress. These results suggest that mental stress induces hemodynamic changes that are not associated with EMG activity in the masseter muscle of healthy adult females.
Collapse
Affiliation(s)
- O Hidaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | |
Collapse
|
24
|
Miki K, Oda M, Kamijyo N, Kawahara K, Yoshimoto M. Lumbar sympathetic nerve activity and hindquarter blood flow during REM sleep in rats. J Physiol 2004; 557:261-71. [PMID: 15020688 PMCID: PMC1665036 DOI: 10.1113/jphysiol.2003.055525] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2003] [Accepted: 03/11/2004] [Indexed: 11/08/2022] Open
Abstract
The present study aimed to investigate the response of lumbar sympathetic nerve activity (LSNA) to the onset of rapid eye movement (REM) sleep and its contribution to the regulation of muscle blood flow during REM sleep in rats. Electrodes for the measurements of LSNA, electroencephalogram, electromyogram and electrocardiogram and a Doppler flow cuff for the measurements of blood flow in the common iliac and mesenteric arteries, also catheters for the measurements of systemic arterial and central venous pressures were implanted chronically. REM sleep resulted in a step increase in LSNA, by 22 +/- 9% (mean +/-S.E.M., P < 0.05), a reduction of iliac vascular conductance, by -16 +/- 3% (P < 0.05) and a gradual increase in systemic arterial pressure, reaching a maximum value of 8.1 +/- 2.0 mmHg (P < 0.05) at 89 s after onset of REM sleep, while mesenteric vascular conductance increased simultaneously by 5 +/- 2% (P < 0.05). There was a significant (Pearson's correlation coefficient = 0.94, P < 0.05) inverse linear relationship between LSNA and the iliac blood flow. Unilateral lumbar sympathectomy blunted the reduction of iliac blood flow induced by the onset of REM sleep. The present observations suggest that the onset of REM sleep appears to be associated with a vasodilation in viscera and a vasoconstriction in skeletal muscle, such that systemic arterial pressure increases during REM sleep in rats.
Collapse
Affiliation(s)
- Kenju Miki
- Department of Environmental Health, Life Science and Human Technology, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | | | | | | | | |
Collapse
|
25
|
Nakamura T, Kawahara K, Kusunoki M, Feng Z. Microneurography in anesthetized rats for the measurement of sympathetic nerve activity in the sciatic nerve. J Neurosci Methods 2003; 131:35-9. [PMID: 14659821 DOI: 10.1016/s0165-0270(03)00234-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microneurography is widely used for the measurement of human peripheral sympathetic nerve activity (SNA) in conscious subjects by virtue of its low invasive nature, but has rarely been employed in animal experiments. Because the low invasive nature sometimes is very useful even in animal experiments, we tested its feasibility for the measurement of SNA in the sciatic nerve of the anesthetized rat, aiming in particular to establish a methodology for measurement. A tungsten microelectrode was inserted into the nerve exposed at the thigh level to detect the "spontaneous, intermittent burst" signal that is one of the main characteristics of compound SNA. Such signals were found in more than 70% of experiments after surgical operators became accustomed to the method. Whenever such signals were detected, electrical stimulation of the sympathetic chain resulted in induced action potentials detected with the microelectrode after a reasonable conduction period. The spikes were successfully reduced after administration of hexamethonium bromide, a sympathetic ganglion blocker. On the other hand, induced spikes were never observed when we failed to find the "spontaneous, intermittent burst" signal. The results demonstrate the feasibility of microneurography in evaluating SNA in anesthetized small animals, and that the "spontaneous, intermittent burst" signal may be sufficient to identify SNA.
Collapse
Affiliation(s)
- Takao Nakamura
- Department of Bio-System Engineering, Faculty of Engineering, Yamagata University, Yonezawa 992-8510, Japan.
| | | | | | | |
Collapse
|
26
|
Abstract
Complex regional pain syndrome (CRPS) is the result of changes to the somatosensory systems that process noxious, tactile, and thermal information; to the sympathetic systems that innervate skin (blood vessels, sweat glands); and to the somatomotor systems. The changes suggest that the CNS representations of the systems have been altered. Patients with CRPS also have peripheral changes (eg, oedema, signs of inflammation, sympathetic-afferent coupling [the basis for sympathetically maintained pain], and trophic changes) that cannot be explained by central changes. On the basis of clinical observation and research in human beings and animals, we hypothesise that CRPS is a systemic disease involving the CNS and peripheral nervous system. The most important question for future research is what causes CRPS? In this article, we suggest a change to the focus of research efforts and treatment. We also suggest there be diagnostic reclassification and redefinition of CRPS.
Collapse
Affiliation(s)
- Wilfrid Jänig
- Department of Physiology, Christian-Albrechts-University of Kiel, Kiel, Germany.
| | | |
Collapse
|
27
|
Mary DASG, Stoker JB. The activity of single vasoconstrictor nerve units in hypertension. ACTA PHYSIOLOGICA SCANDINAVICA 2003; 177:367-76. [PMID: 12609008 DOI: 10.1046/j.1365-201x.2003.01082.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM It has long been established from controlled experiments in anaesthetized animals that it is more accurate to quantify the mean frequency of efferent sympathetic nerve activity from single unit than from multi-unit bursts recordings. More recently, sympathetic nerve hyperactivity has been reported in patients with essential hypertension (EHT) when using microneurographic recordings from peripheral efferent nerves. This review will focus on the mean frequency of single unit of muscle sympathetic nerve activity (s-MSNA) in relation to that of multi-unit bursts (MSNA) as obtained by microneurography in EHT. RESULTS We have shown that the resting levels of s-MSNA and MSNA were increased in uncomplicated EHT, white coat hypertension and in EHT complicated by left ventricular hypertrophy. There was a relatively greater increase in s-MSNA than in MSNA in mild hypertension and in complicated EHT. We also found that both s-MSNA and MSNA were increased to a similar extent in conditions known to affect reflexes emanating from the heart and influencing sympathetic output, such as acute myocardial infarction. In other preliminary studies, the increase of s-MSNA in response to the discomfort of cold pressor test was greater than that of MSNA and this difference was abolished by the centrally sympatholytic agent moxonidine. CONCLUSION These results are consistent with the hypothesis that an increase in the mean frequency of central sympathetic discharge to the periphery (greater s-MSNA than MSNA) is involved in the pathogenesis and complications of EHT. Target organ damage may in turn lead to an increase in overall sympathetic output (excessive MSNA increase) through the operation of peripheral reflex mechanisms.
Collapse
Affiliation(s)
- D A S G Mary
- The Department of Cardiology, St James's University Hospital, Leeds, UK
| | | |
Collapse
|
28
|
Jänig W, Häbler HJ. Neurophysiological analysis of target-related sympathetic pathways--from animal to human: similarities and differences. ACTA PHYSIOLOGICA SCANDINAVICA 2003; 177:255-74. [PMID: 12608996 DOI: 10.1046/j.1365-201x.2003.01088.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sympathetic nervous system regulates many different target tissues in the somatic and visceral domains of the body in a differentiated manner, indicating that there exist separate sympathetic pathways that are functionally defined by their target cells. Signals generated by central integration and channelled through the preganglionic neurons into the final sympathetic pathways are precisely transmitted through the para- and prevertebral ganglia and at the neuroeffector junctions to the effector cells. Neurophysiological recordings of activity in postganglionic neurons in skin and muscle nerves using microneurography in human subjects and in skin, muscle and visceral nerves, using conventional recording techniques in anaesthetized animals, clearly show that each type of sympathetic neuron exhibits a discharge pattern that is characteristic for its target cells and, therefore, its function. These findings justify labelling the neurons as muscle vasoconstrictor, cutaneous vasoconstrictor, sudomotor, lipomotor, cardiomotor, secretomotor neurons, etc. The discharge patterns monitor aspects of the central organization of the respective sympathetic system in the neuraxis and forebrain. They can be dissected into several distinct reflexes (initiated by peripheral and central afferent inputs) and reactions connected to central signals (related to respiration, circadian and other rhythms, command signals generated in the forebrain, etc). They are functional markers for the sympathetic final pathways. These neurophysiological recordings of the discharge patterns from functionally identified neurons of sympathetic pathways in the human and in animals are the ultimate reference for all experimental investigations that aim to unravel the central organization of the sympathetic systems. The similarities of the results obtained in the in vivo studies in the human and in animals justify concluding that the principles of the central organization of sympathetic systems are similar, if not identical, at least in the neuraxis, in both species. Future progress in the analysis of the central neuronal circuits that are associated with the different final sympathetic pathways will very much depend on whether we are able to align the human models and the animal models. Human models using microneurography have the advantage to work under awake conditions. The activity in the postganglionic neurons can be correlated with various other (afferent, centrally generated) signals, effector responses, perceptions, central changes monitored by imaging methods, etc. However, human models have considerable limitations. Animal models can be divided into in vivo models and various types of reduced in vitro models. Animal models allow using various methodological approaches (e.g., neurophysiological, pharmacological, modern anatomical tracing methods; behavioural animal models; transgenic animals), which cannot be used in the human. Interaction of the research performed in the human and animals will allow to design animal models that are relevant for diseases in which the sympathetic nervous systems is involved and to trace down the underlying pathophysiological mechanisms. The scientific questions to be asked are formulated on the basis of clinical observations resulting in testable hypotheses that are investigated in the in vivo human and animal models. Results obtained in the in vivo models lead to the formulation of hypotheses that are testable in reduced in vivo and particularly in vitro animal models. Microneurographic recordings from sympathetic postganglionic fibres in the human will keep its place in the analysis of the sympathetic nervous system in health and disease although only relatively few laboratories in the world will be able to keep the standards and expertise to use this approach. Experimental investigation of the organization of the sympathetic nervous system in animal models has changed dramatically in the last 15 years. The number of in vitro models and the methodological diversity have increased. In vivo experimentation on larger animals has almost disappeared and has been replaced by experimentation on rats, which became the species for practically all types of studies on the central organization of the sympathetic nervous system.
Collapse
Affiliation(s)
- W Jänig
- Physiologisches Institut, Christian-Albrechts-Universität zu Kiel, Germany
| | | |
Collapse
|
29
|
Macefield VG, Elam M, Wallin BG. Firing properties of single postganglionic sympathetic neurones recorded in awake human subjects. Auton Neurosci 2002; 95:146-59. [PMID: 11871781 DOI: 10.1016/s1566-0702(01)00389-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For over three decades, the technique of microneurography has allowed us to record sympathetic neural outflow directly from postganglionic axons in awake human subjects. But because sympathetic axons are clustered within a nerve fascicle, such recordings have been limited to the analysis of multi-unit neural activity. To improve the information content of intraneural recordings, we developed the single-unit approach, in which focal recordings can be made from a single C-fibre via a high-impedance tungsten microelectrode. In this review, we describe our methodology for analyzing unitary sympathetic activity and discuss the similarities in the firing properties of individual muscle vasoconstrictor, cutaneous vasoconstrictor and sudomotor neurones.
Collapse
|
30
|
Ernsberger U. The development of postganglionic sympathetic neurons: coordinating neuronal differentiation and diversification. Auton Neurosci 2001; 94:1-13. [PMID: 11775697 DOI: 10.1016/s1566-0702(01)00336-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The fine-tuned operation of the nervous system is accomplished by a diverse set of neurons which differ in their morphology, biochemistry and, consequently, their functional properties. The accurate interconnection between different neuron populations and their target tissues is the prerequisite for physiologically appropriate information processing. This is exemplified by the regulatory action of the autonomic nervous system in vertebrates to sustain homeostasis under changing physiological demands. For this purpose, the coordination of divergent regulatory responses is required in a multitude of tissues spread over the entire body. To meet this task, diverse neuronal populations interact at different levels. In the sympathetic system. chemical relations between preganglionic and postganglionic neurons appear to differ along the rostrocaudal axis. In addition, postganglionic neurons innervating different target tissues at a segmental level have distinct properties. Differences in their preganglionic innervation and their integrative membrane properties result in diverse activation patterns upon reflex stimulation. Moreover, postganglionic neurons differ in the transmitter molecules they employ to convey information to the target tissues. The segregation of noradrenaline and acetylcholine to different populations of postganglionic sympathetic neurons is well established. A combination of cellular and molecular approaches has begun to uncover how such a complex system may be generated during development. Growth and transcription factors involved in noradrenergic and cholinergic differentiation are characterised. Interestingly, they can also promote the expression of proteins involved in transmitter secretion. As the proteins participating in the vesicle cycle are expressed in many neuron populations, whereas the enzymes of transmitter biosynthesis are restricted to subpopulations of neurons, the findings suggest that early in neuronal development subpopulation-specific and more widely expressed neuronal properties can be commonly induced. Still, many details concerning the signals involved in the induction of the neurotransmitter synthesis and release machinery remain to be worked out. Likewise, the regulatory processes resulting in differences of electrophysiological membrane properties and the specific recognition between pre- and postganglionic neurons have to be determined. Ultimately, this will lead to an understanding at the molecular level of the development of a nervous system with diverse neuronal populations that are specifically interconnected to distinct input neurons and target tissues as required for the performance of a complex regulatory function.
Collapse
Affiliation(s)
- U Ernsberger
- Interdisziplinäres Zentrum für Neurowissenschaften, Institut für Anatomie und Zellbiologie III, Heidelberg, Germany.
| |
Collapse
|
31
|
Elam M. What lies above and beyond the concept of "sympathetically maintained pain"? Clin Auton Res 2001; 11:331-3. [PMID: 11794711 DOI: 10.1007/bf02292762] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Abstract
1. In a search for sympathetic premotor neurons subserving thermoregulatory functions, medullary raphé-spinal neurons were studied in urethane-anaesthetized, artificially ventilated, paralysed rats. Extracellular unit recordings were made from a region previously shown to drive the sympathetic supplies to tail vessels and brown adipose tissue. Neurons that were antidromically activated by stimulation across the intermediate region of the upper lumbar cord (the origin of the tail sympathetic outflow) were selected for study. 2. Non-noxious cooling stimuli were delivered to the animal's shaved trunk by circulating cold instead of warm water through a water jacket. Cooling increased the activity of 21 out of 76 raphé-spinal neurons by 1.0 +/- 0.2 spikes x s(-1) degrees C(-1) for falls in skin temperature of 3-5 degrees C below a threshold of 35.0 +/- 0.6 degrees C. Their responses followed skin temperature in a graded manner, and did so whether or not there was any change in core (rectal) temperature. 3. Indirect observations suggested that seven of the neurons that were activated by skin cooling were also activated by falls in core temperature (by 2.1 +/- 0.7 spikes x s(-1) x degrees C(-1) below a threshold of 36.1 +/- 0.7 degrees C), while the remainder were unaffected by core cooling. 4. An additional 7/76 raphé-spinal neurons showed evidence of inhibition (activity reduced by 2.1 +/- 0.5 spikes x s(-1) x degrees C(-1)) when the trunk skin was cooled. 5. Cold-activated raphé-spinal neurons were found in the nuclei raphé magnus and pallidus, centred at the level of the caudal part of the facial nucleus. Their spinal axons conducted at velocities between 3.4 and 29 m x s(-1) (median 6.8). 6. Drug-induced rises in arterial pressure partially inhibited the discharge of 6/14 cold-activated raphé-spinal neurons. Weak-to-moderate cardiac modulation (10-70 %) was present in arterial pulse-triggered histograms of the activity of 11/21 cold-activated raphé-spinal neurons, and 6/6 showed evidence of ventilatory modulation (two strongly, four weakly) in pump-triggered histograms. 7. Raphé-spinal neurons responded to cooling in the absence of any change in the electroencephalogram pattern (6/6 neurons). 8. Most cold-activated raphé-spinal neurons responded to noxious tail pinch (13/21 inhibited, 6/21 excited), as did most thermally unresponsive raphé-spinal cells in the same region (19/41 excited, 9/41 inhibited). 9. It is suggested that these cold-activated raphé-spinal neurons may constitute a premotor pathway that drives sympathetically mediated cold defences, such as cutaneous vasoconstriction or thermogenesis. The data are consistent with the hypothesis that a brainstem reflex, with additional descending input signalling body core temperature, may mediate autonomic responses to environmental cooling.
Collapse
Affiliation(s)
- J A Rathner
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
33
|
Abstract
Respiration is a powerful modulator of heart rate variability, and of baro- and chemoreflex sensitivity. Abnormal respiratory modulation of heart rate is often an early sign of autonomic dysfunction in a number of diseases. In addition, increase in venous return due to respiration may help in maintaining blood pressure during standing in critical situations. This review examines the possibility that manipulation of breathing pattern may provide beneficial effects in terms not only of ventilatory efficiency, but also of cardiovascular and respiratory control in physiologic and pathologic conditions, such as chronic heart failure. This opens a new area of future research in the better management of patients with cardiovascular autonomic dysfunction.
Collapse
Affiliation(s)
- L Bernardi
- Dipartimento di Medicina Interna, University of Pavia, Italy.
| | | | | | | | | |
Collapse
|
34
|
Pan HL, Deal DD, Xu Z, Chen SR. Differential responses of regional sympathetic activity and blood flow to visceral afferent stimulation. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1781-9. [PMID: 11353683 DOI: 10.1152/ajpregu.2001.280.6.r1781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sympathetic nervous system is essential for the cardiovascular responses to stimulation of visceral afferents. It remains unclear how the reflex-evoked sympathetic output is distributed to different vascular beds to initiate the hemodynamic changes. In the present study, we examined changes in regional sympathetic nerve activity and blood flows in anesthetized cats. Cardiovascular reflexes were induced by either electrical stimulation of the right splanchnic nerve or application of 10 μg/ml of bradykinin to the gallbladder. Blood flows were measured using colored microspheres or the Transonic flow meter system. Sympathetic efferent activity was recorded from the left splanchnic, inferior cardiac, and tibial nerves. Stimulation of visceral afferents decreased significantly blood flows in the celiac (from 49 ± 4 to 25 ± 3 ml/min) and superior mesenteric (from 35 ± 4 to 23 ± 2 ml/min) arteries, and the vascular resistance in the splanchnic bed was profoundly increased. Consistently, stimulation of visceral afferents decreased tissue blood flows in the splanchnic organs. By contrast, activation of visceral afferents increased significantly blood flows in the coronary artery and portal vein but did not alter the vascular resistance of the femoral artery. Furthermore, stimulation of visceral afferents increased significantly sympathetic efferent activity in the splanchnic (182 ± 44%) but not in the inferior cardiac and tibial nerves. Therefore, this study provides substantial new evidence that stimulation of abdominal visceral afferents differentially induces sympathetic outflow to the splanchnic vascular bed.
Collapse
Affiliation(s)
- H L Pan
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | |
Collapse
|
35
|
Abstract
This review focuses on the nervous control of the caudal ventral artery of the rat tail, and aims to convince the reader that sympathetic control of the vasculature can be mediated via neural oscillators intrinsic to the sympathetic nervous system. The definitive functional significance of these oscillators is unknown at present. However, it is expected that through dynamic relationships with modulating and driving inputs, such oscillators would permit graded vascular responses.
Collapse
Affiliation(s)
- J E Smith
- Department of Physiology, St. George's Hospital Medical School, Tooting, London, UK.
| |
Collapse
|
36
|
Stanton-Hicks M. Reflex sympathetic dystrophy: a sympathetically mediated pain syndrome or not? CURRENT REVIEW OF PAIN 2001; 4:268-75. [PMID: 10953274 DOI: 10.1007/s11916-000-0103-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Because of the controversy concerning the manner in which the sympathetic nervous system is involved in reflex sympathetic dystrophy (RSD), its name was changed to one having no mechanistic connotations. This article reviews the relevant literature in support of not only the taxonomical changes to complex regional pain syndrome (CRPS) but also provides evidence of sympathetic dysfunction demonstrated in animal models of neuropathic pain.
Collapse
Affiliation(s)
- M Stanton-Hicks
- Pain Management and Research, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
37
|
Abstract
1. Intermittent bursts of activity are a robust feature of the discharges of sympathetic nerves. There are at least two major mechanisms producing such discharges: (i) phasic inputs influencing sympathetic circuits; and (ii) oscillators embedded within sympathetic networks. The functional significance of patterned and synchronized activity underlying bursts of population activity may reside in their influence on information transfer between excitable cells. At the level of the single neuron, firing pattern appears to be an important determinant of synaptic/neuroeffector function (e.g. the probability of transmitter release, the types of transmitter released, the types of receptor activated and plasticity). Synchronization of inputs at a target favours summation and, therefore, may influence response (short term and long term). 2. In the present paper, I review the work from my laboratory that has focused on furthering understanding of the potential functional importance of pattern and synchrony coding in sympathetic nervous control of cardiovascular function. Because the rat tail artery has been used extensively as a model for studying neuroeffector transmission, in our investigations we have recorded from its sympathetic innervation. 3. In the anaesthetized preparation, under steady state conditions, we have established that the discharges of these sympathetic neurons have a distinct rhythm (frequency approximately 0.8 Hz). This can be detected both at single neuron and population levels. 4. A family of oscillators appears to control their discharge such that under some conditions all neurons do not have the same frequency of rhythmical activity. However, these weakly coupled or uncoupled oscillators can be synchronized dynamically by various inputs, such as central respiratory drive, lung inflation cycle-related inputs and inputs arising from visceral and somatic afferents. 5. The potential functional significance of dynamic synchronization of sympathetic oscillators in relation to sympathetic pattern generation and neuroeffector transmission is discussed.
Collapse
Affiliation(s)
- M P Gilbey
- Department of Physiology, University College London, United Kingdom.
| |
Collapse
|
38
|
Kukwa W, Macioch T, Rola R, Szulczyk P. Kinetic and pharmacological properties of Ca(2+) currents in postganglionic sympathetic neurones projecting to muscular and cutaneous effectors. Brain Res 2000; 873:173-80. [PMID: 10915828 DOI: 10.1016/s0006-8993(00)02552-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Voltage-gated Ca(2+) channels are expressed in neurones and greatly influence neuronal activity by activating Ca(2+)-dependent K(+) channels. The whole cell patch-clamp technique was used to compare the kinetic and pharmacological properties of voltage-dependent Ca(2+) currents in two groups of sympathetic neurones identified by the fluorescent tracer Fast Blue: putative muscular sympathetic neurones (MSN) and putative cutaneous sympathetic neurones (CSN). The tracer was injected into the muscular part of the diaphragm (to mark MSN) and into the skin of the ear (to mark CSN). The capacitance of MSN (23.0 pF) was larger than the capacitance of CSN (12.6 pF). The maximum current in MSN (1.3 nA) was also larger than in CSN (0.93 nA). However, the current density was larger in CSN (77. 3 pA/pF) than in MSN (57.7 pA/pF) and the current activation rate was faster in CSN (0.27 nA/ms) than in MSN (0.19 nA/ms). V(1/2) and slope factors of activation and inactivation were not significantly different for MSN and CSN. The majority of Ca(2+) current was available for activation in both categories of neurones at resting membrane potential. Ca(2+) currents in MSN and CSN were blocked by nifedipine (7.0 and 3.6%, respectively), omega-Agatoxin-IVA (23.0 and 25.6%, respectively) and omega-conotoxin-GVIA (67.0 and 65.1%, respectively). We found that CSN are twice as small, have higher Ca(2+) current density and their Ca(2+) activation rate is faster in comparison to MSN. Such properties may lead to faster rise of Ca(2+) concentration in the cytoplasm of the CSN comparing to MSN and more effectively dampen their activity due to more effective activation of Ca(2+)-dependent K(+) current. Both kinds of neurones express high proportion of N and P/Q Ca(2+) current.
Collapse
Affiliation(s)
- W Kukwa
- The Medical University of Warsaw, Department of Experimental and Clinical Physiology, Warsaw, Poland
| | | | | | | |
Collapse
|
39
|
Jänig W, Khasar SG, Levine JD, Miao FJ. The role of vagal visceral afferents in the control of nociception. PROGRESS IN BRAIN RESEARCH 2000; 122:273-87. [PMID: 10737065 DOI: 10.1016/s0079-6123(08)62145-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
We have shown that activity in subdiaphragmatic vagal afferents modulates mechanical hyperalgesic behavior in the rat. Subdiaphragmatic vagotomy decreases paw-withdrawal threshold to mechanical stimulation (baseline and after intradermal injection of bradykinin), thus enhancing mechanical hyperalgesic behavior. Most of this decrease is generated by an endocrine signal released by the adrenal medullae because denervation or removal of the adrenal medullae prevents or reverses these changes. This novel mechanism may imply that: (a) the brain is able to regulate sensitivity of nociceptors all over the body by a neuroendocrine mechanisms, (b) sensitivity of nociceptors can be influenced by changes in parts of the body which are remote from the location of the sensitized nociceptors and (c) circulating catecholamines can influence nociceptors in a way which is different from those reported so far (see Jänig and McLachlan, 1994; Jänig, 1996a; Jänig et al., 1996).
Collapse
Affiliation(s)
- W Jänig
- Physiologisches Institut, Christian-Albrechts-Universität zu Kiel, Germany.
| | | | | | | |
Collapse
|
40
|
Jänig W, Häbler HJ. Specificity in the organization of the autonomic nervous system: a basis for precise neural regulation of homeostatic and protective body functions. PROGRESS IN BRAIN RESEARCH 2000; 122:351-67. [PMID: 10737070 DOI: 10.1016/s0079-6123(08)62150-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Experimental investigations of the lumbar sympathetic outflow to skin, skeletal muscle and viscera and the thoracic sympathetic outflow to the head and neck have shown that each target organ and tissue is supplied by one or two separate pathways which consists of sets of pre- and postganglionic neurons with distinct patterns of reflex activity. This probably applies to all sympathetic and parasympathetic systems. The specificity of the messages that these peripheral pathways transmit from the central nervous system arises from integration within precisely organized pathways in the neuraxis. The messages in these discrete functional pathways are transmitted to the target tissues often via organized neuroeffector junctions. Modulation in the periphery can occur within each pathway, both in ganglia and at the level of the effector organs. This organization is the basis not only for precise neural regulations of all homeostatic body functions in which the autonomic nervous system is involved but also the basis of one main component in the regulation of protective body functions: (a) Elementary defense behaviors which are organized in the mesencephalon (confrontational defense, flight, quiescence), (b) regulation of the immune system by the sympathetic nervous system, and (c) adaptive autonomic motor responses during basic emotions require precisely working autonomic, in particular sympathetic, systems. In this sense, the concept of the functioning of the sympathetic nervous system in an "all-or-none" fashion, without distinction between different effector organs, and of simple functional antagonistic organization between sympathetic and parasympathetic nervous system is misleading, inadequate and untenable.
Collapse
Affiliation(s)
- W Jänig
- Physiologisches Institut, Christian-Albrechts-Universität zu Kiel, Germany.
| | | |
Collapse
|
41
|
Kishi E, Ootsuka Y, Terui N. Different cardiovascular neuron groups in the ventral reticular formation of the rostral medulla in rabbits: single neurone studies. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 2000; 79:74-83. [PMID: 10699637 DOI: 10.1016/s0165-1838(99)00079-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To examine whether the cardiovascular neurons of the ventral medulla consist of functionally different kinds of neurons, single neuronal activity of the ventral medulla, activity of the renal sympathetic nerves (RSNA), blood flow of the ear (EarBF) and arterial pressure (AP) were recorded in urethane-anesthetized, vagotomized and immobilized rabbits during electrical stimulation of the aortic nerve (AN, baroreceptor afferent fibers) and electrical stimulation of the dorsomedial hypothalamus (DMH) that reduced EarBF but less affected on AP and RSNA. The dorsolateral funiculus of the second cervical cord was stimulated to evoke antidromic spikes of medullary neurons. Two kinds of reticulo-spinal neurons were identified. Activities of one kind of neurons were facilitated by stimulation of DMH (latency 48.6+/-27.6 ms, n=11) but they did not respond to stimulation of the AN. Therefore, it was presumed that these neurons controlled vasomotion of the ear through the vasoconstrictor neurons in the spinal cord but did not participate in regulation of systemic AP. Activities of the other neurons were inhibited by stimulation of the AN (latency 47.8+/-8 4 ms, n=16) but they did not respond to the DMH stimulation. These neurons were identical to those reported previously as the RVLM neurons, and they contributed to regulate systemic AP but might not participate in control of cutaneous vascular movement. The former neurons were located medially to the latter in the reticular formation of the rostral ventral medulla. These results provided evidence at the single neuronal level that the cardiovascular neurons in the ventral medulla were consisted of functionally different sympatho-excitatory neurons and they were located at the different sites in the rostral ventral medulla.
Collapse
Affiliation(s)
- E Kishi
- Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki-ken, Japan
| | | | | |
Collapse
|
42
|
Smith JE, Gilbey MP. Coherent rhythmic discharges in sympathetic nerves supplying thermoregulatory circulations in the rat. J Physiol 2000; 523 Pt 2:449-57. [PMID: 10699088 PMCID: PMC2269801 DOI: 10.1111/j.1469-7793.2000.00449.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. In anaesthetised rats, activity recorded from sympathetic postganglionic neurones innervating the tail circulation has characteristic rhythmicity (0.4-1.2 Hz). At the population level this rhythmicity can be seen as a peak (T-peak) in autospectra of sympathetic activity recorded from ventral collector nerves (VCNs). 2. Here we investigated whether nerves supplying thermoregulatory circulations share common rhythmic discharges at T-peak frequency. Activity was recorded from nerve pairs consisting of left ventral collector nerve (LVCN) and one of the following: right ventral collector nerve (RVCN), left dorsal collector nerve (DCN), left saphenous nerve (SN) or left renal nerve (RN). 3. During central apnoea, T-peak frequencies in RVCN autospectra were similar to those of simultaneously recorded LVCN and these activities were coherent. Similar observations were made for nerve pairs involving LVCN-DCN and LVCN-SN. In contrast, autospectra of RN activity did not contain T-peaks. 4. In comparison to the peaks in autospectra of RN activity, when the frequency of rhythmic phrenic nerve activity was manipulated T-peaks in VCN, DCN and SN autospectra did not show obligatory 1:1 locking. 5. We conclude that T-peaks are a robust feature of autospectra of sympathetic discharges supplying thermoregulatory circulation but not those influencing the kidney. The high coherence demonstrated between the T-peak discharges is consistent with the view that common/coupled oscillators located within the CNS influence cutaneous vasoconstrictor sympathetic activity.
Collapse
Affiliation(s)
- J E Smith
- Autonomic Neuroscience Institute, Department of Physiology, Royal Free and University College Medical School, University College London, London NW3 2PF, UK
| | | |
Collapse
|
43
|
Jänig W, Häbler HJ. Sympathetic nervous system: contribution to chronic pain. PROGRESS IN BRAIN RESEARCH 2000. [DOI: 10.1016/s0079-6123(00)80003-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Hogan N, Kardos A, Paterson DJ, Casadei B. Effect of exogenous nitric oxide on baroreflex function in humans. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H221-7. [PMID: 10409200 DOI: 10.1152/ajpheart.1999.277.1.h221] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) donors inhibit sympathetic neurotransmission and baroreceptor activity and can directly stimulate heart rate (HR) in vitro. To assess whether exogenous NO affects cardiovascular autonomic control in humans, we tested the baroreceptor-cardiac reflex [baroreflex sensitivity (BRS)] and the arterial blood pressure (BP) and HR variability during an infusion of the NO donor sodium nitroprusside (SNP, 2 micrograms . kg(-1). min(-1)) or 5% glucose in 16 healthy subjects. The hypotensive action of SNP was prevented by phenylephrine (PE, 0.9 +/- 0.15 micrograms . kg(-1). min(-1)). The SNP + PE infusion did not affect BRS or HR variability, but it caused a significant reduction in the diastolic and systolic BP low-frequency power. In addition, SNP + PE caused a sustained 12% increase in HR in the absence of changes in brachial and aortic BP. In conclusion, SNP had no effect on the cardiac-vagal limb of the baroreflex in humans but caused a substantial reduction in BP low-frequency power consistent with a decreased baroreflex/sympathetic control of peripheral resistance. The increase in HR in the absence of baroreceptor downloading confirms our previous finding of a direct positive chronotropic effect of NO donors.
Collapse
Affiliation(s)
- N Hogan
- Department of Cardiovascular Medicine, John Radcliffe Hospital, Oxford OX3 9UD, United Kingdom
| | | | | | | |
Collapse
|
45
|
Macefield VG, Wallin BG. Firing properties of single vasoconstrictor neurones in human subjects with high levels of muscle sympathetic activity. J Physiol 1999; 516 ( Pt 1):293-301. [PMID: 10066942 PMCID: PMC2269206 DOI: 10.1111/j.1469-7793.1999.293aa.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. Single-unit recordings were made from 19 postganglionic muscle vasoconstrictor axons via tungsten microelectrodes in the peroneal nerve in seven healthy subjects with many multi-unit sympathetic discharges at rest ('high group', 75 +/- 5 multi-unit bursts per 100 heart beats, mean +/- s.e.m.). The results were compared with previous data from 14 units in subjects with 21 +/- 2 multi-unit bursts per 100 heart beats ('low group'). 2. In the 'high group' the units fired spontaneously in 35 +/- 4 % of all cardiac intervals. One unit only ever fired once per cardiac interval, 14 units (74 %) generated maximally two to three spikes, and four units (21 %) up to four to five spikes. Of those cardiac intervals in which a unit fired, a single spike occurred in 78 %, two spikes in 18 %, three spikes in 4 % and four spikes in less than 1 % of cardiac intervals. Measured as the inverse of all interspike intervals, the mean rate was 0.33 +/- 0.04 Hz and the mean intraburst frequency 22.2 +/- 1.6 Hz. Most results were similar to those in the 'low group', but in the 'low group' heart rate was higher (64.5 vs. 50.4 beats min-1) and mean firing frequency was higher (0.49 +/- 0.06 Hz). 3. During increases of multi-unit burst activity evoked by sustained inspiratory-capacity apnoea the firing probability of nine units in the 'high group' increased from 33 +/- 6 to 56 +/- 3 % of the cardiac intervals. Simultaneously, the incidence of single spikes decreased and the incidence of multiple spikes per cardiac interval increased, resulting in an increase of mean firing frequency from 0. 23 +/- 0.04 Hz at rest to 1.04 +/- 0.14 Hz during the apnoea. 4. We conclude that single muscle vasoconstrictor neurones usually fire only a solitary spike during sympathetic bursts both in subjects with a high and in subjects with a low number of bursts at rest. Presumably, differences in the numbers of bursts are due mainly to differences in firing probability and recruitment of sympathetic fibres. During acute increases of multi-unit activity, both increases in discharge frequency and recruitment of additional neurones contribute to the increased intensity of an individual sympathetic burst.
Collapse
Affiliation(s)
- V G Macefield
- Institute of Clinical Neurosciences, Department of Clinical Neurophysiology, University of Goteborg, Sahlgren University Hospital, S-413 45 Goteborg, Sweden.
| | | |
Collapse
|
46
|
Macefield VG, Wallin BG. Respiratory and cardiac modulation of single sympathetic vasoconstrictor and sudomotor neurones to human skin. J Physiol 1999; 516 ( Pt 1):303-14. [PMID: 10066943 PMCID: PMC2269223 DOI: 10.1111/j.1469-7793.1999.303aa.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. The firing of single sympathetic neurones was recorded via tungsten microelectrodes in cutaneous fascicles of the peroneal nerve in awake humans. Studies were made of 17 vasoconstrictor neurones during cold-induced cutaneous vasoconstriction and eight sudomotor neurones during heat-induced sweating. Oligounitary recordings were obtained from 8 cutaneous vasconstrictor and 10 sudomotor sites. Skin blood flow was measured by laser Doppler flowmetry, and sweating by changes in skin electrical resistance within the innervation territory on the dorsum of the foot. 2. Perispike time histograms revealed respiratory modulation in 11 (65 %) vasoconstrictor and 4 (50 %) sudomotor neurones. After correcting for estimated conduction delays, the firing probability was higher in inspiration for both classes of neurone. Measured from the oligounitary recordings, the respiratory modulation indices were 67. 7 +/- 3.9 % for vasoconstrictor and 73.5 +/- 5.7 % for sudomotor neurones (means +/- s.e.m.). As previously found for sudomotor neurones, cardiac rhythmicity was expressed by 7 (41 %) vasoconstrictor neurones, 5 of which showed no significant coupling to respiration. Measured from the oligounitary records, the cardiac modulation of cutaneous vasoconstrictor activity was 58.6 +/- 4.9 %, compared with 74.4 +/- 6.4 % for sudomotor activity. 3. Both vasoconstrictor and sudomotor neurones displayed low average firing rates (0.53 and 0.62 Hz, respectively). The percentage of cardiac intervals in which units fired was 38 % and 35 %, respectively. Moreover, when considering only those cardiac intervals when a unit fired, vasoconstrictor and sudomotor neurones generated a single spike 66 % and 67 % of the time. Rarely were more than four spikes generated by a single neurone. 4. We conclude that human cutaneous vasoconstrictor and sudomotor neurones share several properties: both classes contain subpopulations that are modulated by respiration and/or the cardiac cycle. The data suggest that the intensity of a multi-unit burst of vasoconstrictor or sudomotor impulses is probably governed primarily by firing incidence and the recruitment of additional neurones, rather than by an increase in the number of spikes each unit contributes to a burst.
Collapse
Affiliation(s)
- V G Macefield
- Institute of Clinical Neurosciences, Department of Clinical Neurophysiology, University of Goteborg, Sahlgren University Hospital, S-413 45 Goteborg, Sweden.
| | | |
Collapse
|
47
|
Abstract
The characteristic rhythmical discharges of single postganglionic sympathetic neurones (PSNs) innervating the caudal ventral tail artery (CVA) of anaesthetised rats can still be recorded following the sectioning of afferents arising from the tail and hindquarters. Consequently, we suggest that such rhythmical discharges are neither a 'local sign' sympathetic response nor a sympathetic correlate of 'escape behaviour'.
Collapse
Affiliation(s)
- J E Smith
- Autonomic Neuroscience Institute, Department of Physiology, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK
| | | |
Collapse
|
48
|
Johnson CD, Gilbey MP. Effects of aortic nerve stimulation on discharges of sympathetic neurons innervating rat tail artery and vein. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:R942-9. [PMID: 9756521 DOI: 10.1152/ajpregu.1998.275.4.r942] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activity was recorded from postganglionic sympathetic neurons (PSNs) innervating either the caudal ventral artery (CVA) or a lateral vein (LV) of the tail circulation of anesthetized rats. The study sought to determine whether sympathetic activity directed at the CVA and LV was influenced by cardiovascular mechanoreceptor afferents and whether this effect was differential. Cardiac rhythmicity was not a robust component of either CVA PSN activity or LV PSN activity. Stimulation of an aortic nerve with short trains was followed by a decreased probability of discharge in both CVA and LV PSNs that was followed by a series of peaks that showed a constant periodicity that was not significantly different from that revealed by autocorrelogram analysis over the same data set. The latter dominant periodicity is referred to in this and related previous publications as the T rhythm. Furthermore, blood volume expansion and long-train aortic nerve stimulation produced a significant decrease in the frequency of the T rhythm. It is concluded that the CVA and LV sympathetic activity can be influenced by inputs from cardiovascular mechanoreceptors and that this effect is mediated in part by a modulation of the T rhythm.
Collapse
Affiliation(s)
- C D Johnson
- Autonomic Neuroscience Institute, Department of Physiology, Royal Free Hospital School of Medicine, London NW3 2PF, United Kingdom
| | | |
Collapse
|
49
|
McLachlan EM, Habler HJ, Jamieson J, Davies PJ. Analysis of the periodicity of synaptic events in neurones in the superior cervical ganglion of anaesthetized rats. J Physiol 1998; 511 ( Pt 2):461-78. [PMID: 9706023 PMCID: PMC2231137 DOI: 10.1111/j.1469-7793.1998.461bh.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/1998] [Accepted: 05/22/1998] [Indexed: 11/30/2022] Open
Abstract
1. The patterns of on-going synaptic events recorded intracellularly in neurones of superior cervical ganglia (SCG)of anaesthetized female rats were analysed by constructing inter-event interval histograms, autocorrelograms, ln-survivor curves and histograms triggered by the arterial pulse wave and by the intercostal EMG. 2. In 11/12 cells with on-going frequencies > 0.5 Hz, one or two inputs were strong (i.e. always suprathreshold). In five cells, action potentials also arose from synaptic potentials with amplitudes close to threshold. 3. Synaptic events in 5/11 neurones tested were phase-related to the arterial pressure wave (i.e. had cardiac rhythmicity, CR). 4. Synaptic events in 9/10 neurones tested (including all with CR) were phase-related to the intercostal EMG and/or their autocorrelograms showed peaks at multiples of the respiratory interval (i.e. had respiratory rhythmicity, RR). 5. The intervals between all synaptic events were exponentially distributed in 8/12 neurones although intervals between single strong events showed peaks related to the respiratory cycle. Bursts occurred only by chance. 6. Event patterns could be simulated by combining events from several respiration-modulated inputs with their timing distributed over nearly half the cycle. From the simulations, the mean number of active preganglionic inputs was estimated to be approximately 6 with mean discharge frequency approximately 0.4 Hz. 7. We conclude that, in the spontaneously breathing anaesthetized rat, most preganglionic neurones to the SCG fire with relatively low probability in relation to the respiratory cycle. Rhythms in a postganglionic neurone reflect the activity of its suprathreshold preganglionic inputs.
Collapse
Affiliation(s)
- E M McLachlan
- Prince of Wales Medical Research Institute, Randwick, NSW 2031, Australia
| | | | | | | |
Collapse
|
50
|
Iriki M, Saigusa T. Regional differentiation of sympathetic efferents during fever. PROGRESS IN BRAIN RESEARCH 1998; 115:477-97. [PMID: 9632948 DOI: 10.1016/s0079-6123(08)62048-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- M Iriki
- Yamanashi Institute of Environmental Sciences, Japan
| | | |
Collapse
|