1
|
Jung KW, Kwon S, Jung JH, Bahn YS. Essential Roles of Ribonucleotide Reductases under DNA Damage and Replication Stresses in Cryptococcus neoformans. Microbiol Spectr 2022; 10:e0104422. [PMID: 35736239 PMCID: PMC9431586 DOI: 10.1128/spectrum.01044-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
A balance in the deoxyribonucleotide (dNTPs) intracellular concentration is critical for the DNA replication and repair processes. In the model yeast Saccharomyces cerevisiae, the Mec1-Rad53-Dun1 kinase cascade mainly regulates the ribonucleotide reductase (RNR) gene expression during DNA replication and DNA damage stress. However, the RNR regulatory mechanisms in basidiomycete fungi during DNA replication and damage stress remain elusive. Here, we observed that in C. neoformans, RNR1 (large RNR subunit) and RNR21 (one small RNR subunit) were required for cell viability, but not RNR22 (another small RNR subunit). RNR22 overexpression compensated for the lethality of RNR21 suppression. In contrast to the regulatory mechanisms of RNRs in S. cerevisiae, Rad53 and Chk1 kinases cooperatively or divergently controlled RNR1 and RNR21 expression under DNA damage and DNA replication stress. In particular, this study revealed that Chk1 mainly regulated RNR1 expression during DNA replication stress, whereas Rad53, rather than Chk1, played a significant role in controlling the expression of RNR21 during DNA damage stress. Furthermore, the expression of RNR22, not but RNR1 and RNR21, was suppressed by the Ssn6-Tup1 complex during DNA replication stress. Notably, we observed that RNR1 expression was mainly regulated by Mbs1, whereas RNR21 expression was cooperatively controlled by Mbs1 and Bdr1 as downstream factors of Rad53 and Chk1 during DNA replication and damage stress. Collectively, the regulation of RNRs in C. neoformans has both evolutionarily conserved and divergent features in DNA replication and DNA damage stress, compared with other yeasts. IMPORTANCE Upon DNA replication or damage stresses, it is critical to provide proper levels of deoxynucleotide triphosphates (dNTPs) and activate DNA repair machinery. Ribonucleotide reductases (RNRs), which are composed of large and small subunits, are required for synthesizing dNTP. An imbalance in the intracellular concentration of dNTPs caused by the perturbation of RNR results in a reduction in DNA repair fidelity. Despite the importance of their roles, functions and regulations of RNR have not been elucidated in the basidiomycete fungi. In this study, we found that the roles of RNR1, RNR21, and RNR22 genes encoding RNR subunits in the viability of C. neoformans. Furthermore, their expression levels are divergently regulated by the Rad53-Chk1 pathway and the Ssn6-Tup1 complex in response to DNA replication and damage stresses. Therefore, this study provides insight into the regulatory mechanisms of RNR genes to DNA replication and damage stresses in basidiomycete fungi.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Sunhak Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jong-Hyun Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Van der Nest MA, Olson A, Lind M, Vélëz H, Dalman K, Brandström Durling M, Karlsson M, Stenlid J. Distribution and evolution of het gene homologs in the basidiomycota. Fungal Genet Biol 2013; 64:45-57. [PMID: 24380733 DOI: 10.1016/j.fgb.2013.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/04/2013] [Accepted: 12/20/2013] [Indexed: 12/24/2022]
Abstract
In filamentous fungi a system known as somatic incompatibility (SI) governs self/non-self recognition. SI is controlled by a regulatory signaling network involving proteins encoded at the het (heterokaryon incompatible) loci. Despite the wide occurrence of SI, the molecular identity and structure of only a small number of het genes and their products have been characterized in the model fungi Neurospora crassa and Podospora anserina. Our aim was to identify and study the distribution and evolution of putative het gene homologs in the Basidiomycota. For this purpose we used the information available for the model fungi to identify homologs of het genes in other fungi, especially the Basidiomycota. Putative het-c, het-c2 and un-24 homologs, as well as sequences containing the NACHT, HET or WD40 domains present in the het-e, het-r, het-6 and het-d genes were identified in certain members of the Ascomycota and Basidiomycota. The widespread phylogenetic distribution of certain het genes may reflect the fact that the encoded proteins are involved in fundamental cellular processes other than SI. Although homologs of het-S were previously known only from the Sordariomycetes (Ascomycota), we also identified a putative homolog of this gene in Gymnopus luxurians (Basidiomycota, class Agaricomycetes). Furthermore, with the exception of un-24, all of the putative het genes identified occurred mostly in a multi-copy fashion, some with lineage and species-specific expansions. Overall our results indicated that gene duplication followed by gene loss and/or gene family expansion, as well as multiple events of domain fusion and shuffling played an important role in the evolution of het gene homologs of Basidiomycota and other filamentous fungi.
Collapse
Affiliation(s)
- M A Van der Nest
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden.
| | - A Olson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - M Lind
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - H Vélëz
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - K Dalman
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - M Brandström Durling
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - M Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - J Stenlid
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| |
Collapse
|
3
|
Nonself recognition through intermolecular disulfide bond formation of ribonucleotide reductase in neurospora. Genetics 2013; 193:1175-83. [PMID: 23335337 DOI: 10.1534/genetics.112.147405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Type I ribonucleotide reductases (RNRs) are conserved across diverse taxa and are essential for the conversion of RNA into DNA precursors. In Neurospora crassa, the large subunit of RNR (UN-24) is unusual in that it also has a nonself recognition function, whereby coexpression of Oak Ridge (OR) and Panama (PA) alleles of un-24 in the same cell leads to growth inhibition and cell death. We show that coexpressing these incompatible alleles of un-24 in N. crassa results in a high molecular weight UN-24 protein complex. A 63-amino-acid portion of the C terminus was sufficient for un-24(PA) incompatibility activity. Redox active cysteines that are conserved in type I RNRs and essential for their catalytic function were found to be required for incompatibility activity of both UN-24(OR) and UN-24(PA). Our results suggest a plausible model of un-24 incompatibility activity in which the formation of a complex between the incompatible RNR proteins is potentiated by intermolecular disulfide bond formation.
Collapse
|
4
|
Iotti M, Rubini A, Tisserant E, Kholer A, Paolocci F, Zambonelli A. Self/nonself recognition in Tuber melanosporum is not mediated by a heterokaryon incompatibility system. Fungal Biol 2011; 116:261-75. [PMID: 22289772 DOI: 10.1016/j.funbio.2011.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 11/26/2022]
Abstract
Vegetative incompatibility is a widespread phenomenon in filamentous ascomycetes, which limits formation of viable heterokaryons. Whether this phenomenon plays a role in maintaining the homokaryotic state of the hyphae during the vegetative growth of Tuber spp. Gene expression, polymorphism analysis as well as targeted in vitro experiments allowed us to test whether a heterokaryon incompatibility (HI) system operates in Tuber melanosporum. HI is controlled by different genetic systems, often involving HET domain genes and their partners whose interaction can trigger a cell death reaction. Putative homologues to HI-related genes previously characterized in Neurospora crassa and Podospora anserina were identified in the T. melanosporum genome. However, only two HET domain genes were found. In many other ascomycetes HET domains have been found within different genes including some members of the NWD (NACHT and WD-repeat associated domains) gene family of P. anserina. More than 50 NWD homologues were found in T. melanosporum but none of these contain a HET domain. All these T. melanosporum paralogs showed a conserved gene organization similar to the microexon genes only recently characterized in Schistosoma mansoni. Expression data of the annotated HI-like genes along with low allelic polymorphism suggest that they have cellular functions unrelated to HI. Moreover, morphological analyses did not provide evidence for HI reactions between pairs of genetically different T. melanosporum strains. Thus, the maintenance of the genetic integrity during the vegetative growth of this species likely depends on mechanisms that act before hyphal fusion.
Collapse
Affiliation(s)
- Mirco Iotti
- Dipartimento di Protezione e Valorizzazione Agroalimentare, University of Bologna, Via Fanin 46, 40127 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
5
|
Lafontaine DL, Smith ML. Diverse interactions mediate asymmetric incompatibility by the het-6 supergene complex in Neurospora crassa. Fungal Genet Biol 2011; 49:65-73. [PMID: 22094057 DOI: 10.1016/j.fgb.2011.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/20/2011] [Accepted: 11/02/2011] [Indexed: 11/28/2022]
Abstract
Heterokaryon incompatibility (HI) in filamentous fungi is a form of nonself recognition that operates during the vegetative phase of the life cycle. One HI gene complex in Neurospora crassa, the het-6 locus, comprises two incompatibility genes, het-6 and un-24, each having two allelic variants, Oak Ridge (OR) and Panama (PA). The un-24 gene also encodes the large subunit of ribonucleotide reductase while het-6 appears to be a member of a repetitive gene family with no other known function aside from HI. These two genes are in severe linkage disequilibrium such that only un-24(OR)het-6(OR) and un-24(PA)het-6(PA) haplotypes occur in nature. In this study we unravel several genetic interactions that govern the HI functions of this gene complex. We use novel un-24(PA)het-6(OR) strains and het-6 deletion strains to demonstrate that nonallelic interactions occur between un-24 and het-6 and reveal an allelic incompatibility interaction between the OR and PA forms of un-24 that is asymmetrically enhanced by the presence of het-6(OR) or het-6(PA). We also show how two allelic forms of vib-1, a suppressor of het-c- and mat-associated incompatibility, differentially act as recessive suppressors of HI associated with nonallelic interactions between un-24(PA) and het-6(OR). In contrast, vib-1 is a dominant suppressor of HI associated with allelic differences at un-24 and a dominant partial suppressor of the un-24(OR) and het-6(PA) nonallelic interaction. The range of suppressor activities is largely explained by an interesting differential effect on het-6(OR) and het-6(PA) transcript levels by VIB-1.
Collapse
|
6
|
Tanaka S, Takayanagi N, Murasawa K, Ishii C, Inoue H. Genetic and molecular analysis of the temperature-sensitive mutant un-17 carrying a mutation in the gene encoding poly(A)-polymerase in Neurospora crassa. Genes Genet Syst 2008; 82:447-54. [PMID: 18270435 DOI: 10.1266/ggs.82.447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The un-17 mutant was originally isolated as an irreparable temperature-sensitive (ts) mutant in Neurospora crassa. Early experiments showed that cells of this mutant immediately stopped growing and died when the temperature of the culture was shifted from a permissive temperature (25 degrees C) to non-permissive temperature (35 degrees C). This ts phenotype is suppressed by addition of cycloheximide or in some conditions of growth repression. Even at the permissive temperature, it shows a female sterile phenotype and is deficient in production of exocellular superoxide dismutase SOD4 (EC 1.15.1.1). By searching for a DNA fragment that complements the ts phenotype of the un-17 mutant from a N. crassa genome library, we found the un-17 gene. The cloned un-17 gene encodes a homolog of the Saccharomyces cerevisiae poly(A) polymerase (PAP). The un-17 mutant had a one-base substitution mutation in the gene. The cloned un-17 genes from the wild-type strain and the un-17 mutant were introduced into both the un-17 mutant and wild-type strain. The un-17 mutant introduced by un-17 DNA from the wild-type strain showed recovery of both the ts and female sterile phenotypes. Moreover, the purified product derived from the wild-type strain showed PAP activity in vitro. These findings indicate that the un-17 mutant carries a ts mutation in the gene encoding PAP.
Collapse
Affiliation(s)
- Shuuitsu Tanaka
- Laboratory of Genetics, Department of Regulation-Biology, Faculty of Science, Saitama University, Saitama City, Japan.
| | | | | | | | | |
Collapse
|
7
|
Kerényi Z, Oláh B, Jeney A, Hornok L, Leslie JF. The homologue of het-c of Neurospora crassa lacks vegetative compatibility function in Fusarium proliferatum. Appl Environ Microbiol 2006; 72:6527-32. [PMID: 17021201 PMCID: PMC1610276 DOI: 10.1128/aem.01543-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For two fungal strains to be vegetatively compatible and capable of forming a stable vegetative heterokaryon they must carry matching alleles at a series of loci variously termed het or vic genes. Cloned het/vic genes from Neurospora crassa and Podospora anserina have no obvious functional similarity and have various cellular functions. Our objective was to identify the homologue of the Neurospora het-c gene in Fusarium proliferatum and to determine if this gene has a vegetative compatibility function in this economically important and widely dispersed fungal pathogen. In F. proliferatum and five other closely related Fusarium species we found a few differences in the DNA sequence, but the changes were silent and did not alter the amino acid sequence of the resulting protein. Deleting the gene altered sexual fertility as the female parent, but it did not alter male fertility or existing vegetative compatibility interactions. Replacement of the allele-specific portion of the coding sequence with the sequence of an alternate allele in N. crassa did not result in a vegetative incompatibility response in transformed strains of F. proliferatum. Thus, the fphch gene in Fusarium appears unlikely to have the vegetative compatibility function associated with its homologue in N. crassa. These results suggest that the vegetative compatibility phenotype may result from convergent evolution. Thus, the genes involved in this process may need to be identified at the species level or at the level of a group of species and could prove to be attractive targets for the development of antifungal agents.
Collapse
Affiliation(s)
- Zoltán Kerényi
- Agricultural Biotechnology Center, Szent-Györgyi A u 4, H-2100 Gödöll, Hungary
| | | | | | | | | |
Collapse
|
8
|
Abstract
Nonself recognition is exemplified in the fungal kingdom by the regulation of cell fusion events between genetically different individuals (heterokaryosis). The het-6 locus is one of approximately 10 loci that control heterokaryon incompatibility during vegetative growth of N. crassa. Previously, it was found that het-6-associated incompatibility in Oak Ridge (OR) strains involves two contiguous genes, het-6 and un-24. The OR allele of either gene causes "strong" incompatibility (cell death) when transformed into Panama (PA)-background strains. Several remarkable features of the locus include the nature of these incompatibility genes (het-6 is a member of a repetitive gene family and un-24 also encodes the large subunit of ribonucleotide reductase) and the observation that un-24 and het-6 are in severe linkage disequilibrium. Here, we identify "weak" (slow, aberrant growth) incompatibility activities by un-24PA and het-6PA when transformed separately into OR strains, whereas together they exhibit an additive, strong effect. We synthesized strains with the new allelic combinations un-24PA het-6OR and un-24OR het-6PA, which are not found in nature. These strains grow normally and have distinct nonself recognition capabilities but may have reduced fitness. Comparing the Oak Ridge and Panama het-6 regions revealed a paracentric inversion, the architecture of which provides insights into the evolution of the un-24-het-6 gene complex.
Collapse
Affiliation(s)
- Cristina O Micali
- Biology Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | | |
Collapse
|
9
|
Glass NL, Kaneko I. Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi. EUKARYOTIC CELL 2003; 2:1-8. [PMID: 12582117 PMCID: PMC141178 DOI: 10.1128/ec.2.1.1-8.2003] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
10
|
Xiang Q, Glass NL. Identification ofvib-1, a Locus Involved in Vegetative Incompatibility Mediated byhet-cinNeurospora crassa. Genetics 2002; 162:89-101. [PMID: 12242225 PMCID: PMC1462268 DOI: 10.1093/genetics/162.1.89] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AbstractA non-self-recognition system called vegetative incompatibility is ubiquitous in filamentous fungi and is genetically regulated by het loci. Different fungal individuals are unable to form viable heterokaryons if they differ in allelic specificity at a het locus. To identify components of vegetative incompatibility mediated by allelic differences at the het-c locus of Neurospora crassa, we isolated mutants that suppressed phenotypic aspects of het-c vegetative incompatibility. Three deletion mutants were identified; the deletions overlapped each other in an ORF named vib-1 (vegetative incompatibility blocked). Mutations in vib-1 fully relieved growth inhibition and repression of conidiation conferred by het-c vegetative incompatibility and significantly reduced hyphal compartmentation and death rates. The vib-1 mutants displayed a profuse conidiation pattern, suggesting that VIB-1 is a regulator of conidiation. VIB-1 shares a region of similarity to PHOG, a possible phosphate nonrepressible acid phosphatase in Aspergillus nidulans. Native gel analysis of wild-type strains and vib-1 mutants indicated that vib-1 is not the structural gene for nonrepressible acid phosphatase, but rather may regulate nonrepressible acid phosphatase activity.
Collapse
Affiliation(s)
- Qijun Xiang
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA
| | | |
Collapse
|
11
|
Glass NL, Jacobson DJ, Shiu PK. The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annu Rev Genet 2001; 34:165-186. [PMID: 11092825 DOI: 10.1146/annurev.genet.34.1.165] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Filamentous fungi grow as a multicellular, multinuclear network of filament-shaped cells called hyphae. A fungal individual can be viewed as a fluid, dynamic system that is characterized by hyphal tip growth, branching, and hyphal fusion (anastomosis). Hyphal anastomosis is especially important in such nonlinear systems for the purposes of communication and homeostasis. Filamentous fungi can also undergo hyphal fusion with different individuals to form heterokaryons. However, the viability of such heterokaryons is dependent upon genetic constitution at heterokaryon incompatibility (het) loci. If hyphal fusion occurs between strains that differ in allelic specificity at het loci, vegetative incompatibility, which is characterized by hyphal compartmentation and cell lysis, is induced. This review covers microscopic and genetic analysis of hyphal fusion and the molecular and genetic analysis of the consequence of hyphal fusion between individuals that differ in specificity at het loci in filamentous ascomycetes.
Collapse
Affiliation(s)
- N L Glass
- Plant and Microbial Biology Department, University of California, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
12
|
Saupe SJ, Clavé C, Bégueret J. Vegetative incompatibility in filamentous fungi: Podospora and Neurospora provide some clues. Curr Opin Microbiol 2000; 3:608-12. [PMID: 11121781 DOI: 10.1016/s1369-5274(00)00148-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In filamentous fungi, vegetative cell fusion between genotypically distinct individuals leads to a cell-death reaction known as vegetative or heterokaryon incompatibility. Genes involved in this reaction have been characterised molecularly. We can now begin to get a better understanding of the mechanism and the biological significance of this intriguing phenomenon.
Collapse
Affiliation(s)
- S J Saupe
- Laboratoire de Génétique Moléculaire des Champignons, IBGC UMR CNRS 5095, 1 rue Camille St Saëns, 33077 Bordeaux Cedex, France.
| | | | | |
Collapse
|
13
|
Affiliation(s)
- D D Perkins
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.
| | | |
Collapse
|
14
|
Saupe SJ. Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol Mol Biol Rev 2000; 64:489-502. [PMID: 10974123 PMCID: PMC99001 DOI: 10.1128/mmbr.64.3.489-502.2000] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Filamentous fungi spontaneously undergo vegetative cell fusion events within but also between individuals. These cell fusions (anastomoses) lead to cytoplasmic mixing and to the formation of vegetative heterokaryons (i.e., cells containing different nuclear types). The viability of these heterokaryons is genetically controlled by specific loci termed het loci (for heterokaryon incompatibility). Heterokaryotic cells formed between individuals of unlike het genotypes undergo a characteristic cell death reaction or else are severely inhibited in their growth. The biological significance of this phenomenon remains a puzzle. Heterokaryon incompatibility genes have been proposed to represent a vegetative self/nonself recognition system preventing heterokaryon formation between unlike individuals to limit horizontal transfer of cytoplasmic infectious elements. Molecular characterization of het genes and of genes participating in the incompatibility reaction has been achieved for two ascomycetes, Neurospora crassa and Podospora anserina. These analyses have shown that het genes are diverse in sequence and do not belong to a gene family and that at least some of them perform cellular functions in addition to their role in incompatibility. Divergence between the different allelic forms of a het gene is generally extensive, but single-amino-acid differences can be sufficient to trigger incompatibility. In some instances het gene evolution appears to be driven by positive selection, which suggests that the het genes indeed represent recognition systems. However, work on nonallelic incompatibility systems in P. anserina suggests that incompatibility might represent an accidental activation of a cellular system controlling adaptation to starvation.
Collapse
Affiliation(s)
- S J Saupe
- Laboratoire de Génétique Moléculaire des Champignons, IBGC UMR CNRS 5095, 33077 Bordeaux Cedex, France.
| |
Collapse
|
15
|
Mir-Rashed N, Jacobson DJ, Dehghany MR, Micali OC, Smith ML. Molecular and functional analyses of incompatibility genes at het-6 in a population of Neurospora crassa. Fungal Genet Biol 2000; 30:197-205. [PMID: 11035941 DOI: 10.1006/fgbi.2000.1218] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two closely linked genes, un-24 and het-6, associated with the het-6 heterokaryon incompatibility functional haplotype were examined in 40 Neurospora crassa strains from a Louisiana sugarcane field. Partial diploid analyses were used to determine that half of the strains were functionally Oak Ridge (OR) and half were non-OR and indistinguishable from the standard Panama (PA) form. PCR-based markers were developed to identify polymorphisms within both un-24 and het-6. Two common forms of each gene occur based on these molecular markers. Rare forms of both un-24 and het-6 were identified as variants of the non-OR form by a DNA transformation assay. The heterokaryon incompatibility function of haplotypes, based on partial diploid analyses, was perfectly correlated with the PCR-based markers at both loci. This correlation indicates that the two loci are in severe linkage disequilibrium in this population sample and may act as an incompatibility gene complex. Southern hybridizations using OR- and PA-derived cloned probes from the region that spans un-24 and het-6 showed that the apparent absence of recombination in this approximately 25-kbp region is associated with low levels of overall sequence identity between the PA and OR forms.
Collapse
Affiliation(s)
- N Mir-Rashed
- Biology Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | | | | | | | | |
Collapse
|
16
|
Smith ML, Micali OC, Hubbard SP, Mir-Rashed N, Jacobson DJ, Glass NL. Vegetative incompatibility in the het-6 region of Neurospora crassa is mediated by two linked genes. Genetics 2000; 155:1095-104. [PMID: 10880472 PMCID: PMC1461168 DOI: 10.1093/genetics/155.3.1095] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Non-self-recognition during asexual growth of Neurospora crassa involves restriction of heterokaryon formation via genetic differences at 11 het loci, including mating type. The het-6 locus maps to a 250-kbp region of LGIIL. We used restriction fragment length polymorphisms in progeny with crossovers in the het-6 region and a DNA transformation assay to identify two genes in a 25-kbp region that have vegetative incompatibility activity. The predicted product of one of these genes, which we designate het-6(OR), has three regions of amino acid sequence similarity to the predicted product of the het-e vegetative incompatibility gene in Podospora anserina and to the predicted product of tol, which mediates mating-type vegetative incompatibility in N. crassa. The predicted product of the alternative het-6 allele, HET-6(PA), shares only 68% amino acid identity with HET-6(OR). The second incompatibility gene, un-24(OR), encodes the large subunit of ribonucleotide reductase, which is essential for de novo synthesis of DNA. A region in the carboxyl-terminal portion of UN-24 is associated with incompatibility and is variable between un-24(OR) and the alternative allele un-24(PA). Linkage analysis indicates that the 25-kbp un-24-het-6 region is inherited as a block, suggesting that a nonallelic interaction may occur between un-24 and het-6 and possibly other loci within this region to mediate vegetative incompatibility in the het-6 region of N. crassa.
Collapse
Affiliation(s)
- M L Smith
- Biology Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada.
| | | | | | | | | | | |
Collapse
|