1
|
Šovljanski O, Ranitović A, Tomić A, Ćetković N, Miljković A, Saveljić A, Cvetković D. Synergistic Strategies of Heat and Peroxyacetic Acid Disinfection Treatments for Salmonella Control. Pathogens 2023; 12:1336. [PMID: 38003799 PMCID: PMC10674339 DOI: 10.3390/pathogens12111336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The food industry has recognized a pressing need for highly effective disinfection protocols to decrease the risk of pathogen emergence and proliferation in food products. The integration of antimicrobial treatments in food production has occurred as a potential strategy to attain food items of superior quality with respect to microbiological safety and sensory attributes. This study aims to investigate the individual and synergistic effects of heat and peroxyacetic acid on the inactivation of bacterial cells, considering various contact times and environmental conditions. Four Salmonella serotypes, isolated from industrial meat production surfaces, were employed as model organisms. By systematically assessing the impacts of individual factors and synergistic outcomes, the effectiveness of bacterial cell inactivation and the efficiency of heat and peroxyacetic acid could be predicted. To better approximate real-world food processing conditions, this study also incorporated a bovine albumin-rich condition as a simulation of the presence of organic loads in processing steps. The findings revealed the essential need for a synergistic interplay of investigated parameters with the following optimized values: 1.5% concentration of peroxyacetic acid, temperature range of 60-65 °C, and contact time of 3 min for the complete effect regardless of the degree of contamination.
Collapse
Affiliation(s)
- Olja Šovljanski
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (A.R.); (A.T.); (A.S.); (D.C.)
| | - Aleksandra Ranitović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (A.R.); (A.T.); (A.S.); (D.C.)
| | - Ana Tomić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (A.R.); (A.T.); (A.S.); (D.C.)
| | - Nenad Ćetković
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.Ć.); (A.M.)
| | - Ana Miljković
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.Ć.); (A.M.)
| | - Anja Saveljić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (A.R.); (A.T.); (A.S.); (D.C.)
| | - Dragoljub Cvetković
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (A.R.); (A.T.); (A.S.); (D.C.)
| |
Collapse
|
2
|
Shao L, Sun Y, Zou B, Zhao Y, Li X, Dai R. Sublethally injured microorganisms in food processing and preservation: Quantification, formation, detection, resuscitation and adaption. Food Res Int 2023; 165:112536. [PMID: 36869540 DOI: 10.1016/j.foodres.2023.112536] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/14/2023] [Accepted: 01/21/2023] [Indexed: 01/29/2023]
Abstract
Sublethally injured state has been recognized as a survival strategy for microorganisms suffering from stressful environments. Injured cells fail to grow on selective media but can normally grow on nonselective media. Numerous microorganism species can form sublethal injury in various food matrices during processing and preservation with different techniques. Injury rate was commonly used to evaluate sublethal injury, but mathematical models for the quantification and interpretation of sublethally injured microbial cells still require further study. Injured cells can repair themselves and regain viability on selective media under favorable conditions when stress is removed. Conventional culture methods might underestimate microbial counts or present a false negative result due to the presence of injured cells. Although the structural and functional components may be affected, the injured cells pose a great threat to food safety. This work comprehensively reviewed the quantification, formation, detection, resuscitation and adaption of sublethally injured microbial cells. Food processing techniques, microbial species, strains and food matrix all significantly affect the formation of sublethally injured cells. Culture-based methods, molecular biological methods, fluorescent staining and infrared spectroscopy have been developed to detect the injured cells. Cell membrane is often repaired first during resuscitation of injured cells, meanwhile, temperature, pH, media and additives remarkably influence the resuscitation. The adaption of injured cells negatively affects the microbial inactivation during food processing.
Collapse
Affiliation(s)
- Lele Shao
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yingying Sun
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Bo Zou
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yijie Zhao
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Xingmin Li
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Ruitong Dai
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
3
|
Heating Rate during Shell Egg Thermal Treatment Elicits Stress Responses and Alters Virulence of Salmonella enterica Serovar Enteritidis; Implications for Shell Egg Pasteurization. Appl Environ Microbiol 2022; 88:e0114022. [PMID: 36197091 PMCID: PMC9599327 DOI: 10.1128/aem.01140-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermal pasteurization of shell eggs, at various time-temperature combinations, has been proposed previously and implemented industrially. This study was conducted to determine if shell egg heating rate, which varies with different pasteurization implementations, alters the Salmonella enterica serovar Enteritidis response to different stresses or expression of virulence. Shell eggs, containing Salmonella Enteritidis in yolk, were subjected to a low (2.4°C/min) or a high (3.5°C/min) heating rate during treatments that mimicked the pasteurization temperature come-up stage. The low heating rate protected Salmonella from the following processes: (i) lethal heat at the holding stage, (ii) loss of viability during 8-h cooling after heating, and (iii) sequential antimicrobial ozone treatment. Transcriptional analysis using Salmonella reporter strains revealed that the heat stress response gene grpE was transcribed at 3-fold-higher levels (P = 0.0009) at the low than at the high heating rate. Slow heating also significantly increased the transcription of the Salmonella virulence-related genes sopB (P = 0.0012) and sseA (P = 0.0006) in comparison to fast heating. Salmonella virulence was determined experimentally as 50% lethal dose (LD50) values in an in vivo model. The slow heat treatment mildly increased Salmonella Enteritidis virulence in mice (LD50 of 3.3 log CFU), compared to that in nontreated yolk (LD50 of 3.9 log CFU). However, when ozone application followed the slow heat treatment, Salmonella virulence decreased (LD50 of 4.2 log CFU) compared to that for heat-treated or nontreated yolk. In conclusion, heating shell eggs at a low rate can trigger hazardous responses that may compromise the safety of the final pasteurized products but following the thermal treatment with ozone application may help alleviate these concerns. IMPORTANCE Pasteurization of shell eggs is an important technology designed to protect consumers against Salmonella Enteritidis that contaminates this commodity. A low heating rate is preferred over a high rate during shell egg thermal pasteurization due to product quality concern. However, it is not known whether raising the temperature at different rates, during pasteurizing, would potentially affect product safety determinants. The current study demonstrated that slow heating during the pasteurization come-up stage increased the following risks: (i) resistance of Salmonella to pasteurization holding stage or to subsequent ozone treatment, (ii) recovery of Salmonella during the cooling that followed pasteurization, and (iii) Salmonella's ability to cause disease (i.e., virulence). Our findings inform food processors about potential safety risks to consumers resulting from improper use of processing parameters during shell egg pasteurization. Additionally, treating shell eggs with ozone after heat treatment could alleviate these hazards and protect consumers from natural Salmonella Enteritidis contaminants in shell eggs.
Collapse
|
4
|
McWhorter AR, Khan S, Sexton M, Moyle TS, Chousalkar KK. Acidification and extended storage at room temperature of mayonnaise reduce Salmonella Typhimurium virulence and viability. Food Res Int 2021; 141:110117. [PMID: 33641984 DOI: 10.1016/j.foodres.2021.110117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/03/2021] [Accepted: 01/03/2021] [Indexed: 10/22/2022]
Abstract
Despite food safety recommendations, raw egg-based foods, such as mayonnaise, are frequently identified as the source of Salmonella during outbreaks. Acidification and storage temperature have been linked with reduced bacterial culturability. Raw egg-based sauces stored at 25 °C have historically been linked with faster decline of Salmonella culturability than preparations stored at 5 °C. This study aimed to determine whether reduced culturability in acidified mayonnaise correlated with reduced in vitro bacterial motility, invasiveness and viability as well as disease-causing capacity in BALB/c mice. Acidification of mayonnaise and incubation at 25 °C for 4 h significantly reduced culturability of Salmonella Typhimurium DT9 but was dependent on initial bacterial load. Bacteria recovered from acidified mayonnaise exhibited reduced invasiveness into polarized cultured intestinal epithelial cells and 12 h post inoculation were no longer invasive suggesting a reduced capacity to cause disease. To confirm this, BALB/c mice were inoculated with Salmonella Typhimurium contaminated mayonnaise stored at 5 °C or 25 °C for 12, 24, 48, 72, and 96 h. Mice inoculated with mayonnaise incubated at 5 °C for 12 and 24 h exhibited mild to moderate disease symptoms; all other mayonnaise treatment groups did not exhibit disease symptoms. In acidified mayonnaise, Salmonella Typhimurium DT9 exhibited a global downregulation of metabolism, stress response, and virulence genes upon addition to mayonnaise. After 4 h of incubation at both 5 °C and 25 °C, however, the vast majority of genes were upregulated which was maintained over the 96-hour experiment suggesting that bacteria were severely stressed. Salmonella Typhimurium DT9 cells were isolated from mayonnaise samples and ATP production was quantified. At both 5 °C and 25 °C, ATP production decreased in acidified mayonnaise preparations. At 25 °C, ATP production decreased more rapidly than at 5 °C. After 24 h, ATP production of bacteria in mayonnaise stored at 25 °C was not significantly different from the dead control group. Thus, the current recommendation of only serving freshly prepared raw egg-sauces or refrigerating immediately after preparation, could be placing consumers at higher risk for contracting salmonellosis.
Collapse
Affiliation(s)
- Andrea R McWhorter
- School of Animal and Veterinary Sciences, The University of Adelaide, Australia.
| | - Samiullah Khan
- School of Animal and Veterinary Sciences, The University of Adelaide, Australia.
| | - Margaret Sexton
- Biosecurity SA, Primary Industries and Regions South Australia, Australia.
| | - Talia S Moyle
- School of Animal and Veterinary Sciences, The University of Adelaide, Australia.
| | - Kapil K Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Australia.
| |
Collapse
|
5
|
Sarjit A, Ravensdale JT, Coorey R, Fegan N, Dykes GA. Salmonella survival after exposure to heat in a model meat juice system. Food Microbiol 2020; 94:103628. [PMID: 33279093 DOI: 10.1016/j.fm.2020.103628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 08/06/2020] [Accepted: 08/15/2020] [Indexed: 12/21/2022]
Abstract
The effect of heat against eleven Salmonella strains in model meat juices was examined. Juices from beef, lamb and goat were made from either the fatty layer (FL), muscle (M) or a mixture of both (FLM). The pH of each FLM sample was altered to match the pH of PBS and vice versa to determine the pH effect on the survival of Salmonella against the effect of heat. Salmonella were exposed to either gradual heating to 70 °C in FLM, M and FL or heat shock at 70 °C for 5 min in FLM. Fat, fatty acid profile and iron content of the juices were determined. Gradual heat treatment significantly (p ≤ 0.05) reduced Salmonella as compared to the untreated controls (~1.92-7.61 log CFU ml-1) while heat shock significantly (p ≤ 0.05) reduced Salmonella as compared to the untreated controls (~5.80-7.36 log CFU ml-1). Survival of Salmonella was higher in lamb juices than other juices. The fat content in lamb FL (3.25%) was significantly higher (p ≤ 0.05) than beef (1.30%) and goat FL (1.42%). Iron content in lamb FLM (~127 mg kg-1) was significantly (p ≤ 0.05) lower than beef (~233 mg kg-1) and goat FLM (~210 mg kg-1). The omega 6 and linoleic acid content in goat FLM (~36.0% and ~34.4%) was significantly higher (p ≤ 0.05) than beef (~29.1% and ~27.1%). Fat, fatty acids and iron may differentially protect Salmonella against the effect of heat in these juices.
Collapse
Affiliation(s)
- Amreeta Sarjit
- School of Public Health, Curtin University, Bentley, Western Australia, Australia; CSIRO Agriculture and Food, Brisbane, Queensland, Australia
| | - Joshua T Ravensdale
- School of Public Health, Curtin University, Bentley, Western Australia, Australia
| | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Narelle Fegan
- CSIRO Agriculture and Food, Brisbane, Queensland, Australia
| | - Gary A Dykes
- School of Public Health, Curtin University, Bentley, Western Australia, Australia.
| |
Collapse
|
6
|
Inactivation of Staphylococcus aureus in phosphate buffered saline and physiological saline using ohmic heating with different voltage gradient and frequency. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109834] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Zhang H, Zhao Y, Gong C, Jiao S. Effect of radio frequency heating stress on sublethal injury of Salmonella Typhimurium in red pepper powder. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108700] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Verheyen D, Baka M, Akkermans S, Skåra T, Van Impe JF. Effect of microstructure and initial cell conditions on thermal inactivation kinetics and sublethal injury of Listeria monocytogenes in fish-based food model systems. Food Microbiol 2019; 84:103267. [DOI: 10.1016/j.fm.2019.103267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 05/22/2019] [Accepted: 07/10/2019] [Indexed: 01/07/2023]
|
9
|
Wang Y, Li X, Lu Y, Wang J, Suo B. Synergistic effect of cinnamaldehyde on the thermal inactivation of Listeria monocytogenes in ground pork. FOOD SCI TECHNOL INT 2019; 26:28-37. [PMID: 31399018 DOI: 10.1177/1082013219867190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to statistically evaluate the effect of a naturally food-derived cinnamaldehyde on the thermal inactivation of Listeria monocytogenes in ground pork. This study combined four concentrations of cinnamaldehyde (0, 0.1, 0.5, and 1.0% vol/wt) and four temperatures (55, 60, 65, and 70 ℃) to predict the thermal inactivation curves of L. monocytogenes. The Weibull model successfully described the primary thermal inactivation using the Integrated Pathogen Modeling Program. These results statistically proposed that the cinnamaldehyde supplementation in ground pork attenuates the thermo-tolerance of L. monocytogenes. The time for achieving a 5-log10 reduction of L. monocytogenes declined from 28.14 to 17.35 min at 55 ℃ when the ground pork sample was supplemented by 1% cinnamaldehyde, while the time declined from 1.95 to 0.34 min at 70 ℃. Thereafter, based on the 5.0-log10 lethality, secondary models were fitted by a selected polynomial model. The transmission electron microscopy revealed that cinnamaldehyde causes serious damage to membrane integrity and increases the occurrence of cell membrane rupture and leakage of cytoplasmic content under thermal treatment. Our model represents a mathematical tool that will help meat-product manufacturers to improve the efficacy of thermal processing ground pork supplemented with cinnamaldehyde.
Collapse
Affiliation(s)
- Yuexia Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiaoyan Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yangliu Lu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Jianan Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Biao Suo
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
10
|
|
11
|
Suo B, Lu Y, Wang Y, Xie X, Xu C, Ai Z. Thermal inactivation kinetics ofSalmonellaspp. in ground pork supplemented with cinnamaldehyde. J Food Saf 2016. [DOI: 10.1111/jfs.12322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Biao Suo
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University; 63 Nongye Rd Zhengzhou 450002 China
- Henan Key Laboratory Cultivation Base of Quick-Frozen Flour-Rice Food and Prepared Food, College of Food Science and Technology; Henan Agricultural University; 63 Nongye Rd Zhengzhou 450002 China
- Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Engineering Research Center for Cold-chain Food; Henan Agricultural University; 63 Nongye Rd Zhengzhou 450002 China
| | - Yangliu Lu
- Henan Key Laboratory Cultivation Base of Quick-Frozen Flour-Rice Food and Prepared Food, College of Food Science and Technology; Henan Agricultural University; 63 Nongye Rd Zhengzhou 450002 China
| | - Yuexia Wang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University; 63 Nongye Rd Zhengzhou 450002 China
| | - Xinhua Xie
- Henan Key Laboratory Cultivation Base of Quick-Frozen Flour-Rice Food and Prepared Food, College of Food Science and Technology; Henan Agricultural University; 63 Nongye Rd Zhengzhou 450002 China
| | - Chao Xu
- Henan Key Laboratory Cultivation Base of Quick-Frozen Flour-Rice Food and Prepared Food, College of Food Science and Technology; Henan Agricultural University; 63 Nongye Rd Zhengzhou 450002 China
| | - Zhilu Ai
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University; 63 Nongye Rd Zhengzhou 450002 China
- Henan Key Laboratory Cultivation Base of Quick-Frozen Flour-Rice Food and Prepared Food, College of Food Science and Technology; Henan Agricultural University; 63 Nongye Rd Zhengzhou 450002 China
- Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Engineering Research Center for Cold-chain Food; Henan Agricultural University; 63 Nongye Rd Zhengzhou 450002 China
| |
Collapse
|
12
|
He S, Zhou X, Shi C, Shi X. Ethanol adaptation induces direct protection and cross-protection against freezing stress in Salmonella enterica serovar Enteritidis. J Appl Microbiol 2016; 120:697-704. [PMID: 26743544 DOI: 10.1111/jam.13042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/01/2022]
Abstract
AIMS Salmonella enterica serovar Enteritidis (Salm. Enteritidis) encounters mild ethanol stress during its life cycle. However, adaptation to a stressful condition may affect bacterial resistance to subsequent stresses. Hence, this work was undertaken to investigate the influences of ethanol adaptation on stress tolerance of Salm. Enteritidis. METHODS AND RESULTS Salmonella Enteritidis was subjected to different ethanol adaptation treatments (2·5-10% ethanol for 1 h). Cellular morphology and tolerance to subsequent environmental stresses (15% ethanol, -20°C, 4°C, 50°C and 10% NaCl) were evaluated. It was found that 10% was the maximum ethanol concentration that allowed growth of the target bacteria. Ethanol adaptation did not cause cell-surface damage in Salm. Enteritidis as revealed by membrane permeability measurements and electron micrograph analysis. Salmonella Enteritidis adapted with 2·5-10% ethanol displayed an enhanced resistance to a 15%-ethanol challenge compared with an unchallenged control. The maximum ethanol resistance was observed when ethanol concentration used for ethanol adaptation was increased to 5·0%. Additionally, pre-adaptation to 5·0% ethanol cross-protected Salm. Enteritidis against -20°C, but not against 4°C, 50°C or 10% NaCl. CONCLUSIONS Ethanol adaptation provided Salm. Enteritidis direct protection from a high level ethanol challenge and cross-protection from freezing, but not other stresses tested (low temperature, high salinity or high temperature). SIGNIFICANCE AND IMPACT OF THE STUDY The results are valuable in developing adequate and efficient control measures for Salm. Enteritidis in foods.
Collapse
Affiliation(s)
- S He
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - X Zhou
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - C Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - X Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Suo B, Wang X, Pan Z, Wang N, Ai Z, Yu S, Salazar JK. Inactivation and sublethal injury kinetics of Staphylococcus aureus in broth at low temperature storage. J Food Prot 2014; 77:1689-95. [PMID: 25285485 DOI: 10.4315/0362-028x.jfp-13-540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Low temperatures are widely used to ensure food quality and safety. However, sublethally injured Staphylococcus aureus is an important microbiological safety concern in low temperature food. The objective of this study was to develop predictive inactivation kinetic models for the inactivation and sublethal injury of S. aureus in broth at different temperatures (4 to -18°C) and time points. S. aureus was diluted in tryptic soy broth plus 0.6% (wt/vol) yeast extract (TSBYE) to obtain approximately 10(8) CFU/ml and was stored separately at 4, -3, -11, and -18°C. After specific time points within 96 days, survival of S. aureus was determined on TSBYE and TSBYE agar plus 10% NaCl for enumeration of the total viable and noninjured cell numbers, respectively. Linear, Weibull, and modified Gompertz models were applied to determine survival curve regression. The combination of low temperature and time resulted in S. aureus inactivation, although the cells were able to survive in this sublethal state. Storage temperature was the critical parameter in survival of S. aureus. The modified Weibull model successfully described a second model of noninjured S. aureus cell survival at different low temperatures, whereas only the linear model was able to fit the total viable cells. The predictive model may be used to estimate the level of S. aureus contamination in food at low storage temperatures and times, and it provides new insight into the sublethally injured survival state of S. aureus in low temperature food.
Collapse
Affiliation(s)
- Biao Suo
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, People's Republic of China; Henan Key Laboratory Cultivation Base of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, People's Republic of China
| | - Xiaojie Wang
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, People's Republic of China
| | - Zhili Pan
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, People's Republic of China
| | - Na Wang
- Henan Key Laboratory Cultivation Base of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, People's Republic of China
| | - Zhilu Ai
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, People's Republic of China; Henan Key Laboratory Cultivation Base of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, People's Republic of China.
| | - Shuijing Yu
- Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, No. 86, Hongqi Avenue, Ganzhou, Jiangxi, 341000, People's Republic of China
| | - Joelle K Salazar
- U.S. Food and Drug Administration, Institute for Food Safety and Health, 6502 South Archer Road, Bedford Park, Illinois 60501, USA
| |
Collapse
|