1
|
Shakiba S, Haddadi NS, Afshari K, Lubov JE, Raef HS, Li R, Yildiz-Altay Ü, Daga M, Refat MA, Kim E, de Laflin JG, Akabane A, Sherman S, MacDonald E, Strassner JP, Zhang L, Leon M, Baer CE, Dresser K, Liang Y, Whitley JB, Skopelja-Gardner S, Harris JE, Deng A, Vesely MD, Rashighi M, Richmond J. Spatial characterization of interface dermatitis in cutaneous lupus reveals novel chemokine ligand-receptor pairs that drive disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574422. [PMID: 38260617 PMCID: PMC10802382 DOI: 10.1101/2024.01.05.574422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Chemokines play critical roles in the recruitment and activation of immune cells in both homeostatic and pathologic conditions. Here, we examined chemokine ligand-receptor pairs to better understand the immunopathogenesis of cutaneous lupus erythematosus (CLE), a complex autoimmune connective tissue disorder. We used suction blister biopsies to measure cellular infiltrates with spectral flow cytometry in the interface dermatitis reaction, as well as 184 protein analytes in interstitial skin fluid using Olink targeted proteomics. Flow and Olink data concordantly demonstrated significant increases in T cells and antigen presenting cells (APCs). We also performed spatial transcriptomics and spatial proteomics of punch biopsies using digital spatial profiling (DSP) technology on CLE skin and healthy margin controls to examine discreet locations within the tissue. Spatial and Olink data confirmed elevation of interferon (IFN) and IFN-inducible CXCR3 chemokine ligands. Comparing involved versus uninvolved keratinocytes in CLE samples revealed upregulation of essential inflammatory response genes in areas near interface dermatitis, including AIM2. Our Olink data confirmed upregulation of Caspase 8, IL-18 which is the final product of AIM2 activation, and induced chemokines including CCL8 and CXCL6 in CLE lesional samples. Chemotaxis assays using PBMCs from healthy and CLE donors revealed that T cells are equally poised to respond to CXCR3 ligands, whereas CD14+CD16+ APC populations are more sensitive to CXCL6 via CXCR1 and CD14+ are more sensitive to CCL8 via CCR2. Taken together, our data map a pathway from keratinocyte injury to lymphocyte recruitment in CLE via AIM2-Casp8-IL-18-CXCL6/CXCR1 and CCL8/CCR2, and IFNG/IFNL1-CXCL9/CXCL11-CXCR3.
Collapse
Affiliation(s)
- Saeed Shakiba
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | | | | | - Janet E. Lubov
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | - Haya S. Raef
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | - Robert Li
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | | | - Mridushi Daga
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | | | - Evangeline Kim
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | | | - Andressa Akabane
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | - Shany Sherman
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | | | | | | | | | - Christina E. Baer
- UMass Chan Medical School, Sanderson Center for Optical Experimentation, Dept of Microbiology and Physiological Systems, Worcester, MA, USA
| | - Karen Dresser
- UMass Chan Medical School, Dept of Pathology, Worcester, MA, USA
| | - Yan Liang
- NanoString Technologies, Seattle, WA, USA
| | - James B Whitley
- Dartmouth Hitchcock Medical Center, Dept of Medicine, Lebanon, NH, USA
| | | | - John E Harris
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | - April Deng
- UMass Chan Medical School, Dept of Pathology, Worcester, MA, USA
| | - Matthew D. Vesely
- Yale University School of Medicine, Dept of Dermatology, New Haven, CT, USA
| | - Mehdi Rashighi
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| | - Jillian Richmond
- UMass Chan Medical School, Dept of Dermatology, Worcester, MA, USA
| |
Collapse
|
2
|
Saito M, Suzuki H, Harigae Y, Li G, Tanaka T, Asano T, Kaneko MK, Kato Y. C 9Mab-1: An Anti-Mouse CCR9 Monoclonal Antibody for Immunocytochemistry. Monoclon Antib Immunodiagn Immunother 2022; 41:120-124. [PMID: 35471047 DOI: 10.1089/mab.2021.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
C-C motif chemokine receptor 9 (CCR9) is a G protein-coupled receptor, which is highly expressed in T-lymphocytes and different cancer cells. CCR9 aggravates immune diseases and cancer progression and is considered a biomarker and a therapeutic target of diseases. The development of specific monoclonal antibody (mAbs) for human CCR9 (hCCR9) is required to diagnose and treat immune diseases and cancers. Previously, we established the cell-based immunization and screening (CBIS) method, which does not need purified target proteins. Anti-hCCR9 mAb (clone C9Mab-1; mouse IgG1, kappa) was also developed using the CBIS method. C9Mab-1 is usable for flow cytometry against exogenously and endogenously expressing hCCR9. This study showed that C9Mab-1 and its recombinant antibody (recC9Mab-1) specifically detected exogenous hCCR9 stably overexpressed in Chinese hamster ovary (CHO)-K1 cells and endogenous hCCR9 expressed in a human T-lymphoblastic leukemia cell line MOLT-4 cells through immunocytochemistry. This study provides a new application of C9Mab-1 and recC9Mab-1 in immunocytochemistry.
Collapse
Affiliation(s)
- Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Harigae
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Huang Y, Ding HS, Song T, Chen YT, Wang T, Tang YH, Barajas-Martinez H, Huang CX, Hu D. Abrogation of CC Chemokine Receptor 9 Ameliorates Ventricular Electrical Remodeling in Mice After Myocardial Infarction. Front Cardiovasc Med 2021; 8:716219. [PMID: 34712704 PMCID: PMC8545906 DOI: 10.3389/fcvm.2021.716219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction: Myocardial infarction (MI) triggers structural and electrical remodeling. CC chemokine receptor 9 (CCR9) mediates chemotaxis of inflammatory cells in MI. In our previous study, CCR9 knockout has been found to improve structural remodeling after MI. Here, we further investigate the potential influence of CCR9 on electrical remodeling following MI in order to explore potential new measures to improve the prognosis of MI. Methods and Results: Mice was used and divided into four groups: CCR9+/+/Sham, CCR9−/−/Sham, CCR9+/+/MI, CCR9−/−/MI. Animals were used at 1 week after MI surgery. Cardiomyocytes in the infracted border zone were acutely dissociated and the whole-cell patch clamp was used to record action potential duration (APD), L-type calcium current (ICa,L) and transient outward potassium current (Ito). Calcium transient and sarcoplasmic reticulum (SR) calcium content under stimulation of Caffeine were measured in isolated cardiomyocytes by confocal microscopy. Multielectrode array (MEA) was used to measure the conduction of the left ventricle. The western-blot was performed for the expression level of connexin 43. We observed prolonged APD90, increased ICa,L and decreased Ito following MI, while CCR9 knockout attenuated these changes (APD90: 50.57 ± 6.51 ms in CCR9−/−/MI vs. 76.53 ± 5.98 ms in CCR9+/+/MI, p < 0.05; ICa,L: −13.15 ± 0.86 pA/pF in CCR9−/−/MI group vs. −17.05 ± 1.11 pA/pF in CCR9+/+/MI, p < 0.05; Ito: 4.01 ± 0.17 pA/pF in CCR9−/−/MI group vs. 2.71 ± 0.16 pA/pF in CCR9+/+/MI, p < 0.05). The confocal microscopy results revealed CCR9 knockout reversed the calcium transient and calcium content reduction in sarcoplasmic reticulum following MI. MEA measurements showed improved conduction velocity in CCR9−/−/MI mice (290.1 ± 34.47 cm/s in CCR9−/−/MI group vs. 113.2 ± 14.4 cm/s in CCR9+/+/MI group, p < 0.05). Western-blot results suggested connexin 43 expression was lowered after MI while CCR9 knockout improved its expression. Conclusion: This study shows CCR9 knockout prevents the electrical remodeling by normalizing ion currents, the calcium homeostasis, and the gap junction to maintain APD and the conduction function. It suggests CCR9 is a promising therapeutic target for MI-induced arrhythmia, which warrants further investigation.
Collapse
Affiliation(s)
- Yan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hua-Sheng Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tao Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yu-Ting Chen
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Teng Wang
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yan-Hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnwood, PA, United States.,Jefferson Medical College, Philadelphia, PA, United States
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
4
|
Guo JH, Yin SS, Liu H, Liu F, Gao FH. Tumor microenvironment immune-related lncRNA signature for patients with melanoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:857. [PMID: 34164491 PMCID: PMC8184426 DOI: 10.21037/atm-21-1794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background The incidence of malignant melanoma accounts for only approximately 5% of skin malignant tumors, however, it accounts for 75% of its mortality. Long-chain non-coding RNA (lncRNA) has a wide range of functional activities. Disorders of lncRNAs may lead to the occurrence and development of melanoma, and may also be related to immunotherapy. Methods The transcriptomic data of primary and metastatic melanoma patients and 331 immune-related genes were downloaded from skin cutaneous melanoma (SKCM) in the The Cancer Genome Atlas (TCGA) database. On this basis, 460 immunologically relevant lncRNAs were identified by constructing a co-expression network of immunogenic genes and lncRNAs in primary and metastatic melanoma patients. Prognostic genes were screened using univariate Cox regression analysis. ROC analysis was performed to evaluate the robustness of the prognostic signature. Results Univariate correlation analysis showed that only 3 of the 23 immune-related lncRNAs were at high risk and the rest were at low risk. Signatures of 7 immune-related lncRNAs were identified by multivariate correlation analysis. The clinical correlation analysis showed that the 7 immune-related lncRNAs were associated with the clinical stage of primary and metastatic melanoma. Principal component analysis (PCA) showed that only 7 immune-related lncRNA signals divided tumor patients into high-risk and low-risk groups, while the low-risk group was enriched in the immune system process M13664 and immune response M19817 sets. PPI interaction network analysis showed that 11 G protein-coupled receptors and 6 corresponding ligands in the 2 gene sets affected the tumor microenvironment and were negatively related to the risk of the 7 immune-related lncRNAs. The tumor microenvironment immune cell infiltration analysis also supported the finding that anti-tumor immunity in the low-risk group was stronger than in the high-risk group. Conclusions These results indicate that characteristics of the 7 immune-related lncRNAs have prognostic value for melanoma patients and can be used as potential immunotherapy targets.
Collapse
Affiliation(s)
- Jia-Hui Guo
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan-Shan Yin
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Liu
- Department of Gastroenterology, The Tenth Hospital Affiliated to Tongji University, Shanghai, China
| | - Feng Liu
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng-Hou Gao
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Wang C, Liu Z, Xu Z, Wu X, Zhang D, Zhang Z, Wei J. The role of chemokine receptor 9/chemokine ligand 25 signaling: From immune cells to cancer cells. Oncol Lett 2018; 16:2071-2077. [PMID: 30008902 PMCID: PMC6036326 DOI: 10.3892/ol.2018.8896] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/15/2018] [Indexed: 02/05/2023] Open
Abstract
Chemokine ligand 25 (CCL25) and chemokine receptor 9 (CCR9) are important regulators of migration, proliferation and apoptosis in leukocytes and cancer cells. Blocking of the CCR9/CCL25 signal has been demonstrated to be a potential novel cancer therapy. Research into CCR9 and CCL25 has revealed their associated upstream and downstream signaling pathways; CCR9 is regulated by several immunological factors, including NOTCH, interleukin 2, interleukin 4 and retinoic acid. NOTCH in particular, has been revealed to be a crucial upstream regulator of CCR9. Furthermore, proteins including matrix metalloproteinases, P-glycoprotein, Ezrin/Radixin/Moesin and Livin are regulated via phosphatidylinositol-3 kinase/protein kinase B, which are in turn stimulated by CCR9/CCL25. This is a review of the current literature on the functions and signaling pathways of CCR9/CCL25.
Collapse
Affiliation(s)
- Cong Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, Qinghai 810001, P.R. China
| | - Zhenghuan Liu
- Department of Urology, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhihui Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Xian Wu
- Department of Ultrasound, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dongyang Zhang
- Department of Ultrasound, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ziqi Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Jianqin Wei
- The University of Miami Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL 33136, USA
| |
Collapse
|
6
|
Luan J, Zhao Y, Zhang Y, Miao J, Li J, Chen ZN, Zhu P. CD147 blockade as a potential and novel treatment of graft rejection. Mol Med Rep 2017; 16:4593-4602. [PMID: 28849101 PMCID: PMC5647014 DOI: 10.3892/mmr.2017.7201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/01/2017] [Indexed: 11/25/2022] Open
Abstract
Cluster of differentiation (CD)147 is highly involved in the T cell activation process. High CD147 expression is observed on the surfaces of activated T cells, particularly CD4+ T cells. In organ transplantation, it is important to prevent graft rejection resulting from the excessive activation of T cells, particularly CD4+ T cells, which exhibit a key role in amplifying the immune response. The present study aimed to investigate the effects of CD147 blockade in vitro and in vivo and used a transplant rejection system to assess the feasibility of utilizing CD147 antibody-based immunosuppressant drugs for the treatment of graft rejection. The effects of CD147 antibodies were evaluated on lymphocyte proliferation stimulated by phytohemagglutinin or CD3/CD28 magnetic beads and in a one-way mixed lymphocyte reaction (MLR) system in vitro. For the in vivo analysis, an allogeneic skin transplantation mouse model was used. CD147 antibodies were effective against lymphocytes, particularly CD4+T lymphocytes, and were additionally effective in the one-way MLR system. In the allogeneic skin transplantation mouse model, the survival of transplanted skin was extended in the CD147 antibody-treated group. Furthermore, the level of inflammatory cell infiltration in transplanted skin was reduced. CD147 blockade decreased the serum levels of interleukin (IL)-17 and the proportions of peripheral blood CD4+ and CD8+ memory T cells. The data demonstrated that CD147 blockade suppressed skin graft rejection, primarily by suppressing CD4+T and memory T cell proliferation, indicating that CD147 exhibits great potential as a target of immunosuppressant drugs.
Collapse
Affiliation(s)
- Jing Luan
- National Translational Science Center for Molecular Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yu Zhao
- National Translational Science Center for Molecular Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yang Zhang
- National Translational Science Center for Molecular Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jinlin Miao
- National Translational Science Center for Molecular Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jia Li
- National Translational Science Center for Molecular Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ping Zhu
- National Translational Science Center for Molecular Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
7
|
Liu M, Wang P, Zhao M, Liu DY. Intestinal Dendritic Cells Are Altered in Number, Maturity and Chemotactic Ability in Fulminant Hepatic Failure. PLoS One 2016; 11:e0166165. [PMID: 27832135 PMCID: PMC5104363 DOI: 10.1371/journal.pone.0166165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/23/2016] [Indexed: 01/01/2023] Open
Abstract
Fulminant hepatic failure (FHF) is defined as rapid acute liver injury, often complicated with spontaneous bacterial peritonitis (SBP). The precise onset of FHF with SBP is still unknown, but it is thought that SBP closely correlates with a weakened intestinal barrier. Dendritic cells (DCs) play a crucial role in forming the intestinal immune barrier, therefore the number, maturity and chemotactic ability of intestinal DCs were studied in FHF. Mouse intestinal and spleen DCs were isolated by magnetic-activated cell sorting (MACS) and surface markers of DCs, namely CD11c, CD74, CD83 and CD86, were identified using flow cytometry. Immunohistochemistry and Western blotting were performed to detect the distribution and expression of CC-chemokine receptor 7 (CCR7) and CC-chemokine receptor 9 (CCR9), as well as their ligands-CC-chemokine ligand 21 (CCL21) and CC-chemokine ligand 25 (CCL25). Real-time PCR was used to detect CCR7 and CCR9 mRNA, along with their ligands-CCL21 and CCL25 mRNA. Flow cytometry analysis showed that the markers CD74, CD83 and CD86 of CD11c+DCs were lower in the D-galactosamine (D-GalN) group and were significantly decreased in the FHF group, while there were no significant changes in the expression of these markers in the lipopolysaccharide (LPS) group. Immunohistochemistry results showed that staining for CCR7 and CCR9, as well as their ligands CCL21 and CCL25, was significantly weaker in the D-GalN and FHF groups compared with the normal saline (NS) group or the LPS group; the FHF group even showed completely unstained parts. Protein expression of CCR7 and CCR9, as well as their ligands- CCL21 and CCL25, was also lower in the D-GalN group and decreased even more significantly in the FHF group. At the gene level, CCR7 and CCR9, along with CCL21 and CCL25 mRNA expression, was lower in the D-GalN group and significantly decreased in the FHF group compared to the NS and LPS groups, consisting with the protein expression. Our study indicated that intestinal DCs were decreased in number, maturity and chemotactic ability in FHF and might contribute to a decreased function of the intestinal immune barrier in FHF.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B7-2 Antigen/immunology
- B7-2 Antigen/metabolism
- Blotting, Western
- CD11c Antigen/immunology
- CD11c Antigen/metabolism
- Cell Count
- Chemokine CCL21/genetics
- Chemokine CCL21/immunology
- Chemokine CCL21/metabolism
- Chemokines, CC/genetics
- Chemokines, CC/immunology
- Chemokines, CC/metabolism
- Chemotaxis/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Flow Cytometry
- Gene Expression/immunology
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Immunoglobulins/immunology
- Immunoglobulins/metabolism
- Immunohistochemistry
- Intestines/immunology
- Liver Failure, Acute/genetics
- Liver Failure, Acute/immunology
- Liver Failure, Acute/metabolism
- Male
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice, Inbred BALB C
- Receptors, CCR/genetics
- Receptors, CCR/immunology
- Receptors, CCR/metabolism
- Receptors, CCR7/genetics
- Receptors, CCR7/immunology
- Receptors, CCR7/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- CD83 Antigen
Collapse
Affiliation(s)
- Mei Liu
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Peng Wang
- The second department of urology, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Min Zhao
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - DY Liu
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
| |
Collapse
|
8
|
Huang Y, Wang D, Wang X, Zhang Y, Liu T, Chen Y, Tang Y, Wang T, Hu D, Huang C. Abrogation of CC chemokine receptor 9 ameliorates ventricular remodeling in mice after myocardial infarction. Sci Rep 2016; 6:32660. [PMID: 27585634 PMCID: PMC5009347 DOI: 10.1038/srep32660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022] Open
Abstract
CC chemokine receptor 9 (CCR9), which is a unique receptor for CC chemokine ligand (CCL25), is mainly expressed on lymphocytes, dendritic cells (DCs) and monocytes/macrophages. CCR9 mediates the chemotaxis of inflammatory cells and participates in the pathological progression of inflammatory diseases. However, the role of CCR9 in the pathological process of myocardial infarction (MI) remains unexplored; inflammation plays a key role in this process. Here, we used CCR9 knockout mice to determine the functional significance of CCR9 in regulating post-MI cardiac remodeling and its underlying mechanism. MI was induced by surgical ligation of the left anterior descending coronary artery in CCR9 knockout mice and their CCR9+/+ littermates. Our results showed that the CCR9 expression levels were up-regulated in the hearts of the MI mice. Abrogation of CCR9 improved the post-MI survival rate and left ventricular (LV) dysfunction and decreased the infarct size. In addition, the CCR9 knockout mice exhibited attenuated inflammation, apoptosis, structural and electrical remodeling compared with the CCR9+/+ MI mice. Mechanistically, CCR9 mainly regulated the pathological response by interfering with the NF-κB and MAPK signaling pathways. In conclusion, the data reveal that CCR9 serves as a novel modulator of pathological progression following MI through NF-κB and MAPK signaling.
Collapse
Affiliation(s)
- Yan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Dandan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Xin Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Yijie Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Tao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Yuting Chen
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Teng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Dan Hu
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.,Masonic Medical Research Laboratory, Utica, NY, USA
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.,Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| |
Collapse
|
9
|
Xu Y, Chu N, Qiu X, Gober HJ, Li D, Wang L. The interconnected role of chemokines and estrogen in bone metabolism. Biosci Trends 2016; 10:433-444. [DOI: 10.5582/bst.2016.01072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yingping Xu
- Obstetrics and Gynecology Hospital of Fudan University
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Shanghai Medical College, Fudan University
- The Academy of Integrative Medicine of Fudan University
| | - Nan Chu
- Obstetrics and Gynecology Hospital of Fudan University
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Shanghai Medical College, Fudan University
| | - Xuemin Qiu
- Obstetrics and Gynecology Hospital of Fudan University
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Shanghai Medical College, Fudan University
- The Academy of Integrative Medicine of Fudan University
| | | | - Dajin Li
- Obstetrics and Gynecology Hospital of Fudan University
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Shanghai Medical College, Fudan University
- The Academy of Integrative Medicine of Fudan University
| | - Ling Wang
- Obstetrics and Gynecology Hospital of Fudan University
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Shanghai Medical College, Fudan University
- The Academy of Integrative Medicine of Fudan University
| |
Collapse
|
10
|
Tzeng YS, Wu SY, Peng YJ, Cheng CP, Tang SE, Huang KL, Chu SJ. Hypercapnic acidosis prolongs survival of skin allografts. J Surg Res 2014; 195:351-9. [PMID: 25577144 DOI: 10.1016/j.jss.2014.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/21/2014] [Accepted: 12/11/2014] [Indexed: 01/18/2023]
Abstract
BACKGROUND Evidence reveals that hypercapnic acidosis (HCA) modulates immune responses. However, the effect of HCA on allogenic skin graft rejection is unknown. We examined whether HCA might improve skin graft survival in a mouse model of skin transplantation. METHODS A major histocompatibility-complex-incompatible BALB/c to C57BL/6 mouse skin transplantation model was used. Animals were divided into sham control, air, and HCA groups. Mice in the HCA group were exposed daily to 5% CO2 in air for 1 h. Skin grafts were harvested for histologic analyses. Nuclear factor (NF)-κB activation was determined in harvested draining lymph nodes. Spleen weights and serum levels of tumor necrosis factor-α and chemokine (C-X-C motif) ligand 2 were serially assessed after skin transplantation. RESULTS Skin allografts survived significantly longer in the HCA group of mice than those in the air group. Allografted mice in the air group underwent a 2.1-fold increase in spleen weight compared with a 1.1-fold increase in the mice with HCA on day 3. There were increased inflammatory cell infiltration, folliculitis, focal dermal-epidermal separation, and areas of epidermal necrosis in the air group that were reduced with HCA treatment. In the HCA group, CD8(+) T cell infiltration at day 7 decreased significantly but not CD4(+) T cell infiltration. In addition, HCA significantly suppressed serum tumor necrosis factor-α on days 1 and 3 and chemokine (C-X-C motif) ligand 2 on days 1 and 10. Furthermore, the HCA group had remarkably suppressed NF-κB activity in draining lymph nodes. CONCLUSIONS HCA significantly prolonged the survival of incompatible skin allografts in mice by reducing proinflammatory cytokine production, immune cell infiltration, and NF-κB activation.
Collapse
Affiliation(s)
- Yuan-Sheng Tzeng
- Division of Plastic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Jen Peng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Pi Cheng
- Department and Graduate institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Shih-En Tang
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Lun Huang
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shi-Jye Chu
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
11
|
Cui J, Liu S, Zhang B, Wang H, Sun H, Song S, Qiu X, Liu Y, Wang X, Jiang Z, Liu Z. Transciptome analysis of the gill and swimbladder of Takifugu rubripes by RNA-Seq. PLoS One 2014; 9:e85505. [PMID: 24454879 PMCID: PMC3894188 DOI: 10.1371/journal.pone.0085505] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/28/2013] [Indexed: 11/25/2022] Open
Abstract
The fish gill, as one of the mucosal barriers, plays an important role in mucosal immune response. The fish swimbladder functions for regulating buoyancy. The fish swimbladder has long been postulated as a homologous organ of the tetrapod lung, but the molecular evidence is scarce. In order to provide new information that is complementary to gill immune genes, initiate new research directions concerning the genetic basis of the gill immune response and understand the molecular function of swimbladder as well as its relationship with lungs, transcriptome analysis of the fugu Takifugu rubripes gill and swimbladder was carried out by RNA-Seq. Approximately 55,061,524 and 44,736,850 raw sequence reads from gill and swimbladder were generated, respectively. Gene ontology (GO) and KEGG pathway analysis revealed diverse biological functions and processes. Transcriptome comparison between gill and swimbladder resulted in 3,790 differentially expressed genes, of which 1,520 were up-regulated in the swimbladder while 2,270 were down-regulated. In addition, 406 up regulated isoforms and 296 down regulated isoforms were observed in swimbladder in comparison to gill. By the gene enrichment analysis, the three immune-related pathways and 32 immune-related genes in gill were identified. In swimbladder, five pathways including 43 swimbladder-enriched genes were identified. This work should set the foundation for studying immune-related genes for the mucosal immunity and provide genomic resources to study the relatedness of the fish swimbladder and mammalian lung.
Collapse
Affiliation(s)
- Jun Cui
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, China
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Bing Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hongdi Wang
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, China
| | - Hongjuan Sun
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, China
| | - Shuhui Song
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xuemei Qiu
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, China
| | - Yang Liu
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, China
| | - Xiuli Wang
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, China
- * E-mail: (XW); (ZJ); (ZL)
| | - Zhiqiang Jiang
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, China
- * E-mail: (XW); (ZJ); (ZL)
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
- * E-mail: (XW); (ZJ); (ZL)
| |
Collapse
|