1
|
CRISPR/Cas9 system: a reliable and facile genome editing tool in modern biology. Mol Biol Rep 2022; 49:12133-12150. [PMID: 36030476 PMCID: PMC9420241 DOI: 10.1007/s11033-022-07880-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022]
Abstract
Genome engineering has always been a versatile technique in biological research and medicine, with several applications. In the last several years, the discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 technology has swept the scientific community and revolutionised the speed of modern biology, heralding a new era of disease detection and rapid biotechnology discoveries. It enables successful gene editing by producing targeted double-strand breaks in virtually any organism or cell type. So, this review presents a comprehensive knowledge about the mechanism and structure of Cas9-mediated RNA-guided DNA targeting and cleavage. In addition, genome editing via CRISPR-Cas9 technology in various animals which are being used as models in scientific research including Non-Human Primates Pigs, Dogs, Zebra, fish and Drosophila has been discussed in this review. This review also aims to understand the applications, serious concerns and future perspective of CRISPR/Cas9-mediated genome editing.
Collapse
|
2
|
Mir TUG, Wani AK, Akhtar N, Shukla S. CRISPR/Cas9: Regulations and challenges for law enforcement to combat its dual-use. Forensic Sci Int 2022; 334:111274. [DOI: 10.1016/j.forsciint.2022.111274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/19/2022] [Accepted: 03/13/2022] [Indexed: 12/15/2022]
|
3
|
Arango D, Bittar A, Esmeral NP, Ocasión C, Muñoz-Camargo C, Cruz JC, Reyes LH, Bloch NI. Understanding the Potential of Genome Editing in Parkinson's Disease. Int J Mol Sci 2021; 22:9241. [PMID: 34502143 PMCID: PMC8430539 DOI: 10.3390/ijms22179241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/05/2023] Open
Abstract
CRISPR is a simple and cost-efficient gene-editing technique that has become increasingly popular over the last decades. Various CRISPR/Cas-based applications have been developed to introduce changes in the genome and alter gene expression in diverse systems and tissues. These novel gene-editing techniques are particularly promising for investigating and treating neurodegenerative diseases, including Parkinson's disease, for which we currently lack efficient disease-modifying treatment options. Gene therapy could thus provide treatment alternatives, revolutionizing our ability to treat this disease. Here, we review our current knowledge on the genetic basis of Parkinson's disease to highlight the main biological pathways that become disrupted in Parkinson's disease and their potential as gene therapy targets. Next, we perform a comprehensive review of novel delivery vehicles available for gene-editing applications, critical for their successful application in both innovative research and potential therapies. Finally, we review the latest developments in CRISPR-based applications and gene therapies to understand and treat Parkinson's disease. We carefully examine their advantages and shortcomings for diverse gene-editing applications in the brain, highlighting promising avenues for future research.
Collapse
Affiliation(s)
- David Arango
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Amaury Bittar
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Natalia P. Esmeral
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Camila Ocasión
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (C.O.); (L.H.R.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (C.O.); (L.H.R.)
| | - Natasha I. Bloch
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| |
Collapse
|
4
|
Cushman-Vokoun AM, Voelkerding KV, Fung MK, Nowak JA, Thorson JA, Duncan HL, Kalicanin T, Anderson MW, Yohe S. A Primer on Chimeric Antigen Receptor T-cell Therapy: What Does It Mean for Pathologists? Arch Pathol Lab Med 2021; 145:704-716. [PMID: 33237994 DOI: 10.5858/arpa.2019-0632-cp] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Chimeric antigen receptor T-cell (CAR-T) technology has shown great promise in both clinical and preclinical models in mediating potent and specific antitumor activity. With the advent of US Food and Drug Administration-approved CAR-T therapies for B-cell lymphoblastic leukemia and B-cell non-Hodgkin lymphomas, CAR-T therapy is poised to become part of mainstream clinical practice. OBJECTIVE.— To educate pathologists on CAR-T and chimeric antigen receptor-derived cellular therapy, provide a better understanding of their role in this process, explain important regulatory aspects of CAR-T therapy, and advocate for pathologist involvement in the delivery and monitoring of chimeric antigen receptor-based treatments. Much of the focus of this article addresses US Food and Drug Administration-approved therapies; however, more general issues and future perspectives are considered for therapies in development. DESIGN.— A CAR-T workgroup, facilitated by the College of American Pathologists Personalized Health Care Committee and consisting of pathologists of various backgrounds, was convened to develop a summary guidance paper for the College of American Pathologists Council on Scientific Affairs. RESULTS.— The workgroup identified gaps in pathologists' knowledge of CAR-T therapy, including uncertainty in the role of the clinical laboratory in supporting CAR-T therapy. The workgroup considered these issues and summarized the findings to assist pathologists to become stakeholders in CAR-T therapy administration. CONCLUSIONS.— This manuscript serves to both educate pathologists on CAR-T therapy and serve as a point of initial discussions in areas of CAR-T science, clinical therapy, and regulatory issues as CAR-T therapies continue to be introduced into clinical practice.
Collapse
Affiliation(s)
- Allison M Cushman-Vokoun
- From the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Cushman-Vokoun)
| | - Karl V Voelkerding
- The Department of Pathology, University of Utah School of Medicine and ARUP Laboratories, Salt Lake City (Voelkerding)
| | - Mark K Fung
- Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington (Fung)
| | - Jan A Nowak
- The Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Nowak)
| | - John A Thorson
- The Department of Pathology, University of California San Diego, La Jolla (Thorson)
| | - Helena L Duncan
- Policy and Advocacy, College of American Pathologists, Washington, DC (Duncan)
| | - Tanja Kalicanin
- Proficiency Testing, College of American Pathologists, Northfield, Illinois (Kalicanin)
| | | | - Sophia Yohe
- The Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis (Yohe)
| |
Collapse
|
5
|
Kaligotla VSA, Jasti T, Kandra P. CRISPR/Cas9 in cancer: An attempt to the present trends and future prospects. Biotechnol Appl Biochem 2021; 69:1238-1251. [PMID: 34033692 DOI: 10.1002/bab.2200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/12/2021] [Indexed: 11/08/2022]
Abstract
Cancer is the second leading cause of death globally. Series of sequential, repeated genetic changes and epigenetic modifications are leading to the formation of tumors. These tumors subsequently causing the infected cells to invade and transform their surrounding cells by metastasis are some hallmarks in cancer. Although tremendous efforts have been extended for structurally characterizing the numerous genomic mutations undergoing in cancer cells, there is a lack of information regarding the functions of many mutated genes. Clustered Regularly Interspaced Short Palindromic repeats/CRISPR-associated nuclease 9 (CRISPR/Cas9) has become a robust method for building changes in genome of many organisms. Recent reports have suggested that modification of CRISPR/Cas9 can provide plot form to probe the mechanisms in tumorigenesis and in cancer therapies. This review focuses on the historical perspectives of CRISPR/Cas9. The study highlights the applications and also role in cancer cell genome editing, which is helpful to understand the dynamics. Intense research in progress on mechanism of action of CRISPR/Cas9 has been reviewed and critically discussed. Further, relevant literature on animal models focusing on various approaches has been highlighted to emphasize the therapeutics of CRISPR/Cas9 with current trends and future challenges.
Collapse
Affiliation(s)
| | - Tejaswi Jasti
- Department of Biotechnology, GITAM Institute of Technology, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh, India
| | - Prameela Kandra
- Department of Biotechnology, GITAM Institute of Technology, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
6
|
A review of application of base editing for the treatment of inner ear disorders. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
7
|
Cheng X, Fan S, Wen C, Du X. CRISPR/Cas9 for cancer treatment: technology, clinical applications and challenges. Brief Funct Genomics 2020; 19:209-214. [PMID: 32052006 DOI: 10.1093/bfgp/elaa001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/08/2019] [Accepted: 01/06/2020] [Indexed: 12/25/2022] Open
Abstract
AbstractClustered regularly interspaced short palindromic repeats (CRISPR) is described as RNA mediated adaptive immune system defense, which is naturally found in bacteria and archaea. CRISPR-Cas9 has shown great promise for cancer treatment in cancer immunotherapy, manipulation of cancer genome and epigenome and elimination or inactivation of carcinogenic viral infections. However, many challenges remain to be addressed to increase its efficacy, including off-target effects, editing efficiency, fitness of edited cells, immune response and delivery methods. Here, we explain CRISPR-Cas classification and its general function mechanism for gene editing. Then, we summarize these preclinical CRISPR-Cas9-based therapeutic strategies against cancer. Moreover, the challenges and improvements of CRISPR-Cas9 clinical applications will be discussed.
Collapse
Affiliation(s)
- Xing Cheng
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Shaoyi Fan
- Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine,Guangzhou, China
| | - Chengcai Wen
- Department of Rehabilitation, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xianfa Du
- Department of Orthopaedics, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Schwarzer R, Gramatica A, Greene WC. Reduce and Control: A Combinatorial Strategy for Achieving Sustained HIV Remissions in the Absence of Antiretroviral Therapy. Viruses 2020; 12:v12020188. [PMID: 32046251 PMCID: PMC7077203 DOI: 10.3390/v12020188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) indefinitely persists, despite effective antiretroviral therapy (ART), within a small pool of latently infected cells. These cells often display markers of immunologic memory and harbor both replication-competent and -incompetent proviruses at approximately a 1:100 ratio. Although complete HIV eradication is a highly desirable goal, this likely represents a bridge too far for our current and foreseeable technologies. A more tractable goal involves engineering a sustained viral remission in the absence of ART––a “functional cure.” In this setting, HIV remains detectable during remission, but the size of the reservoir is small and the residual virus is effectively controlled by an engineered immune response or other intervention. Biological precedence for such an approach is found in the post-treatment controllers (PTCs), a rare group of HIV-infected individuals who, following ART withdrawal, do not experience viral rebound. PTCs are characterized by a small reservoir, greatly reduced inflammation, and the presence of a poorly understood immune response that limits viral rebound. Our goal is to devise a safe and effective means for replicating durable post-treatment control on a global scale. This requires devising methods to reduce the size of the reservoir and to control replication of this residual virus. In the following sections, we will review many of the approaches and tools that likely will be important for implementing such a “reduce and control” strategy and for achieving a PTC-like sustained HIV remission in the absence of ART.
Collapse
|
9
|
Broeders M, Herrero-Hernandez P, Ernst MPT, van der Ploeg AT, Pijnappel WWMP. Sharpening the Molecular Scissors: Advances in Gene-Editing Technology. iScience 2020; 23:100789. [PMID: 31901636 PMCID: PMC6941877 DOI: 10.1016/j.isci.2019.100789] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Abstract
The ability to precisely modify human genes has been made possible by the development of tools such as meganucleases, zinc finger nucleases, TALENs, and CRISPR/Cas. These now make it possible to generate targeted deletions, insertions, gene knock outs, and point variants; to modulate gene expression by targeting transcription factors or epigenetic machineries to DNA; or to target and modify RNA. Endogenous repair mechanisms are used to make the modifications required in DNA; they include non-homologous end joining, homology-directed repair, homology-independent targeted integration, microhomology-mediated end joining, base-excision repair, and mismatch repair. Off-target effects can be monitored using in silico prediction and sequencing and minimized using Cas proteins with higher accuracy, such as high-fidelity Cas9, enhanced-specificity Cas9, and hyperaccurate Cas9. Alternatives to Cas9 have been identified, including Cpf1, Cas12a, Cas12b, and smaller Cas9 orthologs such as CjCas9. Delivery of gene-editing components is performed ex vivo using standard techniques or in vivo using AAV, lipid nanoparticles, or cell-penetrating peptides. Clinical development of gene-editing technology is progressing in several fields, including immunotherapy in cancer treatment, antiviral therapy for HIV infection, and treatment of genetic disorders such as β-thalassemia, sickle cell disease, lysosomal storage disorders, and retinal dystrophy. Here we review these technological advances and the challenges to their clinical implementation.
Collapse
Affiliation(s)
- Mike Broeders
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Pablo Herrero-Hernandez
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Martijn P T Ernst
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands.
| |
Collapse
|
10
|
Targeting Negative and Positive Immune Checkpoints with Monoclonal Antibodies in Therapy of Cancer. Cancers (Basel) 2019; 11:cancers11111756. [PMID: 31717326 PMCID: PMC6895894 DOI: 10.3390/cancers11111756] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
The immune checkpoints are regulatory molecules that maintain immune homeostasis in physiological conditions. By sending T cells a series of co-stimulatory or co-inhibitory signals via receptors, immune checkpoints can both protect healthy tissues from adaptive immune response and activate lymphocytes to remove pathogens effectively. However, due to their mode of action, suppressive immune checkpoints may serve as unwanted protection for cancer cells. To restore the functioning of the immune system and make the patient’s immune cells able to recognize and destroy tumors, monoclonal antibodies are broadly used in cancer immunotherapy to block the suppressive or to stimulate the positive immune checkpoints. In this review, we aim to present the current state of application of monoclonal antibodies in clinics, used either as single agents or in a combined treatment. We discuss the limitations of these therapies and possible problem-solving with combined treatment approaches involving both non-biological and biological agents. We also highlight the most promising strategies based on the use of monoclonal or bispecific antibodies targeted on immune checkpoints other than currently implemented in clinics.
Collapse
|
11
|
Memi F, Ntokou A, Papangeli I. CRISPR/Cas9 gene-editing: Research technologies, clinical applications and ethical considerations. Semin Perinatol 2018; 42:487-500. [PMID: 30482590 DOI: 10.1053/j.semperi.2018.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy carries the potential to treat more than 10,000 human monogenic diseases and benefit an even greater number of complex polygenic conditions. The repurposing of CRISPR/Cas9, an ancient bacterial immune defense system, into a gene-editing technology has armed researchers with a revolutionary tool for gene therapy. However, as the breadth of research and clinical applications of this technology continues to expand, outstanding technical challenges and ethical considerations will need to be addressed before clinical applications become commonplace. Here, we review CRISPR/Cas9 technology and discuss its benefits and limitations in research and the clinical context, as well as ethical considerations surrounding the use of CRISPR gene editing.
Collapse
Affiliation(s)
- Fani Memi
- Department of Cell and Developmental Biology, University College London, 21 University Street, WC1E 6DE London, UK.
| | - Aglaia Ntokou
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, 300 George, 7(th) Floor, New Haven, CT 06511, United States.
| | - Irinna Papangeli
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, 300 George, 7(th) Floor, New Haven, CT 06511, United States.
| |
Collapse
|
12
|
Mollanoori H, Teimourian S. Therapeutic applications of CRISPR/Cas9 system in gene therapy. Biotechnol Lett 2018; 40:907-914. [PMID: 29704220 DOI: 10.1007/s10529-018-2555-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/16/2018] [Indexed: 12/11/2022]
Abstract
Gene therapy is based on the principle of the genetic manipulation of DNA or RNA for treating and preventing human diseases. The clustered regularly interspaced short palindromic repeats/CRISPR associated nuclease9 (CRISPR/Cas9) system, derived from the acquired immune system in bacteria and archaea, has provided a new tool for accurate manipulation of genomic sequence to attain a therapeutic result. The advantage of CRISPR which made it an easy and flexible tool for diverse genome editing purposes is that a single protein (Cas9) complex with 2 short RNA sequences, function as a site-specific endonuclease. Recently, application of CRISPR/Cas9 system has become popular for therapeutic aims such as gene therapy. In this article, we review the fundamental mechanisms of CRISPR-Cas9 function and summarize preclinical CRISPR-mediated gene therapy reports on a wide variety of disorders.
Collapse
Affiliation(s)
- Hasan Mollanoori
- Department of Medical Genetics, Iran University of Medical Sciences (IUMS), Crossroads of Shahid Hemmat & Shahid Chamran Highways, P.O. Box: 15875-6171, 1449614535, Tehran, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, Iran University of Medical Sciences (IUMS), Crossroads of Shahid Hemmat & Shahid Chamran Highways, P.O. Box: 15875-6171, 1449614535, Tehran, Iran. .,Department of Infectious Diseases, School of Medicine, Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|