1
|
Geevarghese R, Sajjadi SS, Hudecki A, Sajjadi S, Jalal NR, Madrakian T, Ahmadi M, Włodarczyk-Biegun MK, Ghavami S, Likus W, Siemianowicz K, Łos MJ. Biodegradable and Non-Biodegradable Biomaterials and Their Effect on Cell Differentiation. Int J Mol Sci 2022; 23:ijms232416185. [PMID: 36555829 PMCID: PMC9785373 DOI: 10.3390/ijms232416185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Biomaterials for tissue scaffolds are key components in modern tissue engineering and regenerative medicine. Targeted reconstructive therapies require a proper choice of biomaterial and an adequate choice of cells to be seeded on it. The introduction of stem cells, and the transdifferentiation procedures, into regenerative medicine opened a new era and created new challenges for modern biomaterials. They must not only fulfill the mechanical functions of a scaffold for implanted cells and represent the expected mechanical strength of the artificial tissue, but furthermore, they should also assure their survival and, if possible, affect their desired way of differentiation. This paper aims to review how modern biomaterials, including synthetic (i.e., polylactic acid, polyurethane, polyvinyl alcohol, polyethylene terephthalate, ceramics) and natural (i.e., silk fibroin, decellularized scaffolds), both non-biodegradable and biodegradable, could influence (tissue) stem cells fate, regulate and direct their differentiation into desired target somatic cells.
Collapse
Affiliation(s)
- Rency Geevarghese
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Seyedeh Sara Sajjadi
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| | - Andrzej Hudecki
- Łukasiewicz Network-Institute of Non-Ferrous Metals, 44-121 Gliwice, Poland
| | - Samad Sajjadi
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| | | | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Małgorzata K. Włodarczyk-Biegun
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Saeid Ghavami
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
| | - Wirginia Likus
- Department of Anatomy, Faculty of Health Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Krzysztof Siemianowicz
- Department of Biochemistry, Faculty of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence: (K.S.); (M.J.Ł.); Tel.: +48-32-237-2913 (M.J.Ł.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Correspondence: (K.S.); (M.J.Ł.); Tel.: +48-32-237-2913 (M.J.Ł.)
| |
Collapse
|
2
|
Comparison of Physicochemical, Mechanical, and (Micro-)Biological Properties of Sintered Scaffolds Based on Natural- and Synthetic Hydroxyapatite Supplemented with Selected Dopants. Int J Mol Sci 2022; 23:ijms23094692. [PMID: 35563084 PMCID: PMC9101299 DOI: 10.3390/ijms23094692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
The specific combinations of materials and dopants presented in this work have not been previously described. The main goal of the presented work was to prepare and compare the different properties of newly developed composite materials manufactured by sintering. The synthetic- (SHAP) or natural- (NHAP) hydroxyapatite serves as a matrix and was doped with: (i) organic: multiwalled carbon nanotubes (MWCNT), fullerenes C60, (ii) inorganic: Cu nanowires. Research undertaken was aimed at seeking novel candidates for bone replacement biomaterials based on hydroxyapatite—the main inorganic component of bone, because bone reconstructive surgery is currently mostly carried out with the use of autografts; titanium or other non-hydroxyapatite -based materials. The physicomechanical properties of the developed biomaterials were tested by Scanning Electron Microscopy (SEM), Dielectric Spectroscopy (BSD), Nuclear Magnetic Resonance (NMR), and Differential Scanning Calorimetry (DSC), as well as microhardness using Vickers method. The results showed that despite obtaining porous sinters. The highest microhardness was achieved for composite materials based on NHAP. Based on NMR spectroscopy, residue organic substances could be observed in NHAP composites, probably due to the organic structures that make up the tooth. Microbiology investigations showed that the selected samples exhibit bacteriostatic properties against Gram-positive reference bacterial strain S. epidermidis (ATCC 12228); however, the property was much less pronounced against Gram-negative reference strain E. coli (ATCC 25922). Both NHAP and SHAP, as well as their doped derivates, displayed in good general compatibility, with the exception of Cu-nanowire doped derivates.
Collapse
|
3
|
Mankuzhy PD, Ramesh ST, Thirupathi Y, Mohandas PS, Chandra V, Sharma TG. The preclinical and clinical implications of fetal adnexa derived mesenchymal stromal cells in wound healing therapy. Wound Repair Regen 2021; 29:347-369. [PMID: 33721373 DOI: 10.1111/wrr.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/06/2020] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Mesenchymal stromal cells (MSCs) isolated from fetal adnexa namely amniotic membrane/epithelium, amniotic fluid and umbilical cord have hogged the limelight in recent times, as a proposed alternative to MSCs from conventional sources. These cells which are identified as being in a developmentally primitive state have many advantages, the most important being the non-invasive nature of their isolation procedures, absence of ethical concerns, proliferation potential, differentiation abilities and low immunogenicity. In the present review, we are focusing on the potential preclinical and clinical applications of different cell types of fetal adnexa, in wound healing therapy. We also discuss the isolation-culture methods, cell surface marker expression, multi-lineage differentiation abilities, immune-modulatory capabilities and their homing property. Different mechanisms involved in the wound healing process and the role of stromal cells in therapeutic wound healing are highlighted. Further, we summarize the findings of the cell delivery systems in skin lesion models and paracrine functions of their secretome in the wound healing process. Overall, this holistic review outlines the research findings of fetal adnexa derived MSCs, their usefulness in wound healing therapy in human as well as in veterinary medicine.
Collapse
Affiliation(s)
- Pratheesh D Mankuzhy
- Department of Physiology, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, India
| | - Sreekumar T Ramesh
- Department of Physiology, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, India
| | - Yasotha Thirupathi
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| | - Ponny S Mohandas
- Consultant Gynecologist, Department of Gynecology and Obstetrics, Meditrina Hospital, Ayathil, Kollam, Kerala, India
| | - Vikash Chandra
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| | - Taru Guttula Sharma
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| |
Collapse
|
4
|
Hudecki A, Wolany W, Likus W, Markowski J, Wilk R, Kolano-Burian A, Łuczak K, Zorychta M, Kawecki M, Łos MJ. Orbital reconstruction - applied materials, therapeutic agents and clinical problems of restoration of defects. Eur J Pharmacol 2020; 892:173766. [PMID: 33249074 DOI: 10.1016/j.ejphar.2020.173766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 01/09/2023]
Abstract
Reconstruction of large cavities in the skull and facial regions is important not only to restore health but also for the correction of facial distortions. Every visible deformity in the facial region of the patient affects their mental wellness and perception by society, entailing both, deterioration of health, but also a decrease in the performance in society, which translates into its productivity. With the progressive degradation of the natural environment, cancer, in the coming years, will be on the leading causes of morbidity and mortality. The review focuses on two main aspects: (i) the causes of injuries leading to the necessity of removal of orbital cavities occupied by the tumor and then their reconstruction, with the focus on the anatomical structure of the orbital cavity, (ii) the materials used to reconstruct the orbital cavities and analyze their advantages and disadvantages. The manuscript also underlines the not yet fully met challenges in the area of facial- and craniofacial reconstruction in people affected by cancer.
Collapse
Affiliation(s)
- Andrzej Hudecki
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Gliwice, Poland
| | | | - Wirginia Likus
- Department of Anatomy, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Poland
| | - Jarosław Markowski
- Department of Laryngology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Poland
| | - Renata Wilk
- Department of Anatomy, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Poland
| | | | | | | | - Marek Kawecki
- University of Bielsko-Biala, Faculty of Heath Science, Bielsko-Biala, Poland
| | - Marek J Łos
- Biotechnology Centre, Silesian University of Technology, Poland; and Linkocare Life Sciences AB, Linkoping, Gliwice, Sweden.
| |
Collapse
|
5
|
Reprogramming and transdifferentiation - two key processes for regenerative medicine. Eur J Pharmacol 2020; 882:173202. [PMID: 32562801 DOI: 10.1016/j.ejphar.2020.173202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
Regenerative medicine based on transplants obtained from donors or foetal and new-born mesenchymal stem cells, encounter important obstacles such as limited availability of organs, ethical issues and immune rejection. The growing demand for therapeutic methods for patients being treated after serious accidents, severe organ dysfunction and an increasing number of cancer surgeries, exceeds the possibilities of the therapies that are currently available. Reprogramming and transdifferentiation provide powerful bioengineering tools. Both procedures are based on the somatic differentiated cells, which are easily and unlimitedly available, like for example: fibroblasts. During the reprogramming procedure mature cells are converted into pluripotent cells - which are capable to differentiate into almost any kind of desired cells. Transdifferentiation directly converts differentiated cells of one type into another differentiated cells type. Both procedures allow to obtained patient's dedicated cells for therapeutic purpose in regenerative medicine. In combination with biomaterials, it is possible to obtain even whole anatomical structures. Those patient's dedicated structures may serve for them upon serious accidents with massive tissue damage but also upon cancer surgeries as a replacement of damaged organ. Detailed information about reprogramming and transdifferentiation procedures as well as the current state of the art are presented in our review.
Collapse
|
6
|
Amniotic and Umbilical Cord of Transgenic Pigs as an Alternative Source of Stem Cells. Transplant Proc 2020; 52:2193-2197. [PMID: 32505501 DOI: 10.1016/j.transproceed.2020.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/24/2020] [Accepted: 03/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The placenta is worthy of consideration as a source of tissues for transplantation. Porcine material preparation allows significantly more grafts to be obtained than human material. Amniotic cells are a very practicable stem cell type and easy to obtain with great potential, compared with, for instance, adipose-derived stem cells. The aim of this paper was to verify if porcine transgenic amnion and umbilical cord could be as effective for xenotransplantation of stem cells as human material. METHODS Oxytocin was administered to the sows on the day the material was obtained. The obtained material was divided by weight into 4 relatively equal parts, which were transferred into 1 of 4 containers. The containers had different transport media and a concentration of antibiotics. After cell isolation by homogenization, the number of live, dead, and apoptotic cells was assessed. RESULTS Maintaining the sterility when obtaining material from breeding pigs was the biggest problem. Transport medium, despite the addition of antibiotics, was in most cases infected. Tests revealed that porcine cells have a tendency to leave tissue material and adhere to plastic as human cells do. Porcine cells are also fibroblast like, which can suggest that these cells might be tested for the presence of mesenchymal stem cells. However, some differences are visible in all parameters, which can result from contamination of material or improper transport medium. There were significant differences between viability and apoptotic cell number in human and transgenic pig cells isolated from both sources---amniotic membrane and umbilical cord.
Collapse
|
7
|
Hudecki A, Łyko-Morawska D, Likus W, Skonieczna M, Markowski J, Wilk R, Kolano-Burian A, Maziarz W, Adamska J, Łos MJ. Composite Nanofibers Containing Multiwall Carbon Nanotubes as Biodegradable Membranes in Reconstructive Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E63. [PMID: 30621188 PMCID: PMC6359440 DOI: 10.3390/nano9010063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/23/2018] [Accepted: 12/27/2018] [Indexed: 11/16/2022]
Abstract
We have tested titanium (Ti) plates that are used for bone reconstruction in maxillofacial surgery, in combination with five types of novel long-resorbable biomaterials: (i) PCL₀-polycaprolactone without additives, (ii) PCLMWCNT-polycaprolactone with the addition of multiwall carbon nanotubes (MWCNT), (iii) PCLOH-polycaprolactone doped with multiwall carbon nanotubes (MWCNT) containing ⁻OH hydroxyl groups, (iv) PCLCOOH-polycaprolactone with the addition of multiwall carbon nanotubes (MWCNT) containing carboxyl groups, and (v) PCLTI-polycaprolactone with the addition of Ti nanoparticles. The structure and properties of the obtained materials have been examined with the use of Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and/or X-ray powder diffraction (XRD). Titanium BR plates have been covered with: (i) PCL₀ fibers (PCL0BR-connection plates), (ii) PCLMWCNT fibers (PCLMWCNTBR-plates), (iii) PCLOH fibers (PCLOHBR-plates), (iv) PCLCOOH (PCLCOOHBR-plates), (v) PCLTI fiber (PCLTIBR-connection plates). Such modified titanium plates were exposed to X-ray doses corresponding to those applied in head and neck tumor treatment. The potential leaching of toxic materials upon the irradiation of such modified titanium plates, and their effect on normal human dermal fibroblasts (NHDF) have been assessed by MTT assay. The presented results show variable biological responses depending on the modifications to titanium plates.
Collapse
Affiliation(s)
| | - Dorota Łyko-Morawska
- Katedra Chirurgii Czaszkowo-Szczękowo-Twarzowej i Chirurgii Stomatologicznej, Śląski Uniwersytet Medyczny w Katowicach, 40-027 Katowice, Poland.
| | - Wirginia Likus
- Department of Anatomy, School of Health Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Magdalena Skonieczna
- Biosystems Group, Institute of Automatic Control, Faculty of Automatics, Electronics and Informatics, and Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland.
| | - Jarosław Markowski
- ENT Department, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland.
| | - Renata Wilk
- Department of Anatomy, School of Health Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland.
| | | | - Wojciech Maziarz
- Institute of Metallurgy and Material Science Polish Academy of Sciences, 30-059 Kraków, Poland.
| | - Jolanta Adamska
- Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Śląski, Zakład Biologii Molekularnej Katedry Biologii Molekularnej, Uniwersytet Medyczny w Katowicach, 40-055 Katowice, Poland.
| | - Marek J Łos
- Centre of Biotechnology, Silesian University of Technology, 44-100 Gliwice, Poland.
- Centre de Biophysique Moléculaire, UPR4301 CNRS CS80054, Rue Charles Sadron, 45071 Orleans CEDEX 2, France.
| |
Collapse
|