1
|
Vazão AR, Claudino L, Pimpinato PP, Sampaio LV, Fiais GA, de Freitas RN, Justo MP, Brito VGB, Oliveira SHP, Lima RR, Cintra LTÂ, Chaves-Neto AH. Experimental apical periodontitis alters salivary biochemical composition and induces local redox state disturbances in the salivary glands of male rats. Clin Oral Investig 2024; 28:154. [PMID: 38366095 DOI: 10.1007/s00784-024-05540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
OBJECTIVES The objective was to evaluate the effects of experimental apical periodontitis on the inflammatory, functional, biochemical, and redox parameters of the parotid and submandibular glands in rats. MATERIALS AND METHODS Twenty 12-week-old male Wistar rats were randomly divided into two groups (n = 10): a control group and apical periodontitis group. After 28 days, the saliva was collected for salivary flow rate and biochemistry composition. Both glands were sampled for quantification of the tumor necrosis factor-alpha (TNF-α) and biochemical analyses of redox state. RESULTS TNF-α concentrations were higher in both salivary glands adjacent to the periapical lesions in animals with apical periodontitis and also compared to the control group. The apical periodontitis group increased the salivary amylase, chloride, potassium, calcium, and phosphate. The total oxidant capacity increased in the parotid gland adjacent to the periapical lesions in the same rat and compared to the control group. Conversely, the total antioxidant capacity of the parotid glands on both sides in the apical periodontitis group was lower than that in the control group. Furthermore, glutathione peroxidase activity increased in the submandibular gland adjacent to the apical periodontitis group compared to the control group. CONCLUSIONS Experimental apical periodontitis alters salivary biochemical composition, in addition to increasing inflammatory marker and inducing local disturbances in the redox state in the parotid and submandibular glands of male rats. CLINICAL RELEVANCE Apical periodontitis could exacerbate the decline in oral health by triggering dysfunction in the salivary glands.
Collapse
Affiliation(s)
- Arieli Raymundo Vazão
- Programa de Pós-Graduação em Ciências, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
- Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Lívia Claudino
- Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Pedro Penati Pimpinato
- Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Larissa Victorino Sampaio
- Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Gabriela Alice Fiais
- Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Rayara Nogueira de Freitas
- Programa de Pós-Graduação em Ciências, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
- Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Mariana Pagliusi Justo
- Programa de Pós-Graduação em Ciências, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
- Department of Preventive and Restorative Dentistry, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Victor Gustavo Balera Brito
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Sandra Helena Penha Oliveira
- Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Luciano Tavares Ângelo Cintra
- Programa de Pós-Graduação em Ciências, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
- Department of Preventive and Restorative Dentistry, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Antonio Hernandes Chaves-Neto
- Programa de Pós-Graduação em Ciências, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil.
- Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil.
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
2
|
The Process of Acclimation to Chronic Hypoxia Leads to Submandibular Gland and Periodontal Alterations: An Insight on the Role of Inflammatory Mediators. Mediators Inflamm 2018; 2018:6794508. [PMID: 30622434 PMCID: PMC6304881 DOI: 10.1155/2018/6794508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/17/2018] [Accepted: 10/28/2018] [Indexed: 12/28/2022] Open
Abstract
The exposition to hypoxia is a stressful stimulus, and the organism develops acclimation mechanisms to ensure homeostasis, but if this fails, it leads to the development of pathological processes. Considering the large number of people under hypoxic conditions, it is of utmost importance to study the mechanisms implicated in hypoxic acclimation in oral tissues and the possible alteration of some important inflammatory markers that regulate salivary and periodontal function. It is the aim of the present study to analyze submandibular (SMG) and periodontal status of animals chronically exposed to continuous (CCH) or intermittent (CIH) hypoxia in order to elucidate the underlying molecular mechanisms that may lead to hypoxic acclimation. Adult Wistar rats were exposed to CCH or CIH simulating 4200 meters of altitude during 90 days. Salivary secretion was decreased in animals exposed to hypoxia, being lower in CIH, together with increased prostaglandin E2 (PGE2) content, TBARS concentration, and the presence of apoptotic nuclei and irregular secretion granules in SMG. AQP-5 mRNA levels decreased in both hypoxic groups. Only the CCH group showed higher HIF-1α staining, while CIH alone exhibited interradicular bone loss and increased concentration of the bone resorption marker CTX-I. In summary, animals exposed to CIH show a worse salivary secretion rate, which related with higher levels of PGE2, suggesting a negative role of this inflammatory mediator during hypoxia acclimation. We link the weak immunorreactivity of HIF-1α in CIH with improper hypoxia acclimation, which is necessary to sustaining SMG physiology under this environmental condition. The alveolar bone loss observed in CIH rats could be due mainly to a direct effect of PGE2, as suggested by its higher content in gingival tissue, but also to the indirect effect of hyposalivation. This study may eventually contribute to finding therapeutics to treat the decreased salivary flow, improving in that way oral health.
Collapse
|
3
|
Sommakia S, Baker OJ. Regulation of inflammation by lipid mediators in oral diseases. Oral Dis 2017; 23:576-597. [PMID: 27426637 PMCID: PMC5243936 DOI: 10.1111/odi.12544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023]
Abstract
Lipid mediators (LM) of inflammation are a class of compounds derived from ω-3 and ω-6 fatty acids that play a wide role in modulating inflammatory responses. Some LM possess pro-inflammatory properties, while others possess proresolving characteristics, and the class switch from pro-inflammatory to proresolving is crucial for tissue homeostasis. In this article, we review the major classes of LM, focusing on their biosynthesis and signaling pathways, and their role in systemic and, especially, oral health and disease. We discuss the detection of these LM in various body fluids, focusing on diagnostic and therapeutic applications. We also present data showing gender-related differences in salivary LM levels in healthy controls, leading to a hypothesis on the etiology of inflammatory diseases, particularly Sjögren's syndrome. We conclude by enumerating open areas of research where further investigation of LM is likely to result in therapeutic and diagnostic advances.
Collapse
Affiliation(s)
- Salah Sommakia
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| | - Olga J. Baker
- School of Dentistry, The University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
4
|
Terrizzi AR, Fernandez-Solari J, Lee CM, Conti MI, Martínez MP. Deleterious effect of chronic continuous hypoxia on oral health. Arch Oral Biol 2016; 72:1-7. [PMID: 27521733 DOI: 10.1016/j.archoralbio.2016.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 06/21/2016] [Accepted: 08/04/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To evaluate the effect of chronic continuous hypoxia (CCH) in alveolar bone and its correlation with the inflammatory markers which play a key role in the development of periodontitis. MATERIAL AND METHODS Wistar rats were exposed to CCH (600mbar, 3 months). Macroscopic and histological analyses of alveolar bone were performed, together with measurement of oxidative stress and inflammatory parameters in gums and submandibular glands (SMG). RESULTS HCC induced cortical alveolar bone loss, decreased interradicular bone volume and increased the periodontal ligament height compared to control rats (p<0.05). CCH enhanced iNOS activity in gums (from 2735,04±662,96 nmol/min/mg proteins to 4289,58±915,63 p<0.05) and in SMG (from 56,71±12,05 nmol/min/mg proteins to 90,15±21,78 p<0.05). PGE2 did not change in gums or in SMG by means of CCH, while TNFα decreased in gums (p<0.05). Regarding oxidative stress, thiobarbituric acid reactive species concentration in CCH animals was higher both in gums as in SMG, and catalase activity was decreased in SMG. CONCLUSION Higher iNOS activity both in gums and SMG under CCH could be associated with the alveolar bone loss observed. The increase in oxidative stress occurring in SMG and gums, together with a lower antioxidant capacity might indicate a deleterious effect of HX in oral health.
Collapse
Affiliation(s)
- Antonela R Terrizzi
- Department of Physiology, Faculty of Dentistry, University of Buenos Aires, Argentina; National Council for Scientific and Technical Research (CONICET), Argentina
| | - Javier Fernandez-Solari
- Department of Physiology, Faculty of Dentistry, University of Buenos Aires, Argentina; National Council for Scientific and Technical Research (CONICET), Argentina
| | - Ching M Lee
- Department of Physiology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - María Ines Conti
- Department of Physiology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - María Pilar Martínez
- Department of Physiology, Faculty of Dentistry, University of Buenos Aires, Argentina.
| |
Collapse
|
5
|
Nakamura-Kiyama M, Ono K, Masuda W, Hitomi S, Matsuo K, Usui M, Nakashima K, Yokota M, Inenaga K. Changes of salivary functions in experimental periodontitis model rats. Arch Oral Biol 2014; 59:125-32. [DOI: 10.1016/j.archoralbio.2013.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/28/2013] [Accepted: 11/01/2013] [Indexed: 01/04/2023]
|
6
|
Sánchez GA, Miozza VA, Delgado A, Busch L. Relationship between salivary leukotriene B4 levels and salivary mucin or alveolar bone resorption, in subjects with periodontal health and disease. J Periodontal Res 2013; 48:810-4. [PMID: 23488687 DOI: 10.1111/jre.12070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2013] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Here we determine the salivary levels of leukotriene B4 (LTB4 ) and its relation with salivary mucin and alveolar bone level. BACKGROUND LTB4 is a membrane-derived lipid mediator formed from arachidonic acid. It is among the most potent stimulants of polymorphonuclear leukocytes providing the first host defense against infections. Leukotrienes also induce bone resorption. Because LTB4 is present in the oral cavity the aim of the present study was to explore the role of LTB4 in patients with periodontal disease. METHODS Eighty-one subjects were clinically examined and distributed into four groups, namely, clinically healthy, mild, moderate and severe periodontitis, according to periodontal status, classified into values of clinical attachment level and probing pocket depth. Unstimulated saliva was collected for 5 min. Salivary LTB4 was determined by an immune assay method, mucin was determined by a colorimetric method and radiographic assessment used to determine alveolar bone level. RESULTS Patients with mild periodontitis showed a decrease in salivary LTB4 levels while patients with severe periodontitis showed increased LTB4 levels. A significant positive correlation was observed between salivary LTB4 and clinical attachment level, salivary mucin concentration or alveolar bone level. CONCLUSION The close relation between salivary LTB4 and mucin levels suggested that LTB4 might be involved in the defense mechanism of the oral cavity. The correlation of LTB4 with the alveolar bone level indicates that they are one of the mediators responsible for bone resorption.
Collapse
Affiliation(s)
- G A Sánchez
- Biophysics Unit, School of Dentistry, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
7
|
Liu Y, Dang H, Li D, Pang W, Hammock BD, Zhu Y. Inhibition of soluble epoxide hydrolase attenuates high-fat-diet-induced hepatic steatosis by reduced systemic inflammatory status in mice. PLoS One 2012; 7:e39165. [PMID: 22720061 PMCID: PMC3375303 DOI: 10.1371/journal.pone.0039165] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/16/2012] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic fatty liver disease is associated with obesity and considered an inflammatory disease. Soluble epoxide hydrolase (sEH) is a major enzyme hydrolyzing epoxyeicosatrienoic acids and attenuates their cardiovascular protective and anti-inflammatory effects. We examined whether sEH inhibition can protect against high-fat (HF)-diet–induced fatty liver in mice and the underlying mechanism. Compared with wild-type littermates, sEH-null mice showed lower diet-induced lipid accumulation in liver, as seen by Oil-red O staining and triglycerides levels. We studied the effect of sEH inhibition on diet-induced fatty liver by feeding C57BL/6 mice an HF diet for 8 weeks (short-term) or 16 weeks (long-term) and administering t-AUCB, a selective sEH inhibitor. sEH inhibition had no effect on the HF-diet–increased body and adipose tissue weight or impaired glucose tolerance but alleviated the diet-induced hepatic steatosis. Adenovirus-mediated overexpression of sEH in liver increased the level of triglycerides in liver and the hepatic inflammatory response. Surprisingly, the induced expression of sEH in liver occurred only with the long-term but not short-term HF diet, which suggests a secondary effect of HF diet on regulating sEH expression. Furthermore, sEH inhibition attenuated the HF-diet–induced increase in plasma levels of proinflammatory cytokines and their mRNA upregulation in adipose tissue, which was accompanied by increased macrophage infiltration. Therefore, sEH inhibition could alleviate HF-diet–induced hepatic steatosis, which might involve its anti-inflammatory effect in adipose tissue and direct inhibition in liver. sEH may be a therapeutic target for HF-diet–induced hepatic steatosis in inhibiting systemic inflammation.
Collapse
Affiliation(s)
- Yan Liu
- Department of Physiology and Pathophysiology, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Peking University Health Science Center, Beijing, China.
| | | | | | | | | | | |
Collapse
|