1
|
Lizcano JD, Visperas A, Piuzzi NS, Abdelbary H, Higuera-Rueda CA. Genomic Insights into Host Susceptibility to Periprosthetic Joint Infections: A Comprehensive Literature Review. Microorganisms 2024; 12:2486. [PMID: 39770689 PMCID: PMC11728149 DOI: 10.3390/microorganisms12122486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Periprosthetic joint infection (PJI) is a multifactorial disease, and the risk of contracting infection is determined by the complex interplays between environmental and host-related factors. While research has shown that certain individuals may have a genetic predisposition for PJI, the existing literature is scarce, and the heterogeneity in the assessed genes limits its clinical applicability. Our review on genetic susceptibility for PJI has the following two objectives: (1) Explore the potential risk of developing PJI based on specific genetic polymorphisms or allelic variations; and (2) Characterize the regulatory cascades involved in the risk of developing PJI. This review focused on clinical studies investigating the association between genetic mutations or variations with the development of PJI. The genes investigated in these studies included toll-like receptors and humoral pattern recognition molecules, cytokines, chemokines, mannose-binding lectin (MBL), bone metabolism molecules, and human leukocyte antigen. Among these genes, polymorphisms in IL-1, MBL, vitamin D receptors, HLA-C, and HLA-DQ might have a relevant impact on the development of PJI. The literature surrounding this topic is limited, but emerging transcriptomic and genome-wide association studies hold promise for identifying at-risk genes. This advancement could pave the way for incorporating genetic testing into preoperative risk stratification, enhancing personalized patient care.
Collapse
Affiliation(s)
- Juan D. Lizcano
- Orthopedic Surgery Department, Cleveland Clinic, Weston, FL 33331, USA;
| | - Anabelle Visperas
- Orthopedic Surgery Department, Cleveland Clinic, Cleveland, OH 44195, USA; (A.V.)
| | - Nicolas S. Piuzzi
- Orthopedic Surgery Department, Cleveland Clinic, Cleveland, OH 44195, USA; (A.V.)
| | - Hesham Abdelbary
- Orthopedic Surgery Department, The Ottawa Hospital, Ontario, ON K1Y 4E9, Canada
| | | |
Collapse
|
2
|
Chen PY, Wen SH. Integrating Genome-Wide Polygenic Risk Scores With Nongenetic Models to Predict Surgical Site Infection After Total Knee Arthroplasty Using United Kingdom Biobank Data. J Arthroplasty 2024; 39:2471-2477.e1. [PMID: 38735551 DOI: 10.1016/j.arth.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Prediction of the risk of developing surgical site infection (SSI) in patients following total knee arthroplasty (TKA) is of clinical importance. Genetic susceptibility is involved in developing TKA-related SSI. Previously reported models for predicting SSI were constructed using nongenetic risk factors without incorporating genetic risk factors. To address this issue, we performed a genome-wide association study (GWAS) using the UK Biobank database. METHODS Adult patients who underwent primary TKA (n = 19,767) were analyzed and divided into SSI (n = 269) and non-SSI (n = 19,498) cohorts. Nongenetic covariates, including demographic data and preoperative comorbidities, were recorded. Genetic variants associated with SSI were identified by GWAS and included to obtain standardized polygenic risk scores (zPRS, an estimate of genetic risk). Prediction models were established through analyses of multivariable logistic regression and the receiver operating characteristic curve. RESULTS There were 4 variants (rs117896641, rs111686424, rs8101598, and rs74648298) achieving genome-wide significance that were identified. The logistic regression analysis revealed 7 significant risk factors: increasing zPRS, decreasing age, men, chronic obstructive pulmonary disease, diabetes mellitus, rheumatoid arthritis, and peripheral vascular disease. The areas under the receiver operating characteristic curve were 0.628 and 0.708 when zPRS (model 1) and nongenetic covariates (model 2) were used as predictors, respectively. The areas under the receiver operating characteristic curve increased to 0.76 when both zPRS and nongenetic covariates (model 3) were used as predictors. A risk-prediction nomogram was constructed based on model 3 to visualize the relative effect of statistically significant covariates on the risk of SSI and predict the probability of developing SSI. Age and zPRS were the top 2 covariates that contributed to the risk, with younger age and higher zPRS associated with higher risks. CONCLUSIONS Our GWAS identified 4 novel variants that were significantly associated with susceptibility to SSI following TKA. Integrating genome-wide zPRS with nongenetic risk factors improved the performance of the model in predicting SSI.
Collapse
Affiliation(s)
- Pei-Yu Chen
- Tzu Chi University Center for Health and Welfare Data Science, Ministry of Health and Welfare, Hualien City, Taiwan; Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan
| | - Shu-Hui Wen
- Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan; Department of Public Health, College of Medicine, Tzu Chi University, Hualien City, Taiwan
| |
Collapse
|
3
|
Zhou JQ, Liu ZX, Zhong HF, Liu GQ, Ding MC, Zhang Y, Yu B, Jiang N. Single nucleotide polymorphisms in the development of osteomyelitis and prosthetic joint infection: a narrative review. Front Immunol 2024; 15:1444469. [PMID: 39301021 PMCID: PMC11410582 DOI: 10.3389/fimmu.2024.1444469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024] Open
Abstract
Currently, despite advancements in diagnostic and therapeutic modalities, osteomyelitis and prosthetic joint infection (PJI) continue to pose significant challenges for orthopaedic surgeons. These challenges are primarily attributed to the high degree of heterogeneity exhibited by these disorders, which are influenced by a combination of environmental and host factors. Recent research efforts have delved into the pathogenesis of osteomyelitis and PJI by investigating single nucleotide polymorphisms (SNPs). This review comprehensively summarizes the current evidence regarding the associations between SNPs and the predisposition to osteomyelitis and PJI across diverse populations. The findings suggest potential linkages between SNPs in genes such as IL-1, IL-6, IFN-γ, TNF-α, VDR, tPA, CTSG, COX-2, MMP1, SLC11A1, Bax, NOS2, and NLRP3 with the development of osteomyelitis. Furthermore, SNPs in genes like IL-1, IL-6, TNF-α, MBL, OPG, RANK, and GCSFR are implicated in susceptibility to PJI. However, it is noted that most of these studies are single-center reports, lacking in-depth mechanistic research. To gain a more profound understanding of the roles played by various SNPs in the development of osteomyelitis and PJI, future multi-center studies and fundamental investigations are deemed necessary.
Collapse
Affiliation(s)
- Jia-Qi Zhou
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zi-Xian Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Hong-Fa Zhong
- Department of Trauma Emergency Center, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China
| | - Guan-Qiao Liu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ming-Cong Ding
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Yu Zhang
- Department of Orthopaedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nan Jiang
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Trauma Emergency Center, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China
| |
Collapse
|
4
|
Silva MJA, Santana DS, de Oliveira LG, Monteiro EOL, Lima LNGC. The relationship between 896A/G (rs4986790) polymorphism of TLR4 and infectious diseases: A meta-analysis. Front Genet 2022; 13:1045725. [PMID: 36506333 PMCID: PMC9729345 DOI: 10.3389/fgene.2022.1045725] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Toll-like Receptors (TLRs), such as the TLR4, are genes encoding transmembrane receptors of the same name, which induce a pro- or anti-inflammatory response according to their expression as the host's first line of defense against pathogens, such as infectious ones. Single nucleotide polymorphisms (SNPs) are the most common type of mutation in the human genome and can generate functional modification in genes. The aim of this article is to review in which infectious diseases there is an association of susceptibility or protection by the TLR4 SNP rs4986790. A systematic review and meta-analysis of the literature was conducted in the Science Direct, PUBMED, MEDLINE, and SciELO databases between 2011 and 2021 based on the dominant genotypic model of this SNP for general and subgroup analysis of infectious agent type in random effect. Summary odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated for genotypic comparison. I2 statistics were calculated to assess the presence of heterogeneity between studies and funnel plots were inspected for indication of publication bias. A total of 27 articles were included, all in English. Among the results achieved, the categories of diseases that were most associated with the SNP studied were in decreasing order of number of articles: infections by bacteria (29.63%); caused by viruses (22.23%); urinary tract infection-UTI (7.4%), while 11 studies (40.74%) demonstrated a nonsignificant association. In this meta-analysis, a total of 5599 cases and 5871 controls were finalized. The present meta-analysis suggests that there is no significant association between TLR4-rs4986790 SNP and infections (OR = 1,11; 95% CI: 0,75-1,66; p = 0,59), but in the virus subgroup it was associated with a higher risk (OR = 2,16; 95% CI: 1,09-4,30; p = 0,03). The subgroups of bacteria and parasites did not show statistical significance (OR = 0,86; 95% CI: 0,56-1,30; p = 0,47, and no estimate of effects, respectively). Therefore, it has been shown that a diversity of infectious diseases is related to this polymorphism, either by susceptibility or even severity to them, and the receptor generated is also crucial for the generation of cell signaling pathways and immune response against pathogens.
Collapse
Affiliation(s)
| | - Davi Silva Santana
- Institute of Health Sciences (ICS), Federal University of Pará (UFPA), Belém, Brazil
| | | | | | | |
Collapse
|
5
|
Genetic Polymorphisms Associated with Perioperative Joint Infection following Total Joint Arthroplasty: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2022; 11:antibiotics11091187. [PMID: 36139966 PMCID: PMC9495193 DOI: 10.3390/antibiotics11091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The number of orthopedic procedures, especially prosthesis implantation, continues to increase annually, making it imperative to understand the risks of perioperative complications. These risks include a variety of patient-specific factors, including genetic profiles. This review assessed the current literature for associations between patient-specific genetic risk factors and perioperative infection. The PRISMA guidelines were used to conduct a literature review using the PubMed and Cochrane databases. Following title and abstract review and full-text screening, eight articles remained to be reviewed—all of which compared single nucleotide polymorphisms (SNPs) to periprosthetic joint infection (PJI) in total joint arthroplasty (TJA). The following cytokine-related genes were found to have polymorphisms associated with PJI: TNFα (p < 0.006), IL-6 (p < 0.035), GCSF3R (p < 0.02), IL-1 RN-VNTR (p = 0.002), and IL-1B (p = 0.037). Protein- and enzyme-related genes that were found to be associated with PJI included: MBL (p < 0.01, p < 0.05) and MBL2 (p < 0.01, p < 0.016). The only receptor-related gene found to be associated with PJI was VDR (p < 0.007, p < 0.028). This review compiled a variety of genetic polymorphisms that were associated with periprosthetic joint infections. However, the power of these studies is low. More research must be conducted to further understand the genetic risk factors for this serious outcome.
Collapse
|
6
|
Genetic susceptibility to prosthetic joint infection following total joint arthroplasty: A systematic review. Gene 2015; 563:76-82. [PMID: 25747542 DOI: 10.1016/j.gene.2015.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Prosthetic joint infection (PJI) is the most common cause of total joint arthroplasty failure and revision surgery. Genetic polymorphisms could be determinant factors for PJI. METHODS We performed a systematic research of Medline, Pubmed, Embase, Cochrane Library, and Google Scholar, and identified 11 studies with 34 kinds of gene polymorphisms, were included in the synthesis. RESULTS Our data suggest that the C allele and genotype C/C for MBL-550 SNP, genotype A/A for MBL-54 SNP and G allele for MBL-221 SNP increase the risk of PJI, while G allele and genotype G/G for MBL-550 SNP decrease the risk of PJI in Caucasian populations. Several other genes reported by single-center studies also contribute to the genetic susceptibility to septic PJI. No definitive conclusions could be achieved due to the small amount of data in the included studies. CONCLUSION Several genes contribute to the genetic susceptibility to PJI following total joint arthroplasty. Further studies will enhance the understanding of PJI, and may inform and direct early interventions.
Collapse
|
7
|
Ziakas PD, Prodromou ML, El Khoury J, Zintzaras E, Mylonakis E. The role of TLR4 896 A>G and 1196 C>T in susceptibility to infections: a review and meta-analysis of genetic association studies. PLoS One 2013; 8:e81047. [PMID: 24282567 PMCID: PMC3840016 DOI: 10.1371/journal.pone.0081047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/17/2013] [Indexed: 01/13/2023] Open
Abstract
Background Toll-like receptor 4 plays a role in pathogen recognition, and common polymorphisms may alter host susceptibility to infectious diseases. Purpose To review the association of two common polymorphisms (TLR4 896A>G and TLR4 1196C>T) with infectious diseases. Data Sources We searched PubMed and EMBASE up to March 2013 for pertinent literature in English, and complemented search with references lists of eligible studies. Study Selection We included all studies that: reported an infectious outcome; had a case-control design and reported the TLR4 896A>G and/or TLR4 1196C>T genotype frequencies; 59 studies fulfilled these criteria and were analyzed. Data Extraction Two authors independently extracted study data. Data Synthesis The generalized odds ratio metric (ORG) was used to quantify the impact of TLR4 variants on disease susceptibility. A meta-analysis was undertaken for outcomes reported in >1 study. Eleven of 37 distinct outcomes were significant. TLR4 896 A>G increased risk for all parasitic infections (ORG 1.59; 95%CI 1.05-2.42), malaria (1.31; 95%CI 1.04-1.66), brucellosis (2.66; 95%CI 1.66-4.27), cutaneous leishmaniasis (7.22; 95%CI 1.91-27.29), neurocysticercosis (4.39; 95%CI 2.53-7.61), Streptococcus pyogenes tonsillar disease (2.93; 95%CI 1.24-6.93) , typhoid fever (2.51; 95%CI 1.18-5.34) and adult urinary tract infections (1.98; 95%CI 1.04-3.98), but was protective for leprosy (0.36; 95%CI 0.22-0.60). TLR4 1196 C>T effects were similar to TLR4 896 A>G for brucellosis, cutaneous leishmaniasis, leprosy, typhoid fever and S. pyogenes tonsillar disease, and was protective for bacterial vaginosis in pregnancy (0.55; 95%CI 0.31-0.98) and Haemophilus influenzae tonsillar disease (0.42; 95%CI 0.17-1.00). The majority of significant associations were among predominantly Asian populations and significant associations were rare among European populations. Conclusions Depending on the type of infection and population, TLR4 polymorphisms are associated with increased, decreased or no difference in infectious disease. This may be due to differential functional expression of TLR4, the co-segregation of TLR4 variants or a favorable inflammatory response.
Collapse
Affiliation(s)
- Panayiotis D. Ziakas
- Division of Infectious Diseases, Rhode Island Hospital, Providence, Rhode Island, United States of America
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Michael L. Prodromou
- Division of Infectious Diseases, Rhode Island Hospital, Providence, Rhode Island, United States of America
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Joseph El Khoury
- Center for Immunology and Inflammatory Diseases and Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts,United States of America
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Elias Zintzaras
- Center for Clinical Evidence Synthesis, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, United States of America
- Department of Biomathematics, School of Medicine, University of Thessaly, Larissa, Greece
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Providence, Rhode Island, United States of America
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|