1
|
Sun Y, He L, Guo P, Li F, Wang B, Zhang Y, An K, Peng M. F-box and WD repeat domain containing 7 inhibits the activation of hepatic stellate cells by degrading delta-like ligand 1 to block Notch signaling pathway. Open Med (Wars) 2023; 18:20230634. [PMID: 37082613 PMCID: PMC10111210 DOI: 10.1515/med-2023-0634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 04/22/2023] Open
Abstract
Hepatic fibrosis (HF) is a precursor of liver cirrhosis, and activated hepatic stellate cells are an important driver of fibrosis. F-box and WD repeat domain containing 7 (FBXW7) expression level is down-regulated in HF, but the underlying mechanism is yet to be elucidated. The interaction between FBXW7 and delta-like ligand 1 (DLL1) was predicted. LX-2 cells were subjected to transfection of FBXW7/DLL1 silencing or overexpression plasmid. The expressions of FBXW7 and DLL1 in HF in vitro were measured by quantitative reverse transcription polymerase chain reaction and western blot. The LX-2 cell cycle, viability, proliferation, and ubiquitination were determined by flow cytometry, cell counting kit-8, colony formation, and ubiquitination assays, respectively. FBXW7 overexpression suppressed the cell viability and proliferation, facilitated cell cycle arrest, and down-regulated α-smooth muscle actin (α-SMA), Collagen I, and DLL1 protein levels, but FBXW7 silencing did the opposite. DLL1 was bound to and ubiquitin-dependently degraded by FBXW7 overexpression. DLL1 overexpression promoted the cell viability and proliferation, accelerated cell cycle, and up-regulated the levels of α-SMA, Collagen I, NOTCH2, NOTCH3, and HES1, but these trends were reversed by FBXW7 overexpression. To sum up, FBXW7 overexpression suppresses the progression of HF in vitro by ubiquitin-dependently degrading DLL1.
Collapse
Affiliation(s)
- Yufeng Sun
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 215, West Heping Road, Shijiazhuang, Hebei, 050000, China
| | - Lili He
- Department of Emergency, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, China
| | - Peiran Guo
- College of Integrated Traditional Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fenghua Li
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 215, West Heping Road, Shijiazhuang, Hebei, 050000, China
| | - Bo Wang
- Department of Emergency, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yifan Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Shijiazhuang First Hospital, Shijiazhuang, Hebei, China
| | - Kai An
- Department of Rehabilitation, Shijiazhuang First Hospital, Shijiazhuang, Hebei, China
| | - Ming Peng
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Zhu X, Yuan S, Zheng X, Wang X, Zhang J. Pre-exposure to Aerosolized Polyvalent Bacterial Lysates Protects Against Bleomycin-Induced Pulmonary Fibrosis in Mice. Inflammation 2022; 45:1692-1699. [DOI: 10.1007/s10753-022-01653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
|
3
|
Skurikhin E, Pershina O, Zhukova M, Widera D, Pan E, Pakhomova A, Krupin V, Ermakova N, Skurikhina V, Sandrikina L, Morozov S, Kubatiev A, Dygai A. Spiperone Stimulates Regeneration in Pulmonary Endothelium Damaged by Cigarette Smoke and Lipopolysaccharide. Int J Chron Obstruct Pulmon Dis 2022; 16:3575-3591. [PMID: 35002229 PMCID: PMC8722540 DOI: 10.2147/copd.s336410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022] Open
Abstract
Background Endothelial dysfunction and destruction of the pulmonary microcirculation are important pathogenic factors in chronic obstructive pulmonary disease (COPD). In COPD, bronchial obstruction is associated with endothelial dysfunction. Thus, new pharmacological treatment options aimed at restoring the pulmonary endothelium represent a clinical need in COPD therapy. Notch1 has been shown to protect cells against apoptosis, inflammation, and oxidative stress caused by cigarette smoke extract (CSE). Therefore, drug which effect on Notch1 may be a potential therapeutic target for COPD in the future. Methods In this study, we assessed the potential of spiperone to mediate regeneration of pulmonary endothelium in model of pulmonary emphysema induced by a CSE and lipopolysaccharide (LPS) in female C57BL/6 mice. Results Spiperone increased the number of capillaries as well as the expression of the CD31 in the alveolar tissue compared to the controls. Moreover, application of spiperone prevented alveolar wall destruction (DI), and reduced the area of emphysema. Lastly, we demonstrated that spiperone positively influenced mobilization and migration of endothelial progenitor cells (EPC, CD45−CD34+CD31+), CD309+-endothelial cells, and angiogenesis precursors (CD45−CD117+CD309+) into the lung. Spiperone administration significantly reduced the number Notch1 positive CD309+-endothelial cells and Notch1+ EPCs. Conclusion Overall, our results suggest that spiperone mediates endothelial regeneration in an animal model of COPD. Thus, it could represent a novel therapeutic approach for treatment of emphysema associated with COPD.
Collapse
Affiliation(s)
- Evgenii Skurikhin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Olga Pershina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Mariia Zhukova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Whiteknights Campus, Reading, RG6 6AP, UK
| | - Edgar Pan
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Angelina Pakhomova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Vyacheslav Krupin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Natalia Ermakova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | | | - Lubov Sandrikina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Sergey Morozov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Aslan Kubatiev
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander Dygai
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia.,Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
4
|
Ghumman M, Dhamecha D, Gonsalves A, Fortier L, Sorkhdini P, Zhou Y, Menon JU. Emerging drug delivery strategies for idiopathic pulmonary fibrosis treatment. Eur J Pharm Biopharm 2021; 164:1-12. [PMID: 33882301 PMCID: PMC8154728 DOI: 10.1016/j.ejpb.2021.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating and fatal condition that causes severe scarring of the lungs. While the pathogenesis of IPF continues to be extensively studied and several factors have been considered, an exact cause has yet to be established. With inadequate treatment options and no cure available, overall disease prognosis is still poor. Existing oral therapies, pirfenidone and nintedanib, may attempt to improve the patients' quality of life by mitigating symptoms and slowing disease progression, however chronic doses and systemic deliveries of these drugs can lead to severe side effects. The lack of effective treatment options calls for further investigation of restorative as well as additional palliative therapies for IPF. Nanoparticle-based sustained drug delivery strategies can be utilized to ensure targeted delivery for site-specific treatment as well as long-acting therapy, improving overall patient compliance. This review provides an update on promising strategies for the delivery of anti-fibrotic agents, along with an overview of key therapeutic targets as well as relevant emerging therapies currently being evaluated for IPF treatment.
Collapse
Affiliation(s)
- Moez Ghumman
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Dinesh Dhamecha
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Andrea Gonsalves
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Lauren Fortier
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Parand Sorkhdini
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.
| | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
5
|
Bodas M, Moore AR, Subramaniyan B, Georgescu C, Wren JD, Freeman WM, Brown BR, Metcalf JP, Walters MS. Cigarette Smoke Activates NOTCH3 to Promote Goblet Cell Differentiation in Human Airway Epithelial Cells. Am J Respir Cell Mol Biol 2021; 64:426-440. [PMID: 33444514 DOI: 10.1165/rcmb.2020-0302oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the United States and is primarily caused by cigarette smoking. Increased numbers of mucus-producing secretory ("goblet") cells, defined as goblet cell metaplasia or hyperplasia (GCMH), contributes significantly to COPD pathophysiology. The objective of this study was to determine whether NOTCH signaling regulates goblet cell differentiation in response to cigarette smoke. Primary human bronchial epithelial cells (HBECs) from nonsmokers and smokers with COPD were differentiated in vitro on air-liquid interface and exposed to cigarette smoke extract (CSE) for 7 days. NOTCH signaling activity was modulated using 1) the NOTCH/γ-secretase inhibitor dibenzazepine (DBZ), 2) lentiviral overexpression of the NICD3 (NOTCH3-intracellular domain), or 3) NOTCH3-specific siRNA. Cell differentiation and response to CSE were evaluated by quantitative PCR, Western blotting, immunostaining, and RNA sequencing. We found that CSE exposure of nonsmoker airway epithelium induced goblet cell differentiation characteristic of GCMH. Treatment with DBZ suppressed CSE-dependent induction of goblet cell differentiation. Furthermore, CSE induced NOTCH3 activation, as revealed by increased NOTCH3 nuclear localization and elevated NICD3 protein levels. Overexpression of NICD3 increased the expression of goblet cell-associated genes SPDEF and MUC5AC, whereas NOTCH3 knockdown suppressed CSE-mediated induction of SPDEF and MUC5AC. Finally, CSE exposure of COPD airway epithelium induced goblet cell differentiation in a NOTCH3-dependent manner. These results identify NOTCH3 activation as one of the important mechanisms by which cigarette smoke induces goblet cell differentiation, thus providing a novel potential strategy to control GCMH-related pathologies in smokers and patients with COPD.
Collapse
Affiliation(s)
- Manish Bodas
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Andrew R Moore
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Bharathiraja Subramaniyan
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Constantin Georgescu
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Jonathan D Wren
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Willard M Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Brent R Brown
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Jordan P Metcalf
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Matthew S Walters
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| |
Collapse
|
6
|
Canonical WNT pathway is activated in the airway epithelium in chronic obstructive pulmonary disease. EBioMedicine 2020; 61:103034. [PMID: 33045470 PMCID: PMC7559244 DOI: 10.1016/j.ebiom.2020.103034] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a devastating lung disease, mainly due to cigarette smoking, which represents the third cause of mortality worldwide. The mechanisms driving its epithelial salient features remain largely elusive. We aimed to evaluate the activation and the role of the canonical, β-catenin-dependant WNT pathway in the airway epithelium from COPD patients. METHODS The WNT/β-catenin pathway was first assessed by WNT-targeted RNA sequencing of the air/liquid interface-reconstituted bronchial epithelium from COPD and control patients. Airway expression of total and active β-catenin was assessed in lung sections, as well as WNT components in laser-microdissected airway epithelium. Finally, we evaluated the role of WNT at the bronchial epithelial level by modulating the pathway in the reconstituted COPD epithelium. FINDINGS We show that the WNT/β-catenin pathway is upregulated in the COPD airway epithelium as compared with that of non-smokers and control smokers, in targeted RNA-sequencing of in vitro reconstituted airway epithelium, and in situ in lung tissue and laser-microdissected epithelium. Extrinsic activation of this pathway in COPD-derived airway epithelium inhibited epithelial differentiation, polarity and barrier function, and induced TGF-β-related epithelial-to-mesenchymal transition (EMT). Conversely, canonical WNT inhibition increased ciliated cell numbers, epithelial polarity and barrier function, whilst inhibiting EMT, thus reversing COPD features. INTERPRETATION In conclusion, the aberrant reactivation of the canonical WNT pathway in the adult airway epithelium recapitulates the diseased phenotype observed in COPD patients, suggesting that this pathway or its downstream effectors could represent a future therapeutic target. FUNDING This study was supported by the Fondation Mont-Godinne, the FNRS and the WELBIO.
Collapse
|
7
|
Lycopene mitigates pulmonary emphysema induced by cigarette smoke in a murine model. J Nutr Biochem 2019; 65:93-100. [DOI: 10.1016/j.jnutbio.2018.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 10/09/2018] [Accepted: 12/15/2018] [Indexed: 12/20/2022]
|
8
|
Gupta R, van Dongen J, Fu Y, Abdellaoui A, Tyndale RF, Velagapudi V, Boomsma DI, Korhonen T, Kaprio J, Loukola A, Ollikainen M. Epigenome-wide association study of serum cotinine in current smokers reveals novel genetically driven loci. Clin Epigenetics 2019; 11:1. [PMID: 30611298 PMCID: PMC6321663 DOI: 10.1186/s13148-018-0606-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/21/2018] [Indexed: 01/10/2023] Open
Abstract
Background DNA methylation alteration extensively associates with smoking and is a plausible link between smoking and adverse health. We examined the association between epigenome-wide DNA methylation and serum cotinine levels as a proxy of nicotine exposure and smoking quantity, assessed the role of SNPs in these associations, and evaluated molecular mediation by methylation in a sample of biochemically verified current smokers (N = 310). Results DNA methylation at 50 CpG sites was associated (FDR < 0.05) with cotinine levels, 17 of which are novel associations. As cotinine levels are influenced not only by nicotine intake but also by CYP2A6-mediated nicotine metabolism rate, we performed secondary analyses adjusting for genetic risk score of nicotine metabolism rate and identified five additional novel associations. We further assessed the potential role of genetic variants in the detected association between methylation and cotinine levels observing 124 cis and 3898 trans methylation quantitative trait loci (meQTLs). Nineteen of these SNPs were also associated with cotinine levels (FDR < 0.05). Further, at seven CpG sites, we observed a trend (P < 0.05) that altered DNA methylation mediates the effect of SNPs on nicotine exposure rather than a direct consequence of smoking. Finally, we performed replication of our findings in two independent cohorts of biochemically verified smokers (N = 450 and N = 79). Conclusions Using cotinine, a biomarker of nicotine exposure, we replicated and extended identification of novel epigenetic associations in smoking-related genes. We also demonstrated that DNA methylation in some of the identified loci is driven by the underlying genotype and may mediate the causal effect of genotype on cotinine levels. Electronic supplementary material The online version of this article (10.1186/s13148-018-0606-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richa Gupta
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Yu Fu
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Abdel Abdellaoui
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, and Departments of Pharmacology & Toxicology and Psychiatry, University of Toronto, Toronto, Canada
| | - Vidya Velagapudi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tellervo Korhonen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Anu Loukola
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Public Health, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Sun Y, An N, Li J, Xia J, Tian Y, Zhao P, Liu X, Huang H, Gao J, Zhang X. miRNA-206 regulates human pulmonary microvascular endothelial cell apoptosis via targeting in chronic obstructive pulmonary disease. J Cell Biochem 2018; 120:6223-6236. [PMID: 30335896 DOI: 10.1002/jcb.27910] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death due to tis high morbidity and mortality. microRNAs have emerged as new biomarkers for the prognosis and diagnosis of patients with COPD. In this study, we aimed to investigate the expression of microRNA-206 (miR-206) in lung tissues from COPD patients and to explore the regulatory role of miR-206 in the human pulmonary microvascular endothelial cells (HPMECs). Our results showed that cigarette smoke extract (CSE) promoted cell apoptosis, increased caspase-3 activity, and upregulated the expression of miR-206 in HPMECs, which was significantly reversed by the miR-206 knockdown. Transfection with miR-206 mimics led to cell apoptosis and was closely related to changes in the protein expression levels of caspase-3, caspase-9, and Bcl-2 in HPMECs. Further bioinformatics prediction analysis revealed that the 3'-untranslated region (3'UTR) of Notch3 and vascular endothelial growth factor-A (VEGFA) harbored miR-206-binding sites, and overexpression of miR-206 repressed the luciferase activity of the vectors containing Notch3 and VEGFA 3'UTR. Overexpression of either Notch3 or VEGFA attenuated miR-206-induced cell apoptosis in HPMECs. More importantly, miR-206 expression was upregulated in the lung tissues from COPD patients and was positively corrected with forced expiratory volume 1% predicted in COPD patients, while Notch3 and VEGFA mRNA levels were downregulated and were negatively correlated with the expression level of miR-206 in the lung tissues from COPD patients. In conclusion, our results showed that miR-206 was upregulated in COPD patients and CSE-treated HPMECs, promoted cell apoptosis via directly targeting Notch3 and VEGFA in HPMECs.
Collapse
Affiliation(s)
- Ying Sun
- Basic Medicine College, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Na An
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinchan Xia
- Basic Medicine College, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yange Tian
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peng Zhao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xuefang Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Haiying Huang
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jianfeng Gao
- Basic Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoli Zhang
- Basic Medicine College, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|