1
|
Liu Y, Li W, Lei L, Zhou Y, Huang M, Li Y, Zhang X, Jiang Y, Wu H, Zheng Z, Ma K, Tang C. Effects of PGK1 on immunoinfiltration by integrated single-cell and bulk RNA-sequencing analysis in sepsis. Front Immunol 2024; 15:1449975. [PMID: 39712033 PMCID: PMC11659135 DOI: 10.3389/fimmu.2024.1449975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
Background Sepsis, a life-threatening organ dysfunction caused by a dysregulated immune response to infection, remains a significant global health challenge. Phosphoglycerate kinase 1 (PGK1) has been implicated in regulating inflammation and immune cell infiltration in inflammatory conditions. However, the role of PGK1 in sepsis remains largely unexplored. Methods Four microarray datasets and a high throughput sequencing dataset were acquired from GEO database to reveal the PGK1 expression in patients of sepsis. Quantitative real-time PCR and western blotting was then used to validate the PGK1 level. Additionally, microarray and single-cell RNA sequencing data integration, including gene set enrichment analysis (GSEA), KEGG and GO functional enrichment analysis, immune infiltration analysis, and single-cell sequencing analysis, were performed to elucidate the role of PGK1 in sepsis. Results Our results revealed a significant upregulation of PGK1 in sepsis patients, with the area under the ROC curve (AUC) exceeding 0.9 across multiple datasets, indicating PGK1's strong potential as a diagnostic biomarker. Notably, PGK1 was enriched in key immune-related pathways, including the TNF signaling pathways, and leukocyte transendothelial migration, suggesting its involvement in immune regulation. Furthermore, PGK1 expression showed a positive correlation with the levels of inflammatory mediators CXCL1, CXCL16, and the chemokine receptor CCR1. In terms of immune cell infiltration, PGK1 was positively correlated with naive B cells, resting memory CD4 T cell, gamma delta T cells, M0 macrophages, eosinophils and negatively correlated with plasma cells, CD8 T cells, activated memory CD4 T cell, Tregs, activated dendritic cells. Conclusions This study concluded that PGK1 served as a novel diagnostic biomarker for sepsis, with potential implications for prognosis and immune regulation. The significant upregulation of PGK1 in sepsis patients and its association with immune-related pathways and cell types highlight its potential role in the pathogenesis of sepsis.
Collapse
Affiliation(s)
- Yu Liu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weijie Li
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, China
| | - Lei Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yaoliang Zhou
- Emergency and Disaster Medical Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Mingcheng Huang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yide Li
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoying Zhang
- Health Management Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yingyu Jiang
- Department of Renal Rheumatology and Immunology, The People’s Hospital of Hezhou, Hezhou, China
| | - Haiqi Wu
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, China
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Kongyang Ma
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Wei J, Li J, Li T, Xu T, Zhang Y, Yang S, Wu H, Hao H. Genetically predicted metabolite mediates the causal relationship between immune cells and autoimmune diseases. Arthritis Res Ther 2024; 26:207. [PMID: 39623398 PMCID: PMC11610274 DOI: 10.1186/s13075-024-03445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND This study investigates the causal role of metabolites mediating immune cells in rheumatoid arthritis (RA) and ankylosing spondylitis (AS) through a Mendelian randomization (MR) study. METHODS The two-sample and two-step MR methods were used for the current analysis: (1) causal effects of immune cells on RA and AS; (2) mediation effects of metabolites. Inverse variance weighted (IVW) is the main method to analyze causality, and MR results are verified by several sensitive analyses. RESULTS This study first identified the immune cells and metabolites that are causally associated with RA and AS, respectively. Subsequent mediation analyses revealed that of the 61 metabolic factors that were causally associated with RA, 6 were identified as mediators of the relationship between immune cells and RA, including 4-cholesten-3-one levels (mediation ratio: 8.91%), N-lactoyl isoleucine levels (13%), 3- phosphoglycerate to glycerate ratio (12.9%, 2.31%, respectively), Gamma-glutamyl histidine levels (9.54%), and Citrulline to phosphate ratio (15.6%). Among the 52 metabolic factors that were causally associated with AS, 2 were identified as mediators of the relationship between immune cells and AS, including salicylate levels (10.4%) and Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio (8.72%). These results performed well in sensitivity analysis. CONCLUSIONS Genetic predictions show causal relationships between immune cells and autoimmune diseases, and that these causal relationships can be mediated by certain metabolites as mediators.
Collapse
Affiliation(s)
- Jinpeng Wei
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Jian Li
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Tianyang Li
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Tao Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yingchi Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuhan Yang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Hua Wu
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| | - Haihu Hao
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
3
|
Chen L, Wang Z, Zhang Y, Zhu Q, Lu G, Dong X, Pan J, Wu K, Gong W, Xiao W, Ding Y, Zhang Y, Wang Y. Pharmacological Inhibition of Phosphoglycerate Kinase 1 Reduces OxiDative Stress and Restores Impaired Autophagy in Experimental Acute Pancreatitis. Inflammation 2024:10.1007/s10753-024-02173-5. [PMID: 39470963 DOI: 10.1007/s10753-024-02173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Damage to pancreatic acinar cells (PAC) and intracellular metabolic disturbances play crucial roles in pancreatic necrosis during acute pancreatitis (AP). Phosphoglycerate kinase 1 (PGK1) is a crucial catalytic enzyme in glycolysis. However, the impact of PGK1-involving glycolysis in regulating metabolic necrosis in AP is unclear. Transcriptome analysis of pancreatic tissues revealed significant changes in the glycolysis pathway and PGK1 which positively correlated with the inflammatory response and oxidative stress injury in AP mice. Furthermore, we observed a substantial increase in PGK1 expression in damaged PAC, positively correlating with PAC necrosis. Treatment with NG52, a specific PGK1 inhibitor, ameliorated pancreatic necrosis, inflammatory damage, and oxidative stress. Transcriptomic data before and after NG52 treatment along with the Programmed Cell Death database confirmed that NG52 protected against PAC damage by rescuing impaired autophagy in AP. Additionally, the protective effect of NG52 was validated following pancreatic duct ligation. These findings underscore the involvement of PGK1 in AP pathogenesis, highlighting that PGK1 inhibition can mitigate AP-induced pancreatic necrosis, attenuate inflammatory and oxidative stress injury, and rescue impaired autophagy. Thus, the study findings suggest a promising interventional target for pancreatic necrosis, offering novel strategies for therapeutic approaches to clinical AP.
Collapse
Affiliation(s)
- Lin Chen
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Zhihao Wang
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Yuyan Zhang
- Department of Intensive Care, Key Laboratory of Critical Care Medicine of Yangzhou, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Qingtian Zhu
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Guotao Lu
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Xiaowu Dong
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Jiajia Pan
- Department of Intensive Care, Key Laboratory of Critical Care Medicine of Yangzhou, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Keyan Wu
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Weijuan Gong
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Weiming Xiao
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Yanbing Ding
- Pancreatic Center, Department of Gastroenterology, Yangzhou Key Laboratory of Pancreatic Disease, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China.
| | - Yanyan Zhang
- Medical College, Yangzhou University, Yangzhou, 225000, China.
- Testing Center, Yangzhou University, Yangzhou, 225000, China.
| | - Yaodong Wang
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Suzhou Key Laboratory of Integrated Traditional Chinese and Western Medicine of Digestive Diseases, Kunshan Affiliated Hospital of Yangzhou University, Kunshan, 215300, China.
| |
Collapse
|
4
|
Zheng X, Huang J, Meng J, Wang H, Chen L, Yao J. Identification and Experimental Verification of PDK4 as a Potential Biomarker for Diagnosis and Treatment in Rheumatoid Arthritis. Mol Biotechnol 2024:10.1007/s12033-024-01297-1. [PMID: 39466354 DOI: 10.1007/s12033-024-01297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disorder marked by sustained joint inflammation, with an etiology that remains elusive. Achieving an early and precise diagnosis poses significant challenges. This study aims to elucidate the molecular pathways involved in RA pathogenesis by screening genes associated with its occurrence, analyzing the related molecular activities, and ultimately developing more effective molecular-level treatments for RA. METHODS Microarray expression profiling datasets GSE1919, GSE10500, GSE15573, GSE77298, GSE206848, and GSE236924 were sourced from the Gene Expression Omnibus (GEO) database. Samples were divided into experimental (RA) and control (normal) groups. Differentially expressed genes (DEGs) were identified using R software packages such as limma, glmnet, e1071 as well as randomForest. Cross-validation of DEGs was conducted using lasso regression and the random forest (RF) algorithm in R software to pinpoint intersecting genes that met the criteria. Among these, one gene was selected as the target for correlation analysis to identify DEGs related to the target gene. Enrichment analysis utilized the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway databases and Gene Ontology (GO) data. Gene Set Enrichment Analysis (GSEA) was performed to compare the expression levels of the target gene (PDK4) across various biological pathways and functions in groups with high and low expression. The relationship between target gene expression levels and cellular immune function was assessed using the immune function score technique. The discrepancy in immune cell distribution between the control and experimental groups, as well as their correlation with target gene expression levels, was elucidated using CIBERSORT. The relationships between mRNA, lncRNA, and miRNA were depicted in the ceRNA regulation network. The expression levels of the target gene were validated using Western blot and qRT-PCR. RESULTS In this study, six intersecting genes meeting the criteria were identified through cross-validation, and PDK4 was chosen as the target gene for further investigation. Functional analysis using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) revealed that PDK4-associated DEGs are primarily enriched in the PPAR signaling pathway, thereby regulating synovial cell proliferation and migration, ultimately influencing the onset and progression of rheumatoid arthritis (RA). Immune infiltration analysis suggested that eosinophil quantity may influence the progression of RA. Experimental results from PCR and Western blot confirmed the downregulation of PDK4 in the RA group. CONCLUSION The significant downregulation of PDK4 expression in patients diagnosed with rheumatoid arthritis (RA) was confirmed. PDK4 may function as a novel regulatory factor in the onset and progression of RA, with potential applications as a diagnostic biomarker for the condition.
Collapse
Affiliation(s)
- Xifan Zheng
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Junpu Huang
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinzhi Meng
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hongtao Wang
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lingyun Chen
- Spine Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jun Yao
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
5
|
Hu S, Lin Y, Tang Y, Zhang J, He Y, Li G, Li L, Cai X. Targeting dysregulated intracellular immunometabolism within synovial microenvironment in rheumatoid arthritis with natural products. Front Pharmacol 2024; 15:1403823. [PMID: 39104392 PMCID: PMC11298361 DOI: 10.3389/fphar.2024.1403823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Immunometabolism has been an emerging hotspot in the fields of tumors, obesity, and atherosclerosis in recent decades, yet few studies have investigated its connection with rheumatoid arthritis (RA). In principle, intracellular metabolic pathways upstream regulated by nutrients and growth factors control the effector functions of immune cells. Dynamic communication and hypermetabolic lesions of immune cells within the inflammatory synovial microenvironment contributes to the development and progression of RA. Hence, targeting metabolic pathways within immune subpopulations and pathological cells may represent novel therapeutic strategies for RA. Natural products constitute a great potential treasury for the research and development of novel drugs targeting RA. Here, we aimed to delineate an atlas of glycolysis, lipid metabolism, amino acid biosynthesis, and nucleotide metabolism in the synovial microenvironment of RA that affect the pathological processes of synovial cells. Meanwhile, therapeutic potentials and pharmacological mechanisms of natural products that are demonstrated to inhibit related key enzymes in the metabolic pathways or reverse the metabolic microenvironment and communication signals were discussed and highlighted.
Collapse
Affiliation(s)
- Shengtao Hu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ye Lin
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuanyuan Tang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junlan Zhang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yini He
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gejing Li
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liqing Li
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| |
Collapse
|
6
|
Liu Y, Yao J, Xue X, Lv Y, Guo S, Wei P. Triglyceride-glucose index in the prediction of new-onset arthritis in the general population aged over 45: the first longitudinal evidence from CHARLS. Lipids Health Dis 2024; 23:79. [PMID: 38481325 PMCID: PMC10936084 DOI: 10.1186/s12944-024-02070-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/03/2024] [Indexed: 03/17/2024] Open
Abstract
OBJECTIVE Insulin resistance (IR) imposes a significant burden on inflammatory diseases, and the triglyceride-glucose (TyG) index, which is an easily accessible indicator for detecting IR, holds great application potential in predicting the risk of arthritis. The aim of this study is to analyze the association between the TyG index and the risk of new-onset arthritis in the common population aged over 45 using a prospective cohort study design. METHOD This population-based cohort study involved 4418 participants from the China Health and Retirement Longitudinal Study (from Wave 1 to Wave 4). Multivariate logistic regression models were employed to investigate the association between the TyG index and new-onset arthritis, and RCS analyses were used to investigate potential non-linear relationships. Moreover, decision trees were utilized to identify high-risk populations for incident arthritis. RESULT Throughout a 7-year follow-up interval, it was found that 396 participants (8.96%) developed arthritis. The last TyG index quartile group (Q4) presented the highest risk of arthritis (OR, 1.39; 95% CI, 1.01, 1.91). No dose-response relationship between the TyG index and new-onset arthritis was identified (Poverall=0.068, Pnon-linear=0.203). In the stratified analysis, we observed BMI ranging from 18.5 to 24 exhibited a heightened susceptibility to the adverse effects of the TyG index on the risk of developing arthritis (P for interaction = 0.035). CONCLUSION The TyG index can be used as an independent risk indicator for predicting the start of new-onset arthritis within individuals aged 45 and above within the general population. Improving glucose and lipid metabolism, along with insulin resistance, may play a big part in improving the primary prevention of arthritis.
Collapse
Affiliation(s)
- Yang Liu
- Dongfang Hospital of Beijing University of Chinese Medicine, No.6 Block.1 Fangxingyuan, Fengtai District, Beijing, 100078, China
| | - Junjie Yao
- Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Xiaona Xue
- Dongfang Hospital of Beijing University of Chinese Medicine, No.6 Block.1 Fangxingyuan, Fengtai District, Beijing, 100078, China
| | - Yanan Lv
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Dongcheng District, Hai Yun Cang on the 5th Zip, Beijing, 100020, China
| | - Sheng Guo
- Dongfang Hospital of Beijing University of Chinese Medicine, No.6 Block.1 Fangxingyuan, Fengtai District, Beijing, 100078, China
| | - PeiDong Wei
- Dongfang Hospital of Beijing University of Chinese Medicine, No.6 Block.1 Fangxingyuan, Fengtai District, Beijing, 100078, China.
| |
Collapse
|
7
|
Hu Z, Li Y, Zhang L, Jiang Y, Long C, Yang Q, Yang M. Metabolic changes in fibroblast-like synoviocytes in rheumatoid arthritis: state of the art review. Front Immunol 2024; 15:1250884. [PMID: 38482018 PMCID: PMC10933078 DOI: 10.3389/fimmu.2024.1250884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
Fibroblast-like synoviocytes (FLS) are important components of the synovial membrane. They can contribute to joint damage through crosstalk with inflammatory cells and direct actions on tissue damage pathways in rheumatoid arthritis (RA). Recent evidence suggests that, compared with FLS in normal synovial tissue, FLS in RA synovial tissue exhibits significant differences in metabolism. Recent metabolomic studies have demonstrated that metabolic changes, including those in glucose, lipid, and amino acid metabolism, exist before synovitis onset. These changes may be a result of increased biosynthesis and energy requirements during the early phases of the disease. Activated T cells and some cytokines contribute to the conversion of FLS into cells with metabolic abnormalities and pro-inflammatory phenotypes. This conversion may be one of the potential mechanisms behind altered FLS metabolism. Targeting metabolism can inhibit FLS proliferation, providing relief to patients with RA. In this review, we aimed to summarize the evidence of metabolic changes in FLS in RA, analyze the mechanisms of these metabolic alterations, and assess their effect on RA phenotype. Finally, we aimed to summarize the advances and challenges faced in targeting FLS metabolism as a promising therapeutic strategy for RA in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiyue Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Jeong H, Lee B, Han SJ, Sohn DH. Glucose metabolic reprogramming in autoimmune diseases. Anim Cells Syst (Seoul) 2023; 27:149-158. [PMID: 37465289 PMCID: PMC10351453 DOI: 10.1080/19768354.2023.2234986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
Autoimmune diseases are conditions in which the immune system mistakenly targets and damages healthy tissue in the body. In recent decades, the incidence of autoimmune diseases has increased, resulting in a significant disease burden. The current autoimmune therapies focus on targeting inflammation or inducing immunosuppression rather than addressing the underlying cause of the diseases. The activity of metabolic pathways is elevated in autoimmune diseases, and metabolic changes are increasingly recognized as important pathogenic processes underlying these. Therefore, metabolically targeted therapies may represent an important strategy for treating autoimmune diseases. This review provides a comprehensive overview of the evidence surrounding glucose metabolic reprogramming and its potential applications in drug discovery and development for autoimmune diseases, such as type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and systemic sclerosis.
Collapse
Affiliation(s)
- Hoim Jeong
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Beomgu Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Seung Jin Han
- Department of Medical Biotechnology, Inje University, Gimhae, Republic of Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| |
Collapse
|
9
|
Liu H, Shen L, Sun Z, Wu W, Xu M. Downregulated PGK1 attenuates cerebral ischemia-reperfusion injury by reversing neuroinflammation and oxidative stress through the Nrf2/ARE pathway. Neuroscience 2023:S0306-4522(23)00239-7. [PMID: 37295596 DOI: 10.1016/j.neuroscience.2023.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Understanding the role and mechanism of astrocytes in inflammation and oxidative response is crucial for developing therapeutic strategies to reduce inflammation and oxidative injury in cerebral ischemia-reperfusion injury (CIRI). In this study, we investigated the regulatory effects of phosphoglycerate kinase 1 (PGK1) on inflammation and oxidative response after CIRI in male adult Sprague-Dawley (SD) rats and using primary astrocytes obtained from neonatal SD rats, and explored its related mechanisms. We established a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R) by suture occlusion, and an oxygen-glucose deprivation/reoxygenation model of astrocytes using oxygen-free, glucose-free, and serum-free cultures. AAV8-PGK1-GFP was injected into the left ventricle 24 h before modeling. Real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, co-immunoprecipitation (CoIP) assay, fluorescence in situ hybridization (FISH), and western blotting were used to elucidate the in-depth mechanisms of PGK1 in CIRI. PGK1 overexpression significantly exacerbated neurological deficits, increased cerebral infarct volume, and aggravated nerve cell injury in rats after MCAO/R. Using FISH and CoIP assays, we verified the localization of PGK1 and Nrf2 in primary astrocytes. Further rescue experiments showed that Nrf2 knockdown eliminated the protective effect of CBR-470-1 (a PGK1 inhibitor) on CIRI. Lastly, we confirmed that PGK1 aggravates CIRI by inhibiting the Nrf2/ARE pathway. In conclusion, our findings suggest that inhibiting PGK1 attenuates CIRI by reducing the release of inflammatory and oxidative factors from astrocytes by activating the Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Hua Liu
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, China
| | - Likui Shen
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215028, China
| | - Zezhi Sun
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, China
| | - Wenxi Wu
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, China
| | - Min Xu
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, China.
| |
Collapse
|
10
|
Wei L, Zhang X, Yao Y, Zheng W, Tian J. LncRNA HOTTIP impacts the proliferation and differentiation of fibroblast-like synoviocytes in ankylosing spondylitis through the microRNA-30b-3p/PGK1 axis. J Orthop Surg Res 2023; 18:237. [PMID: 36964567 PMCID: PMC10039568 DOI: 10.1186/s13018-023-03653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/26/2023] [Indexed: 03/26/2023] Open
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been reported to exert regulatory effects on biological processes. This study intended to assess the role of the lncRNA HOXA transcript at the distal tip (HOTTIP)/miR-30b-3p/phosphoglycerate kinase 1 (PGK1) axis in ankylosing spondylitis (AS). METHODS Levels of HOTTIP, miR-30b-3p and PGK1 in AS synovial tissues and cultured AS fibroblast-like synoviocytes (ASFLSs) were assessed. The ASFLSs were identified and, respectively, treated with altered expression of HOTTIP and miR-30b-3p, and then, the proliferation and differentiation of the ASFLSs were assessed. The AS mouse models were established by injection of proteoglycan and Freund's complete adjuvant and then were treated with altered expression of HOTTIP and miR-30b-3p, and the pathological changes and apoptosis of synoviocytes in mice' synovial tissues were measured. The relationship of HOTTIP, miR-30b-3p and PGK1 was verified. RESULTS HOTTIP and PGK1 were elevated, while miR-30b-3p was reduced in AS synovial tissues and ASFLSs. Elevated miR-30b-3p or inhibited HOTTIP restrained proliferation and differentiation of ASFLSs and also improved the pathological changes and promoted apoptosis of synoviocytes in mice's synovial tissues. PGK1 was a target of miR-30b-3p, and miR-30b-3p could directly bind to HOTTIP. Silencing miR-30b-3p or overexpressing PGK1 reversed the improvement of AS by knocking down HOTTIP or up-regulating miR-30b-3p. CONCLUSION Our study suggests that reduced HOTTIP ameliorates AS progression by suppressing the proliferation and differentiation of ASFLSs through the interaction of miR-30b-3p and PGK1.
Collapse
Affiliation(s)
- Li Wei
- Department of Orthopaedic Ward 1, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150000, Heilongjiang, China
| | - Xin Zhang
- Department of Orthopaedic Ward 1, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150000, Heilongjiang, China
| | - Yu Yao
- Department of Orthopaedic Ward 1, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150000, Heilongjiang, China
| | - Weizhuo Zheng
- Department of Orthopaedic Ward 1, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150000, Heilongjiang, China
| | - Jun Tian
- Department of Orthopaedic Ward 1, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150000, Heilongjiang, China.
| |
Collapse
|
11
|
Feng ZW, Tang YC, Sheng XY, Wang SH, Wang YB, Liu ZC, Liu JM, Geng B, Xia YY. Screening and identification of potential hub genes and immune cell infiltration in the synovial tissue of rheumatoid arthritis by bioinformatic approach. Heliyon 2023; 9:e12799. [PMID: 36699262 PMCID: PMC9868484 DOI: 10.1016/j.heliyon.2023.e12799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease that affects individuals of all ages. The basic pathological manifestations are synovial inflammation, pannus formation, and erosion of articular cartilage, bone destruction will eventually lead to joint deformities and loss of function. However, the specific molecular mechanisms of synovitis tissue in RA are still unclear. Therefore, this study aimed to screen and explore the potential hub genes and immune cell infiltration in RA. Methods Three microarray datasets (GSE12021, GSE55457, and GSE55235), from the Gene Expression Omnibus (GEO) database, have been analyzed to explore the potential hub genes and immune cell infiltration in RA. First, the LIMMA package was used to screen the differentially expression genes (DEGs) after removing the batch effect. Then the clusterProfiler package was used to perform functional enrichment analyses. Second, through weighted coexpression network analysis (WGCNA), the key module was identified in the coexpression network of the gene set. Third, the protein-protein interaction (PPI) network was constructed through STRING website and the module analysis was performed using Cytoscape software. Fourth, the CIBERSORT and ssGSEA algorithm were used to analyze the immune status of RA and healthy synovial tissue, and the associations between immune cell infiltration and RA-related diagnostic biomarkers were evaluated. Fifth, we used the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) to validate the expression levels of the hub genes, and ROC curve analysis of hub genes for discriminating between RA and healthy tissue. Finally, the gene-drug interaction network was constructed using DrugCentral database, and identification of drug molecules based on hub genes using the Drug Signature Database (DSigDB) by Enrichr. Results A total of 679 DEGs were identified, containing 270 downregulated genes and 409 upregulated genes. DEGs were primarily enriched in immune response and chemokine signaling pathways, according to functional enrichment analysis of DEGs. WGCNA explored the co-expression network of the gene set and identified key modules, the blue module was selected as the key module associated with RA. Seven hub genes are identified when PPI network and WGCNA core modules are intersected. Immune infiltration analysis using CIBERSORT and ssGSEA algorithms revealed that multiple types of immune infiltration were found to be upregulated in RA tissue compared to normal tissue. Furthermore, the levels of 7 hub genes were closely related to the relative proportions of multiple immune cells in RA. The results of the qRT-PCR demonstrated that the relative expression levels of 6 hub genes (CD27, LCK, CD2, GZMB, IL7R, and IL2RG) were up-regulated in RA synovial tissue, compared with normal tissue. Simultaneously, ROC curves indicated that the above 6 hub genes had strong biomarker potential for RA (AUC >0.8). Conclusions Through bioinformatics analysis and qRT-PCR experiment, our study ultimately discovered 6 hub genes (CD27, LCK, CD2, GZMB, IL7R, and IL2RG) that closely related to RA. These findings may provide valuable direction for future RA clinical diagnosis, treatment, and associated research.
Collapse
Affiliation(s)
- Zhi-wei Feng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China,Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China,Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China,Department of Orthopaedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, China
| | - Yu-chen Tang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China,Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China,Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| | - Xiao-yun Sheng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China,Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China,Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| | - Sheng-hong Wang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China,Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China,Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| | - Yao-bin Wang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China,Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China,Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| | - Zhong-cheng Liu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China,Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China,Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| | - Jin-min Liu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China,Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China,Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| | - Bin Geng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China,Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China,Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China
| | - Ya-yi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China,Gansu Province Orthopaedic Clinical Medicine Research Center, Lanzhou, China,Gansu Province Intelligent Orthopedics Industry Technology Center, Lanzhou, China,Corresponding author. No. 82 Cuiyingmen, Chengguan District, Lanzhou City, Gansu Province, China.;
| |
Collapse
|
12
|
Raggi F, Bartolucci M, Cangelosi D, Rossi C, Pelassa S, Trincianti C, Petretto A, Filocamo G, Civino A, Eva A, Ravelli A, Consolaro A, Bosco MC. Proteomic profiling of extracellular vesicles in synovial fluid and plasma from Oligoarticular Juvenile Idiopathic Arthritis patients reveals novel immunopathogenic biomarkers. Front Immunol 2023; 14:1134747. [PMID: 37205098 PMCID: PMC10186353 DOI: 10.3389/fimmu.2023.1134747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction New early low-invasive biomarkers are demanded for the management of Oligoarticular Juvenile Idiopathic Arthritis (OJIA), the most common chronic pediatric rheumatic disease in Western countries and a leading cause of disability. A deeper understanding of the molecular basis of OJIA pathophysiology is essential for identifying new biomarkers for earlier disease diagnosis and patient stratification and to guide targeted therapeutic intervention. Proteomic profiling of extracellular vesicles (EVs) released in biological fluids has recently emerged as a minimally invasive approach to elucidate adult arthritis pathogenic mechanisms and identify new biomarkers. However, EV-prot expression and potential as biomarkers in OJIA have not been explored. This study represents the first detailed longitudinal characterization of the EV-proteome in OJIA patients. Methods Fourty-five OJIA patients were recruited at disease onset and followed up for 24 months, and protein expression profiling was carried out by liquid chromatography-tandem mass spectrometry in EVs isolated from plasma (PL) and synovial fluid (SF) samples. Results We first compared the EV-proteome of SF vs paired PL and identified a panel of EV-prots whose expression was significantly deregulated in SF. Interaction network and GO enrichment analyses performed on deregulated EV-prots through STRING database and ShinyGO webserver revealed enrichment in processes related to cartilage/bone metabolism and inflammation, suggesting their role in OJIA pathogenesis and potential value as early molecular indicators of OJIA development. Comparative analysis of the EV-proteome in PL and SF from OJIA patients vs PL from age/gender-matched control children was then carried out. We detected altered expression of a panel of EV-prots able to differentiate new-onset OJIA patients from control children, potentially representing a disease-associated signature measurable at both the systemic and local levels with diagnostic potential. Deregulated EV-prots were significantly associated with biological processes related to innate immunity, antigen processing and presentation, and cytoskeleton organization. Finally, we ran WGCNA on the SF- and PL-derived EV-prot datasets and identified a few EV-prot modules associated with different clinical parameters stratifying OJIA patients in distinct subgroups. Discussion These data provide novel mechanistic insights into OJIA pathophysiology and an important contribution in the search of new candidate molecular biomarkers for the disease.
Collapse
Affiliation(s)
- Federica Raggi
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Martina Bartolucci
- Core Facilities, Clinical Proteomics and Metabolomics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Davide Cangelosi
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Clinical Bioinformatics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Rossi
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Simone Pelassa
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Trincianti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DiNOGMI), University of Genova, Genova, Italy
| | - Andrea Petretto
- Core Facilities, Clinical Proteomics and Metabolomics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Giovanni Filocamo
- Division of Pediatric Immunology and Rheumatology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Adele Civino
- Pediatric Rheumatology and Immunology, Ospedale “Vito Fazzi”, Lecce, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Angelo Ravelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DiNOGMI), University of Genova, Genova, Italy
- Scientific Direction, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Alessandro Consolaro
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DiNOGMI), University of Genova, Genova, Italy
- Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- *Correspondence: Maria Carla Bosco,
| |
Collapse
|
13
|
Liao L, Dang W, Lin T, Yu J, Liu T, Li W, Xiao S, Feng L, Huang J, Fu R, Li J, Liu L, Wang M, Tao H, Jiang H, Chen K, Diao X, Zhou B, Shen X, Luo C. A potent PGK1 antagonist reveals PGK1 regulates the production of IL-1β and IL-6. Acta Pharm Sin B 2022; 12:4180-4192. [PMID: 36386479 PMCID: PMC9643279 DOI: 10.1016/j.apsb.2022.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/02/2022] Open
Abstract
Glycolytic metabolism enzymes have been implicated in the immunometabolism field through changes in metabolic status. PGK1 is a catalytic enzyme in the glycolytic pathway. Here, we set up a high-throughput screen platform to identify PGK1 inhibitors. DC-PGKI is an ATP-competitive inhibitor of PGK1 with an affinity of Kd = 99.08 nmol/L. DC-PGKI stabilizes PGK1 in vitro and in vivo, and suppresses both glycolytic activity and the kinase function of PGK1. In addition, DC-PGKI unveils that PGK1 regulates production of IL-1β and IL-6 in LPS-stimulated macrophages. Mechanistically, inhibition of PGK1 with DC-PGKI results in NRF2 (nuclear factor-erythroid factor 2-related factor 2, NFE2L2) accumulation, then NRF2 translocates to the nucleus and binds to the proximity region of Il-1β and Il-6 genes, and inhibits LPS-induced expression of these genes. DC-PGKI ameliorates colitis in the dextran sulfate sodium (DSS)-induced colitis mouse model. These data support PGK1 as a regulator of macrophages and suggest potential utility of PGK1 inhibitors in the treatment of inflammatory bowel disease.
Collapse
|
14
|
Damerau A, Kirchner M, Pfeiffenberger M, Ehlers L, Do Nguyen DH, Mertins P, Bartek B, Maleitzke T, Palmowski Y, Hardt S, Winkler T, Buttgereit F, Gaber T. Metabolic reprogramming of synovial fibroblasts in osteoarthritis by inhibition of pathologically overexpressed pyruvate dehydrogenase kinases. Metab Eng 2022; 72:116-132. [DOI: 10.1016/j.ymben.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
|
15
|
Jiang TT, Ji CF, Cheng XP, Gu SF, Wang R, Li Y, Zuo J, Han J. α-Mangostin Alleviated HIF-1α-Mediated Angiogenesis in Rats With Adjuvant-Induced Arthritis by Suppressing Aerobic Glycolysis. Front Pharmacol 2021; 12:785586. [PMID: 34987400 PMCID: PMC8721667 DOI: 10.3389/fphar.2021.785586] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
A previously validated anti-rheumatic compound α-mangostin (MAN) shows significant metabolism regulatory effects. The current study aimed to clarify whether this property contributed to its inhibition on synovial angiogenesis. Male wistar rats with adjuvant-induced arthritis (AIA) were orally treated by MAN for 32 days. Afterwards, biochemical parameters and cytokines in plasma were determined by corresponding kits, and glycometabolism-related metabolites were further accurately quantified by LC-MS method. Anti-angiogenic effects of MAN were preliminarily assessed by joints based-immunohistochemical examination and matrigel plug assay. Obtained results were then validated by experiments in vitro. AIA-caused increase in circulating transforming growth factor beta, interleukin 6, hypoxia inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) in blood and local HIF-1α/VEGF expression in joints was abrogated by MAN treatment, and pannus formation within matrigel plugs implanted in AIA rats was inhibited too. Scratch and transwell assays revealed the inhibitory effects of MAN on human umbilical vein endothelial cells (HUVECs) migration. Furthermore, MAN inhibited tubule formation capability of HUVECs and growth potential of rat arterial ring-derived endothelial cells in vitro. Meanwhile, MAN eased oxidative stress, and altered glucose metabolism in vivo. Glycolysis-related metabolites including glucose 6-phosphate, fructose 6-phosphate, 3-phosphoglyceric acid and phosphoenolpyruvic acid in AIA rats were decreased by MAN, while the impaired pyruvate-synthesizing capability of lactate dehydrogenase (LDH) was recovered. Consistently, MAN restored lipopolysaccharide-elicited changes on levels of glucose and LDH in HUVECs culture system, and exerted similar effects with LDH inhibitor stiripentol on glycometabolism and VEGF production as well as tubule formation capability of HUVECs. These evidences show that MAN treatment inhibited aerobic glycolysis in AIA rats, which consequently eased inflammation-related hypoxia, and hampered pathological neovascularization.
Collapse
Affiliation(s)
- Tian-Tian Jiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wuhu, China
| | - Chao-Fan Ji
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Xiu-Ping Cheng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Shao-Fei Gu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Rui Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Yan Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
| | - Jian Zuo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Xin’an Medicine Research Center, Wannan Medical College, Wuhu, China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Jun Han
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wuhu, China
| |
Collapse
|
16
|
Dantas PS, Guzzoni V, Perez JD, Arita DY, Novaes PD, Marcondes FK, Casarini DE, Cunha TS. Nandrolone combined with strenuous resistance training impairs myocardial proteome profile of rats. Steroids 2021; 175:108916. [PMID: 34492258 DOI: 10.1016/j.steroids.2021.108916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022]
Abstract
We aimed to investigate the effects of high doses of nandrolone decanoate and resistance training (RT) on the proteomic profile of the left ventricle (LV) of rats, using a label-free quantitative approach. Male rats were randomized into four groups: untrained vehicle (UTV), trained vehicle (TV), untrained nandrolone (UTN), and trained nandrolone (TN). Rats were familiarized with the exercise training protocol (jump exercise) for one week. Jump-exercise was performed five days a week for 6 weeks, with 30 s of inter-set rest intervals. Nandrolone was administrated for 6 weeks (5 mg/kg, twice a week, via intramuscular). Systolic and diastolic arterial pressure and heart rate were measured 48 h post-training. LV was isolated and collagen content was measured. The expression of cardiac proteins was analyzed by ultra-efficiency liquid chromatography with mass spectrometry high / low collision energy (UPLC/MSE). Nandrolone and RT led to cardiac hypertrophy, even though high doses of nandrolone counteracted the RT-induced arterial pressures lowering. Nandrolone also affected the proteome profile negatively in LV of rats, including critical proteins related to biological processes (metabolism, oxidative stress, inflammation), structural function and membrane transporters. Our findings show physiological relevance since high doses of nandrolone induced detrimental effects on the proteome profile of heart tissue and hemodynamic parameters of rats. Furthermore, as nandrolone abuse has become increasingly common among recreational athletes and casual fitness enthusiasts, we consider that our findings have clinical relevance as well.
Collapse
Affiliation(s)
- Patrícia Sousa Dantas
- Federal University of São Paulo (UNIFESP), Department of Medicine, Nephrology Division, São Paulo, São Paulo, Brazil
| | - Vinicius Guzzoni
- Federal University of São Paulo (UNIFESP), Institute of Science and Technology, Department of Science and Technology, São José dos Campos, São Paulo, Brazil
| | - Juliana Dinéia Perez
- Federal University of São Paulo (UNIFESP), Department of Medicine, Nephrology Division, São Paulo, São Paulo, Brazil
| | - Danielle Yuri Arita
- Federal University of São Paulo (UNIFESP), Department of Medicine, Nephrology Division, São Paulo, São Paulo, Brazil
| | - Pedro Duarte Novaes
- Piracicaba Dental School, Department of Morphology, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Fernanda Klein Marcondes
- Piracicaba Dental School, Department of Physiological Sciences, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Dulce Elena Casarini
- Federal University of São Paulo (UNIFESP), Department of Medicine, Nephrology Division, São Paulo, São Paulo, Brazil
| | - Tatiana Sousa Cunha
- Federal University of São Paulo (UNIFESP), Institute of Science and Technology, Department of Science and Technology, São José dos Campos, São Paulo, Brazil.
| |
Collapse
|
17
|
Farah H, Young SP, Mauro C, Jones SW. Metabolic dysfunction and inflammatory disease: the role of stromal fibroblasts. FEBS J 2021; 288:5555-5568. [PMID: 33251764 PMCID: PMC8518940 DOI: 10.1111/febs.15644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Mesenchymal stromal fibroblasts have emerged as key mediators of the inflammatory response and drivers of localised inflammation, in part through their interactions with resident and circulating immune cells at inflammatory sites. As such, they have been implicated in a number of chronic inflammatory conditions as well as in tumour progression through modifying the microenvironment. The connection between metabolic changes and altered phenotype of fibroblasts in inflammatory microenvironments has clear implications for our understanding of how chronic inflammation is regulated and for the development of new anti-inflammatory therapeutics. In this review, we consider the evidence that changes to fibroblast metabolic state underpin chronic inflammation. We examine recent research on fibroblast metabolism in inflammatory microenvironments and consider their involvement in inflammation, providing insight into the role of fibroblasts and metabolism in mediating inflammatory disease progression namely cancer, arthritis and fibrotic disorders including chronic kidney disease, pulmonary fibrosis, heart disease and liver disease.
Collapse
Affiliation(s)
- Hussein Farah
- Institute of Inflammation and AgeingMRC‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchUniversity of BirminghamUK
| | - Stephen P. Young
- Institute of Inflammation and AgeingMRC‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchUniversity of BirminghamUK
| | - Claudio Mauro
- Institute of Inflammation and AgeingMRC‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchUniversity of BirminghamUK
| | - Simon W. Jones
- Institute of Inflammation and AgeingMRC‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchUniversity of BirminghamUK
| |
Collapse
|
18
|
Wang H, Zhang N, Fang K, Chang X. 2-Deoxy-D-glucose Alleviates Collagen-Induced Arthritis of Rats and Is Accompanied by Metabolic Regulation of the Spleen and Liver. Front Immunol 2021; 12:713799. [PMID: 34539643 PMCID: PMC8440946 DOI: 10.3389/fimmu.2021.713799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/16/2021] [Indexed: 12/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is significantly associated with glycolysis. This study used 2-deoxy-D-glucose (2-DG), an inhibitor of glycolysis, to treat rats with collagen-induced arthritis (CIA) and investigate the metabolic regulatory mechanism of glycolysis in the disease. 2-DG significantly alleviated CIA. Metabolomics and transcriptomics, as well as their integrative analysis, detected significant changes in the pathways of bile secretion, cholesterol and linoleic acid metabolism in the plasma, liver and spleen during the CIA process and the opposite changes following 2-DG treatment, whereas the expression of the genes regulating these metabolic pathways were changed only in the spleen. In the rat liver, levels of (S)-5-diphosphomevalonic acid in the terpenoid backbone biosynthesis pathway were significantly decreased during CIA progression and increased following 2-DG treatment, and levels of taurochenodeoxycholic acid in the pentose and glucuronate interconversions pathway showed the opposite results. In the spleen, levels of 3-methoxy-4-hydroxyphenylglycol glucuronide in bile secretion and 12(S)-leukotriene B4 in arachidonic acid metabolism were significantly decreased during CIA progression and increased following 2-DG treatment. The changes in the gene-metabolite network of bile secretion in the spleen correlated with a decreased plasma L-acetylcarnitine level in CIA rats and an increase following 2-DG treatment. Our analysis suggests the involvement of spleen and liver metabolism in CIA under the control of glycolysis.
Collapse
Affiliation(s)
- Hongxing Wang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Qingdao, China.,Clinical Laboratory of Qilu Hospital, Shandong University, Jinan, China
| | - Nanyang Zhang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Qingdao, China.,Qingdao Engineering Technology Center For Major Disease Marker, Qingdao, China
| | - Kehua Fang
- Clinical Laboratory of The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaotian Chang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Qingdao, China.,Qingdao Engineering Technology Center For Major Disease Marker, Qingdao, China.,Shandong Provincial Clinical Research Center for Immune Disease and Gout, Qingdao, China
| |
Collapse
|
19
|
Aghakhani S, Zerrouk N, Niarakis A. Metabolic Reprogramming of Fibroblasts as Therapeutic Target in Rheumatoid Arthritis and Cancer: Deciphering Key Mechanisms Using Computational Systems Biology Approaches. Cancers (Basel) 2020; 13:E35. [PMID: 33374292 PMCID: PMC7795338 DOI: 10.3390/cancers13010035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022] Open
Abstract
Fibroblasts, the most abundant cells in the connective tissue, are key modulators of the extracellular matrix (ECM) composition. These spindle-shaped cells are capable of synthesizing various extracellular matrix proteins and collagen. They also provide the structural framework (stroma) for tissues and play a pivotal role in the wound healing process. While they are maintainers of the ECM turnover and regulate several physiological processes, they can also undergo transformations responding to certain stimuli and display aggressive phenotypes that contribute to disease pathophysiology. In this review, we focus on the metabolic pathways of glucose and highlight metabolic reprogramming as a critical event that contributes to the transition of fibroblasts from quiescent to activated and aggressive cells. We also cover the emerging evidence that allows us to draw parallels between fibroblasts in autoimmune disorders and more specifically in rheumatoid arthritis and cancer. We link the metabolic changes of fibroblasts to the toxic environment created by the disease condition and discuss how targeting of metabolic reprogramming could be employed in the treatment of such diseases. Lastly, we discuss Systems Biology approaches, and more specifically, computational modeling, as a means to elucidate pathogenetic mechanisms and accelerate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Sahar Aghakhani
- GenHotel, University of Evry, University of Paris-Saclay, Genopole, 91000 Evry, France; (S.A.); (N.Z.)
- Lifeware Group, Inria Saclay, 91120 Palaiseau, France
| | - Naouel Zerrouk
- GenHotel, University of Evry, University of Paris-Saclay, Genopole, 91000 Evry, France; (S.A.); (N.Z.)
| | - Anna Niarakis
- GenHotel, University of Evry, University of Paris-Saclay, Genopole, 91000 Evry, France; (S.A.); (N.Z.)
- Lifeware Group, Inria Saclay, 91120 Palaiseau, France
| |
Collapse
|
20
|
Masoumi M, Mehrabzadeh M, Mahmoudzehi S, Mousavi MJ, Jamalzehi S, Sahebkar A, Karami J. Role of glucose metabolism in aggressive phenotype of fibroblast-like synoviocytes: Latest evidence and therapeutic approaches in rheumatoid arthritis. Int Immunopharmacol 2020; 89:107064. [PMID: 33039953 DOI: 10.1016/j.intimp.2020.107064] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/10/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
Glucose metabolism is considerably increased in inflamed joints of rheumatoid arthritis (RA) patients at early stages. Fibroblast-like synoviocytes (FLSs) activation and subsequent joint damage are linked with metabolic alterations, especially glucose metabolism. It has been shown that glucose metabolism is elevated in aggressive phenotype of FLS cells. In this regard, glycolytic blockers are able to reduce aggressiveness of the FLS cells resulting in decreased joint damage in various arthritis models. Besides, metabolic changes in immune and non-immune cells such as FLS can provide important targets for therapeutic intervention. Glycolytic enzymes such as hexokinase 2 (HK2), phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB), and phosphoglycerate kinase (PGK) play essential roles in aggressive behavior of FLS cells. It has been documented that the HK2 enzyme is significantly upregulated in RA FLS cells, compared with osteoarthritis (OA) FLS cells. The HK2 is expressed in a few tissues and upregulated in the inflamed synovium of RA patients that makes it a potential target for RA treatment. Furthermore, HK2 has different roles in each cellular compartment, which offers another level of specificity and provides a specific target to reduce deleterious effects of inhibiting the enzyme in RA without affecting glycolysis in normal cells. Thus, targeting the HK2 enzyme might be an attractive potential selective target for arthritis therapy and safer than global glycolysis inhibition. Therefore, this review was aimed to summarize the current knowledge about glucose metabolism of FLS cells and suggest novel biomarkers, which are potential candidates for RA treatment.
Collapse
Affiliation(s)
- Maryam Masoumi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Mehrabzadeh
- Department of Medical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Salman Mahmoudzehi
- Department of Medical Laboratory Sciences, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sirous Jamalzehi
- Department of Medical Laboratory Sciences, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Halal Research Center of IRI, FDA, Tehran, Iran.
| | - Jafar Karami
- Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Jasim H, Ernberg M, Carlsson A, Gerdle B, Ghafouri B. Protein Signature in Saliva of Temporomandibular Disorders Myalgia. Int J Mol Sci 2020; 21:ijms21072569. [PMID: 32272779 PMCID: PMC7177369 DOI: 10.3390/ijms21072569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 11/16/2022] Open
Abstract
In the last years, several attempts have been made to study specific biological markers of temporomandibular disorders (TMD). So far, no laboratory tests have been appropriately validated for the diagnosis and prognosis of these disorders. This study aimed to investigate the proteomic profile of the whole stimulated saliva of TMD myalgia patients in order to evaluate potential diagnostic and/or prognostic salivary candidate proteins which could be useful for the management of TMD. Twenty patients diagnosed with TMD myalgia according to the validated Diagnostic Criteria for TMD (DC/TMD) and 20 matched healthy pain-free controls were enrolled. Saliva samples were collected in the morning. Comparative proteomic analysis was performed with two-dimensional gel electrophoresis followed by identification with liquid chromatography–tandem mass spectrometry. Statistical analysis of the quantitative proteomics data revealed that 20 proteins were significantly altered in patients compared to controls. Among these proteins, 12 showed significantly increased levels, and 8 showed significantly decreased levels in patients with TMD myalgia compared to controls. The identified proteins are involved in metabolic processes, immune response, and stress response. This proteomic study shows that the salivary protein profile can discriminate patients with TMD myalgia from healthy subjects, but the protein signature has no correlation with the clinical features of TMD myalgia. Additional studies are needed to validate our observations in additional sample sets and to continue assessing the utility of saliva as a suitable sample for studying processes related to TMD myalgia.
Collapse
Affiliation(s)
- Hajer Jasim
- Division of Oral Diagnostics & Rehabilitation, Department of Dental Medicine, Karolinska Institutet and Scandinavian Center for Orofacial neuroscience (SCON), SE 14104 Huddinge, Sweden
- Correspondence: ; Tel.: +468-524-880-42
| | - Malin Ernberg
- Division of Oral Diagnostics & Rehabilitation, Department of Dental Medicine, Karolinska Institutet and Scandinavian Center for Orofacial neuroscience (SCON), SE 14104 Huddinge, Sweden
| | - Anders Carlsson
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, SE 581 83 Linköping, Sweden
| | - Björn Gerdle
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, SE 581 83 Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, SE 581 83 Linköping, Sweden
| |
Collapse
|
22
|
Liu D, Fang Y, Rao Y, Tan W, Zhou W, Wu X, Zhang C, Zhang Y, Liu Y, Sunagawa M, Hisamitsu T, Li G. Synovial fibroblast-derived exosomal microRNA-106b suppresses chondrocyte proliferation and migration in rheumatoid arthritis via down-regulation of PDK4. J Mol Med (Berl) 2020; 98:409-423. [PMID: 32152704 DOI: 10.1007/s00109-020-01882-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/02/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
Fibroblast-derived exosomes have been reported to transfer microRNAs to recipient cells, where they regulate target gene expression, which is of interest for understanding the basic biology of inflammation, tissue homeostasis, and development of therapeutic approaches. Initial microarray-based analysis carried out in this study identified the rheumatoid arthritis (RA)-related differentially expressed gene pyruvate dehydrogenase kinase 4 (PDK4). Subsequently, the upstream regulatory microRNA-106b (miR-106b) of PDK4 was predicted with bioinformatic analyses. A collagen-induced arthritis (CIA)-induced mouse model was established, and exosomes were isolated from synovial fibroblasts (SFs) and transferred into chondrocytes to identify the role of exosomes in rheumatoid arthritis (RA). We found that PDK4 was poorly expressed in RA cartilage tissues and chondrocytes, while miR-106b was highly expressed in RA SFs and SF-derived exosomes. Notably, PDK4 was confirmed as a target gene of miR-106b. Over-expression of PDK4 promoted the proliferation and migration abilities of chondrocytes and inhibited their apoptosis as well as affected the receptor activator of nuclear factor kappa B ligand (RANKL)/RANK/osteoprotegerin (OPG) system. Meanwhile, miR-106b was delivered from SFs to chondrocytes through exosomes, which suppressed chondrocyte proliferation and migration and accelerated apoptosis as well as affected the RANKL/RANK/OPG system via down-regulation of PDK4. Furthermore, in vivo results validated that miR-106b inhibition could relieve CIA-induced RA. Taken together, SF-derived exosomal miR-106b stimulates RA initiation by targeting PDK4, indicating a physiologically validated potential approach for the prevention and treatment of RA. KEY MESSAGES: PDK4 is decreased in chondrocytes of RA, while miR-106b is increased in SFBs. PDK4 promotes proliferation and migration of chondrocytes. miR-106b could target 3'UTR of PDK4 gene. SFB-exosomal miR-106b inhibits proliferation and migration of chondrocytes. Inhibition of miR-106b attenuates RA progression in a CIA mouse model.
Collapse
Affiliation(s)
- Dan Liu
- Department of Pathology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Yuxuan Fang
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou, 225000, Jiangsu Province, People's Republic of China
| | - Yujun Rao
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou, 225000, Jiangsu Province, People's Republic of China
| | - Wei Tan
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou, 225000, Jiangsu Province, People's Republic of China
| | - Wei Zhou
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou, 225000, Jiangsu Province, People's Republic of China
| | - Xia Wu
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou, 225000, Jiangsu Province, People's Republic of China
- Clinical Medical College, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Chunwang Zhang
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou, 225000, Jiangsu Province, People's Republic of China
- Clinical Medical College, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Yu Zhang
- Medical College of Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Yanqing Liu
- Medical College of Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Tokyo, 142-8555, Japan
| | - Tadashi Hisamitsu
- Department of Physiology, School of Medicine, Showa University, Tokyo, 142-8555, Japan
| | - Guoqing Li
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou, 225000, Jiangsu Province, People's Republic of China.
| |
Collapse
|
23
|
Peripheral blood mononuclear cell proteome profile in Behçet's syndrome. Rheumatol Int 2019; 40:65-74. [PMID: 31414226 DOI: 10.1007/s00296-019-04417-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
Behçet's syndrome (BS) is a systemic inflammatory disorder with unknown etiology. Investigation of proteome profiles of disease specific cells facilitates our understanding of the processes and related molecular pathways, especially in disorders like BS with complex inheritance pattern and clinical heterogeneity. In the current study, we evaluated the peripheral blood mononuclear cells (PBMCs) proteome of 59 patients with BS (33 in active and 26 in inactive phases) and of 28 healthy controls using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). Differentially expressed protein spots with at least twofold and/or statistically significant change (p ≤ 0.05) between active BS vs inactive BS, and also active BS vs healthy controls were identified by mass spectrometry (MALDI-TOF/TOF). Bioinformatic analyses revealed 16 differentially expressed proteins (12 of them in active vs inactive BS comparison, whereas 11 of them for active BS vs healthy control comparison) belonging to glycolysis, cytoskeleton organization, protein folding, and regulation of blood coagulation pathways. Stathmin (active BS vs inactive BS; fourfold, active BS vs healthy control; 4.7-fold) and WD repeat-containing protein-1 (active BS vs inactive BS; 2.7-fold, active BS vs healthy control; 2.7-fold), which are cytoskeleton-related proteins, were found to be lower in active patients compared to inactive patients and healthy control. Decreased levels of calreticulin (active BS vs inactive BS; 1.29-fold) and heat shock 70 kDa protein 8 (active BS vs healthy control; 1.5-fold) which are involved in protein folding and endoplasmic reticulum (ER) stress process, were observed in patients with active phase of BS. Down-regulation of protein folding and ER stress process proteins in BS patients may further support the involvement of ER stress in BS.
Collapse
|
24
|
de Oliveira PG, Farinon M, Sanchez-Lopez E, Miyamoto S, Guma M. Fibroblast-Like Synoviocytes Glucose Metabolism as a Therapeutic Target in Rheumatoid Arthritis. Front Immunol 2019; 10:1743. [PMID: 31428089 PMCID: PMC6688519 DOI: 10.3389/fimmu.2019.01743] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/10/2019] [Indexed: 12/29/2022] Open
Abstract
Metabolomic studies show that rheumatoid arthritis (RA) is associated with metabolic disruption that may be therapeutically targetable. Among them, glucose metabolism and glycolytic intermediaries seem to have an important role in fibroblast-like synoviocytes (FLS) phenotype and might contribute to early stage disease pathogenesis. RA FLS are transformed from quiescent to aggressive and metabolically active cells and several works have shown that glucose metabolism is increased in activated FLS. Glycolytic inhibitors reduce not only FLS aggressive phenotype in vitro but also decrease bone and cartilage damage in several murine models of arthritis. Essential glycolytic enzymes, including hexokinase 2 (HK2) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) enzymes, have important roles in FLS behavior. Of interest, HK2 is an inducible enzyme present only in the inflamed rheumatic tissues compared to osteoarthritis synovium. It is a contributor to glucose metabolism that could be selectively targeted without compromising systemic homeostasis as a novel approach for combination therapy independent of systemic immunosuppression. More information about metabolic targets that do not compromise global glucose metabolism in normal cells is needed.
Collapse
Affiliation(s)
| | - Mirian Farinon
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elsa Sanchez-Lopez
- Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Shigeki Miyamoto
- Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Monica Guma
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
25
|
Sun Y, Xiaoyan H, Yun L, Chaoqun L, Jialing W, Liu Y, Yingqi Z, Peipei Y, Junjun P, Yuanming L. Identification of Key Candidate Genes and Pathways for Relationship between Ovarian Cancer and Diabetes Mellitus Using Bioinformatical Analysis. Asian Pac J Cancer Prev 2019; 20:145-155. [PMID: 30678426 PMCID: PMC6485580 DOI: 10.31557/apjcp.2019.20.1.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer is one of the three major gynecologic cancers in the world. The aim of this study is to find the
relationship between ovarian cancer and diabetes mellitus by using the genetic screening technique. By GEO database
query and related online tools of analysis, we analyzed 185 cases of ovarian cancer and 10 control samples from
GSE26712, and a total of 379 different genes were identified, including 104 up-regulated genes and 275 down-regulated
genes. The up-regulated genes were mainly enriched in biological processes, including cell adhesion, transcription of
nucleic acid and biosynthesis, and negative regulation of cell metabolism. The down-regulated genes were enriched in
cell proliferation, migration, angiogenesis and macromolecular metabolism. Protein-protein interaction was analyzed
by network diagram and module synthesis analysis. The top ten hub genes (CDC20, H2AFX, ENO1, ACTB, ISG15,
KAT2B, HNRNPD, YWHAE, GJA1 and CAV1) were identified, which play important roles in critical signaling
pathways that regulate the process of oxidation-reduction reaction and carboxylic acid metabolism. CTD analysis
showed that the hub genes were involved in 1,128 distinct diseases (bonferroni-corrected P<0.05). Further analysis by
drawing the Kaplan-Meier survival curve indicated that CDC20 and ISG15 were statistically significant (P<0.05). In
conclusion, glycometabolism was related to ovarian cancer and genes and proteins in glycometabolism could serve as
potential targets in ovarian cancer treatment.
Collapse
Affiliation(s)
- Yi Sun
- Department of Toxicology, Guilin Medical University School of Public Health, Guilin, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nguyen LT, Zacchi LF, Schulz BL, Moore SS, Fortes MRS. Adipose tissue proteomic analyses to study puberty in Brahman heifers. J Anim Sci 2018; 96:2392-2398. [PMID: 29788311 DOI: 10.1093/jas/sky128] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/17/2018] [Indexed: 12/31/2022] Open
Abstract
The adipose tissue has been recognized as an active endocrine organ which can modulate numerous physiological processes such as metabolism, appetite, immunity, and reproduction. The aim of this study was to look for differentially abundant proteins and their biological functions in the abdominal adipose tissue between pre- and postpubertal Brahman heifers. Twelve Brahman heifers were divided into 2 groups and paired on slaughter day. Prepubertal heifers had never ovulated and postpubertal heifers were slaughtered on the luteal phase of their second estrous cycle. After ensuring the occurrence of puberty in postpubertal heifers, abdominal adipose tissue samples were collected. Mass spectrometry proteomic analysis identified 646 proteins and revealed that 171 proteins showed differential abundance in adipose tissue between the pre- and postpuberty groups (adjusted P-value < 0.05). Data are available via ProteomeXchange with identifier PXD009452. Using a list of 51 highly differentially abundant proteins as the target (adjusted P-value < 10-5), we found 14 enriched pathways. The results indicated that gluconeogenesis was enhanced when puberty approached. The metabolism of glucose, lipids, and AA in the adipose tissue mainly participated in oxidation and energy supply for heifers when puberty occurred. Our study also revealed the differentially abundant proteins were enriched for estrogen signaling and PI3K-Akt signaling pathways, which are known integrators of metabolism and reproduction. These results suggest new candidate proteins that may contribute to a better understanding of the signaling mechanisms that relate adipose tissue function to puberty. Protein-protein interaction network analysis identified 4 hub proteins that had the highest degrees of connection: PGK1, ALDH5A1, EEF2, and LDHB. Highly connected proteins are likely to influence the functions of all differentially abundant proteins identified, directly or indirectly.
Collapse
Affiliation(s)
- L T Nguyen
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - L F Zacchi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - B L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - S S Moore
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - M R S Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
27
|
Veale DJ, Fearon U. The pathogenesis of psoriatic arthritis. Lancet 2018; 391:2273-2284. [PMID: 29893226 DOI: 10.1016/s0140-6736(18)30830-4] [Citation(s) in RCA: 351] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/21/2018] [Accepted: 03/28/2018] [Indexed: 12/15/2022]
Abstract
Psoriatic arthritis is a chronic, immune-mediated, inflammatory arthropathy that presents with inflammation of the joints and entheses, including those of the axial skeleton, and is associated with increased mortality from cardiovascular disease. Diagnosis is primarily based on clinical phenotype because of the diversity of the associated features, which can include skin and nail disease, dactylitis, uveitis, and osteitis. Improved understanding of the pathogenesis of psoriatic arthritis has led to the development of effective biologics and small-molecular drugs targeting specific cytokines and signalling pathways, which can prevent disease progression and improve quality of life. However, at least 40% of patients with psoriatic arthritis have only a partial response or fail to respond to such treatments. Cytokine inhibitors, mainly those specific for tumour necrosis factor and, more recently, the interleukin 23-T-helper-17 cell pathway, have been highly successful in the treatment of disease manifestations in several different tissues, although targeting the interleukin 23-T-helper-17 cell pathway might be more effective in psoriasis than in arthritis. However, the precise mechanisms underlying the pathogenesis of psoriatic arthritis-which include genetics, environmental factors, and immune-mediated inflammation-are complex, and the relationship between disease of the joint and that of other domains is poorly understood. Improving our understanding of psoriatic arthritis pathogenesis could help to establish validated biomarkers for diagnosis, predict therapeutic response and remission, develop precision medicines, and predict which patients will respond to which therapy. We discuss advances in pathogenetic translational research that could inform these issues.
Collapse
Affiliation(s)
- Douglas J Veale
- Rheumatology EULAR Centre of Excellence, St Vincent's University Hospital and University College Dublin, Dublin, Ireland.
| | - Ursula Fearon
- Rheumatology EULAR Centre of Excellence, St Vincent's University Hospital and University College Dublin, Dublin, Ireland; Department of Molecular Rheumatology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
28
|
Nättinen J, Jylhä A, Aapola U, Enríquez-de-Salamanca A, Pinto-Fraga J, López-Miguel A, González-García MJ, Stern ME, Calonge M, Zhou L, Nykter M, Uusitalo H, Beuerman R. Topical fluorometholone treatment and desiccating stress change inflammatory protein expression in tears. Ocul Surf 2018; 16:84-92. [DOI: 10.1016/j.jtos.2017.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/07/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
|
29
|
Bustamante MF, Garcia-Carbonell R, Whisenant KD, Guma M. Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthritis Res Ther 2017; 19:110. [PMID: 28569176 PMCID: PMC5452638 DOI: 10.1186/s13075-017-1303-3] [Citation(s) in RCA: 297] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An increasing number of studies show how changes in intracellular metabolic pathways alter tumor and immune cell function. However, little information about metabolic changes in other cell types, including synovial fibroblasts, is available. In rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLS) are the most common cell type at the pannus–cartilage junction and contribute to joint destruction through their production of cytokines, chemokines, and matrix-degrading molecules and by migrating and invading joint cartilage. In this review, we show that these cells differ from healthy synovial fibroblasts, not only in their marker expression, proto-oncogene expression, or their epigenetic changes, but also in their intracellular metabolism. These metabolic changes must occur due to the stressful microenvironment of inflamed tissues, where concentrations of crucial nutrients such as glucose, glutamine, and oxygen are spatially and temporally heterogeneous. In addition, these metabolic changes will increase metabolite exchange between fibroblast and other synovial cells, which can potentially be activated. Glucose and phospholipid metabolism as well as bioactive lipids, including sphingosine-1-phosphate and lysophosphatidic acid, among others, are involved in FLS activation. These metabolic changes likely contribute to FLS involvement in aspects of immune response initiation or abnormal immune responses and strongly contribute to joint destruction.
Collapse
Affiliation(s)
- Marta F Bustamante
- Department of Medicine, School of Medicine, UCSD, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Ricard Garcia-Carbonell
- Department of Medicine, School of Medicine, UCSD, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Katrijn D Whisenant
- Department of Medicine, School of Medicine, UCSD, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Monica Guma
- Department of Medicine, School of Medicine, UCSD, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA.
| |
Collapse
|