1
|
Mousavi-Nasab K, Amani M, Mostafalou S. The Effect of Trientine on AlCl3-Induced Cognitive Dysfunction and Biochemical Changes in the Hippocampus of Rats. Drug Res (Stuttg) 2024; 74:405-414. [PMID: 39173674 DOI: 10.1055/a-2381-6882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Cognitive impairments affect millions of people worldwide with an increasing prevalence. Research on their etiology and treatment is developing, nevertheless significant gaps remain. Trientine (TETA), as a copper chelator, has been shown to have beneficial effects in different human chronic diseases such as diabetic cardiomyopathy and neuropathy. Here, we examined the impact of TETA on AlCl3-induced neurocognitive dysfunctions and molecular changes in the hippocampus of rats.Thirty-six male Wistar rats (weighing 200-250 g) were randomly divided into four groups including control, TETA (100 mg/kg/day), AlCl3 (100 mg/kg/day), and AlCl3 (100 mg/kg/day)+TETA (100 mg/kg/day), and received chemicals by gavage for 30 days. At the end of the treatment, the open field maze, elevated plus maze, novel object recognition memory test, and shuttle box test were done. Then after, brain-derived neurotrophic factor (BDNF), glycogen synthase kinase-3 β (GSK-3β), acetylcholinesterase activity, oxidative stress markers, and inflammatory mediators were measured in the hippocampus.AlCl3 increased anxiety-like behaviors and impaired recognition and short-term memory. TETA was able to improve AlCl3-induced anxiety-like behaviors and short-term memory dysfunction. In the AlCl3-treated group, there was a significant increase in GSK-3β, oxidative stress, pro-inflammatory and pro-apoptotic markers, and decreased BDNF in the hippocampus. Co-administration of TETA was able to decrease lipid peroxidation, inflammation, GSK-3β, and acetylcholinesterase activity, and increase BDNF in the hippocampus compared with AlCl3-treated rats.It can be concluded that TETA was able to improve neurobehavioral and neurocognitive functions by alleviating oxidative stress, inflammation, and pro-apoptotic pathways leading to the normalization of BDNF and GSK-3β.
Collapse
Affiliation(s)
- Kian Mousavi-Nasab
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Amani
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sara Mostafalou
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
2
|
Wang H, Wang N, Tang Z, Liu Q, Nie S, Tao W. An 8-gene predicting survival model of hepatocellular carcinoma (HCC) related to pyroptosis and cuproptosis. Hereditas 2023; 160:30. [PMID: 37464443 DOI: 10.1186/s41065-023-00288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 05/17/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND The study aimed to establish a prognostic survival model with 8 pyroptosis-and-cuproptosis-related genes to examine the prognostic effect in patients of hepatocellular carcinoma (HCC). METHODS We downloaded gene expression data and clinical information of HCC patients from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO). The clustering analysis and cox regression with LASSO were used for constructing an 8 PCmRNAs survival model. Using TCGA, ICGC and GEO cohort, the overall survival (OS) between high- and low- risk group was determined. We also evaluated independent prognostic indicators using univariate and multivariate analyses. The relatively bioinformatics analysis, including immune cell infiltration, function enrichment and drug sensitivity analyses, was performed as well. The gene expression of 8 PCmRNAs in vitro were validated in several HCC cell lines by qRT-PCR and Western blot. The relationship between GZMA and Fludarabine were further checked by CCK-8 assay. RESULTS The survival prognostic model was constructed with ATP7A, GLS, CDKN2A, BAK1, CHMP4B, NLRP6, NOD1 and GZMA using data from TCGA cohort. The ICGC and GEO cohort were used for model validation. Receiver operating characteristic (ROC) curves showed a good survival prediction by this model. Risk scores had the highest predictable value for survival among Stage, Age, Gender and Grade. Most Immune cells and immune functions were decreased in high-risk group. Besides, function enrichment analyses showed that steroid metabolic process, hormone metabolic process, collagen - containing extracellular matrix, oxidoreductase activity and pyruvate metabolism were enriched. Potential drugs targeted different PCDEGs like Nelarabine, Dexamethasone and Fludarabine were found as well. ATP7A, GLS, CDKN2A, BAK1, CHMP4B, NOD1 were upregulated while NLRP6 and GZMA were downregulated in most HCC cell lines. The potential therapy of Fludarabine was demonstrated when GZMA was low expressed in Huh7 cell line. CONCLUSION We constructed a novel 8-gene (ATP7A, GLS, CDKN2A, BAK1, CHMP4B, NLRP6, NOD1 and GZMA) prognostic model and explored potential functional information and microenvironment of HCC, which might be worthy of clinical application. In addition, several potential chemotherapy drugs were screened and Fludarabine might be effective for HCC patients whose GZMA was low expressed.
Collapse
Affiliation(s)
- Hongjin Wang
- Department of Critical Care Medicine, Yongchuan Hospital, Chongqing Medical University, Yong Chuan, Chongqing, 402160, China
| | - Nian Wang
- Department of Critical Care Medicine, Yongchuan Hospital, Chongqing Medical University, Yong Chuan, Chongqing, 402160, China
| | - Ze Tang
- Department of Critical Care Medicine, Yongchuan Hospital, Chongqing Medical University, Yong Chuan, Chongqing, 402160, China
| | - Qiuyu Liu
- Department of Critical Care Medicine, Yongchuan Hospital, Chongqing Medical University, Yong Chuan, Chongqing, 402160, China
| | - Shiyu Nie
- Department of Critical Care Medicine, Yongchuan Hospital, Chongqing Medical University, Yong Chuan, Chongqing, 402160, China
| | - Wu Tao
- Department of Critical Care Medicine, Yongchuan Hospital, Chongqing Medical University, Yong Chuan, Chongqing, 402160, China.
| |
Collapse
|
3
|
HMGCL-induced β-hydroxybutyrate production attenuates hepatocellular carcinoma via DPP4-mediated ferroptosis susceptibility. Hepatol Int 2022; 17:377-392. [PMID: 36508088 PMCID: PMC10119270 DOI: 10.1007/s12072-022-10459-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/12/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Metabolic disorder is an essential characteristic of tumor development. Ketogenesis is a heterogeneous factor in multiple cancers, but the effect of ketogenesis on hepatocellular carcinoma (HCC) is elusive. METHODS We aimed to explain the role of ketogenesis-related hydroxy-methyl-glutaryl-CoA lyase (HMGCL) on HCC suppression. Expression pattern of HMGCL in HCC specimens was evaluated by immunohistochemistry (IHC). HMGCL was depleted or overexpressed in HCC cells to investigate the functions of HMGCL in vitro and in vivo. The anti-tumor function of HMGCL was studied in subcutaneous xenograft and Trp53Δhep/Δhep; c-Myc-driven HCC mouse models. The mechanism of HMGCL-mediated tumor suppression was studied by IHC, western blot (WB) and Cut & Tag. RESULTS HMGCL depletion promoted HCC proliferation and metastasis, whereas its overexpression reversed this trend. As HMGCL catalyzes β-hydroxy-butyric acid (β-OHB) production, we discovered that HMGCL increased acetylation at histone H3K9, which further promoted the transcription of dipeptidyl peptidase 4 (DPP4), a key protein maintains intracellular lipid peroxidation and iron accumulation, leading to HCC cells vulnerability to erastin- and sorafenib-induced ferroptosis. CONCLUSION Our study identified a critical role of HMGCL on HCC suppression, of which HMGCL regulated H3K9 acetylation through β-OHB and modulating the expression of DPP4 in a dose-dependent manner, which led to ferroptosis in HCC cells.
Collapse
|
4
|
Xia S, Jia H, Qian Z, Xiu Y. Role of copper ionophore–induced death in immune microenvironment and clinical prognosis of ccRCC: An integrated analysis. Front Genet 2022; 13:994999. [PMID: 36263424 PMCID: PMC9574041 DOI: 10.3389/fgene.2022.994999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) is a malignancy with a high incidence rate and poor prognosis worldwide. Copper ionophore–induced death (CID) plays an important role in cancer progression.Methods: One training and three validation datasets were acquired from TCGA, GEO and ArrayExpress. K-means clustering was conducted to identify the CID subtypes. The ESTIMATE and CIBERSORT algorithms were employed to illustrate the immune microenvironment of ccRCC. LASSO Cox regression was applied to construct the CID feature-based prognostic model. The immunotherapy cohort was acquired from the literature to explore the potential risk scores for predicting immunotherapy responsiveness.Results: Two CID-related cancer subtypes of ccRCC were identified that performed different immune microenvironment characteristics and prognosis. Based on the identified subtypes, we analyzed the biological heterogeneity and constructed a gene prognostic model. The prognostic model performed well in one training dataset, three validation datasets, and different clinical pathological groups. The prognostic model has a good potential for predicting cancer immune features and immunotherapy responsiveness.Conclusion: CID plays an important role in the tumor microenvironment progression of ccRCC. The robust gene prognostic model developed can help predict cancer prognosis, immune features, and immunotherapy responsiveness.
Collapse
Affiliation(s)
- Shunyao Xia
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haixing Jia
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhipeng Qian
- School of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Youcheng Xiu
- Department of Urology, First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Youcheng Xiu,
| |
Collapse
|
5
|
Wang G, Xiao R, Zhao S, Sun L, Guo J, Li W, Zhang Y, Bian X, Qiu W, Wang S. Cuproptosis regulator-mediated patterns associated with immune infiltration features and construction of cuproptosis-related signatures to guide immunotherapy. Front Immunol 2022; 13:945516. [PMID: 36248857 PMCID: PMC9559227 DOI: 10.3389/fimmu.2022.945516] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Liver hepatocellular carcinoma (HCC) is a prevalent cancer that lacks a sufficiently efficient approach to guide immunotherapy. Additionally, cuproptosis is a recently identified regulated cell death program that is triggered by copper ionophores. However, its possible significance in tumor immune cell infiltration is still unclear. Methods Cuproptosis subtypes in HCC were identified using unsupervised consensus cluster analysis based on 10 cuproptosis regulators expressions, and a cuproptosis-related risk signature was generated using univariate and LASSO Cox regression and validated using the ICGC data. Moreover, the relationship between signature and tumor immune microenvironment (TME) was studied through tumor immunotherapy responsiveness, immune cell infiltration, and tumor stem cell analysis. Finally, clinical specimens were analyzed using immunohistochemistry to verify the expression of the three genes in the signature. Results Two subtypes of cuproptosis regulation were observed in HCC, with different immune cell infiltration features. Genes expressed differentially between the two cuproptosis clusters in the TCGA were determined and used to construct a risk signature that was validated using the ICGC cohort. Greater immune and stromal cell infiltration were observed in the high-risk group and were associated with unfavorable prognosis. Elevated risk scores were linked with higher RNA stemness scores (RNAss) and tumor mutational burden (TMB), together with a greater likelihood of benefitting from immunotherapy. Conclusion It was found that cuproptosis regulatory patterns may play important roles in the heterogeneity of immune cell infiltration. The risk signature associated with cuproptosis can assess each patient's risk score, leading to more individualized and effective immunotherapy.
Collapse
Affiliation(s)
- Gongjun Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China,Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ruoxi Xiao
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shufen Zhao
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Libin Sun
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Guo
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenqian Li
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuqi Zhang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoqian Bian
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wensheng Qiu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China,*Correspondence: Wensheng Qiu, ; Shasha Wang,
| | - Shasha Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China,*Correspondence: Wensheng Qiu, ; Shasha Wang,
| |
Collapse
|
6
|
Ramli FF, Hashim SAS, Raman B, Mahmod M, Kamisah Y. Role of Trientine in Hypertrophic Cardiomyopathy: A Review of Mechanistic Aspects. Pharmaceuticals (Basel) 2022; 15:1145. [PMID: 36145368 PMCID: PMC9505553 DOI: 10.3390/ph15091145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Abnormality in myocardial copper homeostasis is believed to contribute to the development of cardiomyopathy. Trientine, a copper-chelating drug used in the management of patients with Wilson's disease, demonstrates beneficial effects in patients with hypertrophic cardiomyopathy. This review aims to present the updated development of the roles of trientine in hypertrophic cardiomyopathy. The drug has been demonstrated in animal studies to restore myocardial intracellular copper content. However, its mechanisms for improving the medical condition remain unclear. Thus, comprehending its mechanistic aspects in cardiomyopathy is crucial and could help to expedite future research.
Collapse
Affiliation(s)
- Fitri Fareez Ramli
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Clinical Psychopharmacology Research Unit, Department of Psychiatry Warneford Hospital, University of Oxford, Oxford OX3 7JX, UK
| | - Syed Alhafiz Syed Hashim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Betty Raman
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Masliza Mahmod
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
7
|
Cui XH, Peng QJ, Li RZ, Lyu XJ, Zhu CF, Qin XH. Cell division cycle associated 8: A novel diagnostic and prognostic biomarker for hepatocellular carcinoma. J Cell Mol Med 2021; 25:11097-11112. [PMID: 34741389 PMCID: PMC8650035 DOI: 10.1111/jcmm.17032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/21/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
The cell division cycle associated 8 (CDCA8) is a crucial component of the chromosome passenger complex (CPC). It has been implicated in the regulation of cell dynamic localization during mitosis. However, its role in hepatocellular carcinoma (HCC) is not clearly known. In this study, data of 374 patients with HCC were retrieved from the Cancer Genome Atlas (TCGA) database. Pan analysis of Gene Expression Profiling Interactive Analysis (GEPIA) database was performed to profile the mRNA expression of CDCA8 in HCC. Then, the Kaplan‐Meier plotter database was analysed to determine the prognostic value of CDCA8 in HCC. In addition, samples of tumour and adjacent normal tissues were collected from 88 HCC patients to perform immunohistochemistry (IHC), reverse transcription‐quantitative polymerase chain reaction (qRT‐PCR) and Western blotting. The results obtained from bioinformatic analyses were validated through CCK‐8 assay, EdU assay, colony formation assay, cell cycle assays and Western blotting experiments. Analysis of the Kaplan‐Meier plotter database showed that high expression of CDCA8 may lead to poor overall survival (OS, p = 4.06e‐05) in patients with HCC. For the 88 patients with HCC, we found that stages and grades appeared to be strongly linked with CDCA8 expression. Furthermore, the high expression of CDCA8 was found to be correlated with poor OS (p = 0.0054) and progression‐free survival (PFS, p = 0.0009). In vitro experiments revealed that inhibition of CDCA8 slowed cell proliferation and blocked the cell cycle at the G0/G1 phase. In vivo experiments demonstrated that inhibition of CDCA8 inhibited tumour growth. Finally, blockade of CDCA8 reduced the expression levels of cyclin A2, cyclin D1, CDK4, CDK6, Ki67 and PCNA. And, there is an interaction between CDCA8 and E2F1. In conclusion, this research demonstrates that CDCA8 may serve as a biomarker for early diagnosis and prognosis prediction of HCC patients. In addition, CDCA8 could be an effective therapeutic target in HCC.
Collapse
Affiliation(s)
- Xiao-Han Cui
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.,Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiu-Ju Peng
- Department of Pediatrics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ren-Zhi Li
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xia-Jie Lyu
- Weifang Medical University, Weifang, Shandong, China
| | - Chun-Fu Zhu
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xi-Hu Qin
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
8
|
Michniewicz F, Saletta F, Rouaen JRC, Hewavisenti RV, Mercatelli D, Cirillo G, Giorgi FM, Trahair T, Ziegler D, Vittorio O. Copper: An Intracellular Achilles' Heel Allowing the Targeting of Epigenetics, Kinase Pathways, and Cell Metabolism in Cancer Therapeutics. ChemMedChem 2021; 16:2315-2329. [PMID: 33890721 DOI: 10.1002/cmdc.202100172] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Copper is an essential transition metal frequently increased in cancer known to strongly influence essential cellular processes. Targeted therapy protocols utilizing both novel and repurposed drug agents initially demonstrate strong efficacy, before failing in advanced cancers as drug resistance develops and relapse occurs. Overcoming this limitation involves the development of strategies and protocols aimed at a wider targeting of the underlying molecular changes. Receptor Tyrosine Kinase signaling pathways, epigenetic mechanisms and cell metabolism are among the most common therapeutic targets, with molecular investigations increasingly demonstrating the strong influence each mechanism exerts on the others. Interestingly, all these mechanisms can be influenced by intracellular copper. We propose that copper chelating agents, already in clinical trial for multiple cancers, may simultaneously target these mechanisms across a wide variety of cancers, serving as an excellent candidate for targeted combination therapy. This review summarizes the known links between these mechanisms, copper, and copper chelation therapy.
Collapse
Affiliation(s)
- Filip Michniewicz
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Federica Saletta
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Jourdin R C Rouaen
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Rehana V Hewavisenti
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Toby Trahair
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - David Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
9
|
Gegen Qinlian Decoction Ameliorates Nonalcoholic Fatty Liver Disease in Rats via Oxidative Stress, Inflammation, and the NLRP3 Signal Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6659445. [PMID: 33643422 PMCID: PMC7902151 DOI: 10.1155/2021/6659445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/22/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022]
Abstract
Gegen Qinlian Decoction (GQD), a classic Chinese herbal formula, has been widely used in Chinese clinic for centuries and is well defined in treating nonalcoholic fatty liver disease (NAFLD). However, the mechanism action of GQD on NAFLD is still rarely evaluated. The present study aims to investigate the effect of GQD on treatment of NAFLD in rats and to further explore the underlying mechanism. The rat NAFLD model established by high-fat-diet feeding was used in the research. Our results exhibited the liver lesions and steatosis was significantly alleviated in NAFLD rats treated with GQD via Oil Red O and H&E staining. Body weight and liver index in GQD groups were reduced significantly (P < 0.05). Moreover, the biochemical analyzer test results showed that GQD significantly decreased blood lipid levels total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and liver injury indicators alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), while it increased the level of high-density lipoprotein cholesterol (HDL-C) (P < 0.05). The levels of interferon-β (IFN-β), tumor necrosis factor-α (TNF-α), and malondialdehyde (MDA) after the GQD treatment were significantly lower, and then interleukin-2 (IL-2), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) levels were lifted significantly (P < 0.05). Further, GQD blocked the expression of NLRP3, ASC, caspase-1 mRNA, and proteins in the liver tissues significantly (P < 0.05). These findings indicated that GQD can ameliorate the hepatic steatosis and injury of NAFLD. Its possible mechanism involves the modulation of inflammatory cytokines and antioxidative stress and the inhibition of NLRP3 signal axis activation. The results support that GQD may be a promising candidate in the treatment of NAFLD.
Collapse
|
10
|
Wang J, Wang Z, Yuan J, Wang Q, Shen X. Upregulation of miR-137 Expression Suppresses Tumor Growth and Progression via Interacting with DNMT3a Through Inhibiting the PTEN/Akt Signaling in HCC. Onco Targets Ther 2021; 14:165-176. [PMID: 33447058 PMCID: PMC7802901 DOI: 10.2147/ott.s268570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/27/2020] [Indexed: 01/05/2023] Open
Abstract
Background Downregulation of miR-137 regulates tumor growth in hepatocellular carcinoma (HCC). Yet, the underlying molecular mechanisms stay unclear. Materials and Methods miR-137 and DNA methyltransferase 3a (DNMT3a) expression levels were detected by Western blot, immunohistochemistry and qRT-PCR assays. Luciferase reporter and Western blot assays were also carried out to explore the correlation of miR-137 and DNMT3a. Flow cytometry assay, MTT analysis, transwell and wound healing assay were used to evaluate cell apoptosis, proliferation, as well as invasive and migratory abilities. Western blot was used to examine the caspase-3, cleaved caspase-3, PCNA, MMP-2, and MMP-7 protein levels, as well as PTEN/Akt signaling alternations. Methylation-specific PCR was applied to detect the PTEN promoter methylation status. Xenograft tumor assay, Western blot and immunohistochemistry analyses were taken to confirm the miR-137 regulation in vivo. Results Downregulation of miR-137, upregulation of DNMT3a, as well as an inverse correlation between them were observed in HCC clinical samples and cells. Moreover, miR-137 targeted directly and inhibited DNMT3a in HCC cells, which further retarded cell proliferative, migratory and invasive capabilities, while promoted apoptotic ones. Additionally, miR-137 overexpression inactivated the PTEN/Akt pathway in HCC cell by decreasing DNMT3a expression. Furthermore, miR-137 overexpression inhibited tumor growth in vivo in HCC via interacting with DNMT3a through inhibiting the PTEN/Akt cascades. Conclusion Our findings suggested that miR-137 inhibited HCC tumor growth and progression via interacting with DNMT3a and suppressing the PTEN/Akt signaling in vitro and in vivo.
Collapse
Affiliation(s)
- Jiachen Wang
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China
| | - Zhao Wang
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China
| | - Jiaxiang Yuan
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China
| | - Qun Wang
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China
| | - Xinsheng Shen
- Department of Minimally Invasive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China
| |
Collapse
|
11
|
Krawczyk M, Pastuch-Gawołek G, Pluta A, Erfurt K, Domiński A, Kurcok P. 8-Hydroxyquinoline Glycoconjugates: Modifications in the Linker Structure and Their Effect on the Cytotoxicity of the Obtained Compounds. Molecules 2019; 24:E4181. [PMID: 31752188 PMCID: PMC6891455 DOI: 10.3390/molecules24224181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 01/12/2023] Open
Abstract
Small molecule nitrogen heterocycles are very important structures, widely used in the design of potential pharmaceuticals. Particularly, derivatives of 8-hydroxyquinoline (8-HQ) are successfully used to design promising anti-cancer agents. Conjugating 8-HQ derivatives with sugar derivatives, molecules with better bioavailability, selectivity, and solubility are obtained. In this study, 8-HQ derivatives were functionalized at the 8-OH position and connected with sugar derivatives (D-glucose or D-galactose) substituted with different groups at the anomeric position, using copper(I)-catalyzed 1,3-dipolar azide-alkyne cycloaddition (CuAAC). Glycoconjugates were tested for inhibition of the proliferation of cancer cell lines (HCT 116 and MCF-7) and inhibition of β-1,4-galactosyltransferase activity, which overexpression is associated with cancer progression. All glycoconjugates in protected form have a cytotoxic effect on cancer cells in the tested concentration range. The presence of additional amide groups in the linker structure improves the activity of glycoconjugates, probably due to the ability to chelate metal ions present in many types of cancers. The study of metal complexing properties confirmed that the obtained glycoconjugates are capable of chelating copper ions, which increases their anti-cancer potential.
Collapse
Affiliation(s)
- Monika Krawczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (A.P.)
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (A.P.)
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Aleksandra Pluta
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (A.P.)
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland;
| | - Adrian Domiński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (A.D.); (P.K.)
| | - Piotr Kurcok
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (A.D.); (P.K.)
| |
Collapse
|
12
|
Gaur K, Vázquez-Salgado A, Duran-Camacho G, Dominguez-Martinez I, Benjamín-Rivera J, Fernández-Vega L, Carmona Sarabia L, Cruz García A, Pérez-Deliz F, Méndez Román J, Vega-Cartagena M, Loza-Rosas S, Rodriguez Acevedo X, Tinoco A. Iron and Copper Intracellular Chelation as an Anticancer Drug Strategy. INORGANICS 2018. [DOI: https://doi.org/10.3390/inorganics6040126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A very promising direction in the development of anticancer drugs is inhibiting the molecular pathways that keep cancer cells alive and able to metastasize. Copper and iron are two essential metals that play significant roles in the rapid proliferation of cancer cells and several chelators have been studied to suppress the bioavailability of these metals in the cells. This review discusses the major contributions that Cu and Fe play in the progression and spreading of cancer and evaluates select Cu and Fe chelators that demonstrate great promise as anticancer drugs. Efforts to improve the cellular delivery, efficacy, and tumor responsiveness of these chelators are also presented including a transmetallation strategy for dual targeting of Cu and Fe. To elucidate the effectiveness and specificity of Cu and Fe chelators for treating cancer, analytical tools are described for measuring Cu and Fe levels and for tracking the metals in cells, tissue, and the body.
Collapse
|
13
|
Gaur K, Vázquez-Salgado AM, Duran-Camacho G, Dominguez-Martinez I, Benjamín-Rivera JA, Fernández-Vega L, Sarabia LC, García AC, Pérez-Deliz F, Méndez Román JA, Vega-Cartagena M, Loza-Rosas SA, Acevedo XR, Tinoco AD. Iron and Copper Intracellular Chelation as an Anticancer Drug Strategy. INORGANICS 2018; 6:126. [PMID: 33912613 PMCID: PMC8078164 DOI: 10.3390/inorganics6040126] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A very promising direction in the development of anticancer drugs is inhibiting the molecular pathways that keep cancer cells alive and able to metastasize. Copper and iron are two essential metals that play significant roles in the rapid proliferation of cancer cells and several chelators have been studied to suppress the bioavailability of these metals in the cells. This review discusses the major contributions that Cu and Fe play in the progression and spreading of cancer and evaluates select Cu and Fe chelators that demonstrate great promise as anticancer drugs. Efforts to improve the cellular delivery, efficacy, and tumor responsiveness of these chelators are also presented including a transmetallation strategy for dual targeting of Cu and Fe. To elucidate the effectiveness and specificity of Cu and Fe chelators for treating cancer, analytical tools are described for measuring Cu and Fe levels and for tracking the metals in cells, tissue, and the body.
Collapse
Affiliation(s)
- Kavita Gaur
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Geraldo Duran-Camacho
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Josué A Benjamín-Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Lauren Fernández-Vega
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Lesly Carmona Sarabia
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Angelys Cruz García
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Felipe Pérez-Deliz
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - José A Méndez Román
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Melissa Vega-Cartagena
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Sergio A Loza-Rosas
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Arthur D Tinoco
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| |
Collapse
|
14
|
Gou Y, Zhai F, Zhang L, Cui L. RUNX3 regulates hepatocellular carcinoma cell metastasis via targeting miR-186/E-cadherin/EMT pathway. Oncotarget 2017; 8:61475-61486. [PMID: 28977878 PMCID: PMC5617438 DOI: 10.18632/oncotarget.18424] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/23/2017] [Indexed: 12/13/2022] Open
Abstract
Runt-related transcription factor 3 (RUNX3) has been reported as a tumor suppressor in some kinds of cancers. In the present study, hepatocellular carcinoma (HCC) microarray analysis showed that RUNX3 expression was significantly lower in HCC tissues compared with that in adjacent non-tumor tissues, and was negatively associated with metastasis and TNM stage. RUNX3 was an independently prognostic factor for 5-year overall and disease-free patient survival. Mechanically, RUNX3 repressed metastasis and invasion of HCC, and increased E-cadherin expression. RUNX3 also repressed microRNA-186 to increase E-cadherin expression. We demonstrated that miR-186 mimics attenuated RUNX3-induced increase of E-cadherin and inhibition of metastasis and invasion. In conclusion, RUNX3 suppressed HCC cell migration and invasion by targeting the miR-186/E-cadherin/EMT pathway. RUNX3 may be recommended as an effective prognostic indicator and therapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Yuli Gou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Fangbing Zhai
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Liang Zhang
- Department of Interventional Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Lan Cui
- Department of Ophthalmology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| |
Collapse
|