1
|
Kim S, Hong HS. Substance P alleviates liver fibrosis by modulating inflammation and mobilizing reparative stem cells. Int Immunopharmacol 2024; 142:113211. [PMID: 39321699 DOI: 10.1016/j.intimp.2024.113211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Repetitive hepatic damage resulting from viral hepatitis, toxins, and alcohol abuse induces chronic inflammation and excessive accumulation of the extracellular matrix, leading to the development of liver cirrhosis. Substance P (SP) promotes endogenous wound healing by mobilizing bone marrow stem cells and stimulating anti-inflammatory responses. This study aimed to investigate whether SP exerts a therapeutic effect on liver fibrosis by recruiting endogenous stem cells and modulating immune responses. A non-clinical model of liver cirrhosis was established through repeated injections of thioacetamide and recombinant leptin. After confirming liver fibrosis, SP was administered intravenously for 6 weeks. SP treatment decreased the formation of hepatic micronodules on the external surface of the liver and the infiltration of immune cells. Furthermore, SP treatment notably reduced the deposition of collagen and the activation of hepatic stellate cells, concomitant with decreased levels of transforming growth factor-β1 and matrix metalloproteinase activity. In the context of severe hepatic damage, SP increased the number of circulating stem cells, leading to the restoration of the reparative stem cell pool in the bone marrow. The findings of this study suggest that SP alleviates liver fibrosis by modulating the mobilization of functional stem cells and the immune response.
Collapse
Affiliation(s)
- Suna Kim
- Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Deokyoung dae-ro, 1732, Yong In 17104, Republic of Korea; Kyung Hee Institute of Regenerative Medicine (KIRM), Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee dae-ro 23, Hoegi-dong, Seoul 02447, Republic of Korea
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Kyung Hee dae-ro, 24, Seoul 02461, Republic of Korea; East-West Medical Research Institute, Kyung Hee University, Kyung Hee dae-ro, 24, Hoegi-dong, Seoul 02461, Republic of Korea; Kyung Hee Institute of Regenerative Medicine (KIRM), Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee dae-ro 23, Hoegi-dong, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
De Berdt P, Deltour E, Pauly E, Gordillo N, Lin F, Sokal E, Najimi M. Expansion of human allogeneic liver-derived progenitor cells for liver regenerative therapy in serum-free culture conditions. Cytotherapy 2024:S1465-3249(24)00800-4. [PMID: 39127924 DOI: 10.1016/j.jcyt.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/12/2024]
Abstract
Human allogeneic liver-derived progenitor cells (HALPCs) display advanced ability to differentiate into hepatocyte-like cells and exhibit potent immunomodulatory, anti-inflammatory, and anti-fibrotic properties. HALPCs have been successfully manufactured under good manufacturing practice (GMP) and are currently in clinical development. A previous phase 2a trial demonstrated the safety of peripheral intravenous infusions of HALPCs and preliminary evidence of the cells' properties to restore liver function in patients with acute-on-chronic liver failure (ACLF), thus potentially improving their survival. A phase 2b trial is currently ongoing across multiple centers (NCT04229901) to obtain proof-of-concept on efficacy and additional safety. HALPCs are currently manufactured using fetal bovine serum (FBS), which can reveal qualitative and quantitative variations between batches. The use of serum-free medium (SFM) represents an alternative means to overcome this variability while also complying fully with regulations. The aim of this study was to compare current FBS-containing culture conditions with two industry-available GMP-compliant SFMs: StemMACS (Miltenyi Biotec, Bergisch Gladbach, Germany) and PRIME-XV (FUJIFILM Irvine Scientific, Santa Ana, California, USA). The proliferation of HALPCs was significantly stimulated by both SFMs, which shortened both their emergence period and population doubling time. This effect was correlated with a significant improvement in their genetic stability as analyzed by conventional karyotyping. The expression profile (identity and purity) and functionality of HALPCs cultured in SFM were maintained, as demonstrated by flow cytometry and enzyme-linked immunoassay (ELISA), respectively. Their potency, evaluated via prostaglandin E2 (PGE2) secretion, showed a similar effect on CD4+ T-cell proliferation in FBS and SFM conditions. Furthermore, a greater proportion of HALPCs cultured in SFM showed enhanced expression of tissue factor (CD142) compared with the FBS condition. Altogether, SFM conditions enabled consistent HALPC quality to be achieved without altering their expression and functional profiles.
Collapse
Affiliation(s)
| | | | | | | | | | - Etienne Sokal
- Cellaïon, Mont-Saint-Guibert, Belgium; Laboratory of Pediatric Hepatology & Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Mustapha Najimi
- Cellaïon, Mont-Saint-Guibert, Belgium; Laboratory of Pediatric Hepatology & Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium.
| |
Collapse
|
3
|
Shi X, Zhang K, Qi Q, Zhou W, Yu F, Zhang Y. Human umbilical cord-derived mesenchymal stem cells attenuate hepatic stellate cells activation and liver fibrosis. Mol Biol Rep 2024; 51:734. [PMID: 38874773 PMCID: PMC11178641 DOI: 10.1007/s11033-024-09664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Liver cirrhosis, a prevalent chronic liver disease, is characterized by liver fibrosis as its central pathological process. Recent advancements highlight the clinical efficacy of umbilical cord mesenchymal stem cell (UC-MSC) therapy in the treatment of liver cirrhosis. METHODS AND RESULTS We investigated the pharmacodynamic effects of UC-MSCs and MSC conditional medium (MSC-CM) in vivo, utilizing a carbon tetrachloride (CCl4)-induced fibrotic rat model. Concurrently, we assessed the in vitro impact of MSCs and MSC-CM on various cellular process of hepatic stellate cells (HSCs), including proliferation, apoptosis, activation, immunomodulatory capabilities, and inflammatory factor secretion. Our results indicate that both MSCs and MSC-CM significantly ameliorate the pathological extent of fibrosis in animal tissues, reducing the collagen content, serum biochemical indices and fibrosis biomarkers. In vitro, MSC-CM significantly inhibited the activation of the HSC line LX-2. Notably, MSC-CM modulated the expression of type I procollagen and TGFβ-1 while increasing MMP1 expression. This modulation restored the MMP1/TIMP1 ratio imbalance and extracellular matrix deposition in TGFβ-1 induced fibrosis. Both MSCs and MSC-CM not only induced apoptosis in HSCs but also suppressed proliferation and inflammatory cytokine release from activated HSCs. Furthermore, MSCs and MSC-CM exerted a suppressive effect on total lymphocyte activation. CONCLUSIONS UC-MSCs and MSC-CM primarily modulate liver fibrosis severity by regulating HSC activation. This study provides both in vivo and in vitro pharmacodynamic evidence supporting the use of MSCs in liver fibrosis treatment.
Collapse
Affiliation(s)
- Xiaoyu Shi
- State Industrial Base for Stem Cell Engineering Products, Tianjin, 300384, China
- Tianjin Key Laboratory for Stem Cell and Regenerative Medicine, Tianjin, China
- VCANBIO Cell & Gene Engineering Corp., Ltd, Tianjin, China
| | - Kun Zhang
- State Industrial Base for Stem Cell Engineering Products, Tianjin, 300384, China
- Tianjin Key Laboratory for Stem Cell and Regenerative Medicine, Tianjin, China
- VCANBIO Cell & Gene Engineering Corp., Ltd, Tianjin, China
| | - Qi Qi
- State Industrial Base for Stem Cell Engineering Products, Tianjin, 300384, China
- Tianjin Key Laboratory for Stem Cell and Regenerative Medicine, Tianjin, China
- VCANBIO Cell & Gene Engineering Corp., Ltd, Tianjin, China
| | - Wangyi Zhou
- State Industrial Base for Stem Cell Engineering Products, Tianjin, 300384, China
- Tianjin Key Laboratory for Stem Cell and Regenerative Medicine, Tianjin, China
- VCANBIO Cell & Gene Engineering Corp., Ltd, Tianjin, China
| | - Fengshi Yu
- State Industrial Base for Stem Cell Engineering Products, Tianjin, 300384, China
- Tianjin Key Laboratory for Stem Cell and Regenerative Medicine, Tianjin, China
- VCANBIO Cell & Gene Engineering Corp., Ltd, Tianjin, China
| | - Yu Zhang
- State Industrial Base for Stem Cell Engineering Products, Tianjin, 300384, China.
- Tianjin Key Laboratory for Stem Cell and Regenerative Medicine, Tianjin, China.
- VCANBIO Cell & Gene Engineering Corp., Ltd, Tianjin, China.
- Tianjin Key Laboratory for Blood Cell Therapy Technology, Tianjin, China.
- Haihe Laboratory of Cell Ecosystem, Tianjin, China.
| |
Collapse
|
4
|
Najimi M, Michel S, Binda MM, Gellynck K, Belmonte N, Mazza G, Gordillo N, Vainilovich Y, Sokal E. Human Allogeneic Liver-Derived Progenitor Cells Significantly Improve NAFLD Activity Score and Fibrosis in Late-Stage NASH Animal Model. Cells 2022; 11:cells11182854. [PMID: 36139429 PMCID: PMC9497074 DOI: 10.3390/cells11182854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Accumulated experimental and clinical evidence supports the development of human allogeneic liver-derived progenitor cells (HALPCs) to treat fibro-inflammatory liver diseases. The aim of the present study was to evaluate their therapeutic effect in a non-alcoholic steatohepatitis (NASH)-STAM mouse model. The immune signaling characteristics of HALPCs were first assessed in vitro. Upon inflammation treatment, HALPCs secreted large amounts of potent bioactive prostaglandin E2 and indoleamine 2,3-dioxygenase, which significantly reduced CD4+ T-lymphocyte proliferation and secretion of proinflammatory cytokines. In vivo, HALPCs were intravenously administered as single or triple shots (of a dose of 12.5 × 106 cells/kg BW) in STAM mice. Transplantation of HALPCs was associated with a significant decrease in the NAFLD activity score at an early stage and in both inflammation and hepatocyte ballooning scores in late-stage NASH. Sirius red staining analyses revealed decreased collagen deposition in the pericentral region at both stages of NASH. Altogether, these findings showed the anti-inflammatory and anti-fibrotic features of HALPCs in an in vivo NASH model, which suggests their potential to reverse the progression of this chronic fibro-inflammatory disease.
Collapse
Affiliation(s)
- Mustapha Najimi
- Cellaïon, 1435 Mont-Saint-Guibert, Belgium
- UCLouvain, Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), Institute of Experimental and Clinical Research (IREC), 1200 Brussels, Belgium
- Correspondence: (M.N.); (E.S.); Tel.: +32-10-39-43-00 (M.N.)
| | | | | | | | | | | | | | | | - Etienne Sokal
- Cellaïon, 1435 Mont-Saint-Guibert, Belgium
- UCLouvain, Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), Institute of Experimental and Clinical Research (IREC), 1200 Brussels, Belgium
- Correspondence: (M.N.); (E.S.); Tel.: +32-10-39-43-00 (M.N.)
| |
Collapse
|
5
|
Najar M, Melki R, Khalife F, Lagneaux L, Bouhtit F, Moussa Agha D, Fahmi H, Lewalle P, Fayyad-Kazan M, Merimi M. Therapeutic Mesenchymal Stem/Stromal Cells: Value, Challenges and Optimization. Front Cell Dev Biol 2022; 9:716853. [PMID: 35096805 PMCID: PMC8795900 DOI: 10.3389/fcell.2021.716853] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cellular therapy aims to replace damaged resident cells by restoring cellular and molecular environments suitable for tissue repair and regeneration. Among several candidates, mesenchymal stem/stromal cells (MSCs) represent a critical component of stromal niches known to be involved in tissue homeostasis. In vitro, MSCs appear as fibroblast-like plastic adherent cells regardless of the tissue source. The therapeutic value of MSCs is being explored in several conditions, including immunological, inflammatory and degenerative diseases, as well as cancer. An improved understanding of their origin and function would facilitate their clinical use. The stemness of MSCs is still debated and requires further study. Several terms have been used to designate MSCs, although consensual nomenclature has yet to be determined. The presence of distinct markers may facilitate the identification and isolation of specific subpopulations of MSCs. Regarding their therapeutic properties, the mechanisms underlying their immune and trophic effects imply the secretion of various mediators rather than direct cellular contact. These mediators can be packaged in extracellular vesicles, thus paving the way to exploit therapeutic cell-free products derived from MSCs. Of importance, the function of MSCs and their secretome are significantly sensitive to their environment. Several features, such as culture conditions, delivery method, therapeutic dose and the immunobiology of MSCs, may influence their clinical outcomes. In this review, we will summarize recent findings related to MSC properties. We will also discuss the main preclinical and clinical challenges that may influence the therapeutic value of MSCs and discuss some optimization strategies.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Rahma Melki
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Ferial Khalife
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Hadath, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fatima Bouhtit
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.,Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Douaa Moussa Agha
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.,Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Mohammad Fayyad-Kazan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Hadath, Lebanon.,Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Lebanon
| | - Makram Merimi
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.,Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| |
Collapse
|
6
|
Merimi M, El-Majzoub R, Lagneaux L, Moussa Agha D, Bouhtit F, Meuleman N, Fahmi H, Lewalle P, Fayyad-Kazan M, Najar M. The Therapeutic Potential of Mesenchymal Stromal Cells for Regenerative Medicine: Current Knowledge and Future Understandings. Front Cell Dev Biol 2021; 9:661532. [PMID: 34490235 PMCID: PMC8416483 DOI: 10.3389/fcell.2021.661532] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
In recent decades, research on the therapeutic potential of progenitor cells has advanced considerably. Among progenitor cells, mesenchymal stromal cells (MSCs) have attracted significant interest and have proven to be a promising tool for regenerative medicine. MSCs are isolated from various anatomical sites, including bone marrow, adipose tissue, and umbilical cord. Advances in separation, culture, and expansion techniques for MSCs have enabled their large-scale therapeutic application. This progress accompanied by the rapid improvement of transplantation practices has enhanced the utilization of MSCs in regenerative medicine. During tissue healing, MSCs may exhibit several therapeutic functions to support the repair and regeneration of injured tissue. The process underlying these effects likely involves the migration and homing of MSCs, as well as their immunotropic functions. The direct differentiation of MSCs as a cell replacement therapeutic mechanism is discussed. The fate and behavior of MSCs are further regulated by their microenvironment, which may consequently influence their repair potential. A paracrine pathway based on the release of different messengers, including regulatory factors, chemokines, cytokines, growth factors, and nucleic acids that can be secreted or packaged into extracellular vesicles, is also implicated in the therapeutic properties of MSCs. In this review, we will discuss relevant outcomes regarding the properties and roles of MSCs during tissue repair and regeneration. We will critically examine the influence of the local microenvironment, especially immunological and inflammatory signals, as well as the mechanisms underlying these therapeutic effects. Importantly, we will describe the interactions of local progenitor and immune cells with MSCs and their modulation during tissue injury. We will also highlight the crucial role of paracrine pathways, including the role of extracellular vesicles, in this healing process. Moreover, we will discuss the therapeutic potential of MSCs and MSC-derived extracellular vesicles in the treatment of COVID-19 (coronavirus disease 2019) patients. Overall, this review will provide a better understanding of MSC-based therapies as a novel immunoregenerative strategy.
Collapse
Affiliation(s)
- Makram Merimi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium.,LBBES Laboratory, Genetics and Immune-Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Rania El-Majzoub
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Beirut, Lebanon.,Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Douâa Moussa Agha
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Fatima Bouhtit
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium.,LBBES Laboratory, Genetics and Immune-Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Nathalie Meuleman
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Mohammad Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.,Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| |
Collapse
|