1
|
Yilmaz M, Bal İ, Hanli S, Turkmen E, Balci N, Toygar HU. Annexin levels in GCF determine the imbalance of periodontal inflammatory regulation. Sci Rep 2024; 14:28833. [PMID: 39572681 PMCID: PMC11582596 DOI: 10.1038/s41598-024-80418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024] Open
Abstract
OBJECTIVE Annexin-1 (ANXA1), a member of the annexin family, plays a role in the resolution of inflammation and the regulation of anti-inflammatory responses, while annexin-2 (ANXA2) is involved in the initiation of the inflammatory responses. The aim of this study was to determine the effects of annexin family (ANXA1 and ANXA2) in periodontal disease. METHODS Healthy participants (n:25) and stage III, grade B periodontitis (n:25) patients enrolled for this study. Clinical periodontal parameters and the periodontal inflamed surface area (PISA) levels were noted. Serum, saliva, and gingival crevicular fluid (GCF) samples were collected to measure the ANXA1, ANXA2 and IL-1β levels. RESULTS Salivary and serum concentrations of ANXA1 was significantly lower in the periodontitis group than in the control group (respectively, p = 0.0177 and p = < 0.0001). Periodontitis patients demonstrated higher serum ANXA2 and IL-1β concentrations compared to controls (respectively, p = 0.0002 and p = 0.0017). As an inflammatory index; saliva, serum and GCF ANXA1/ANXA2 ratio were significantly lower in the periodontitis group compared to healthy controls. CONCLUSIONS The data suggest that periodontitis is associated with a disruption of the balance between pro-inflammatory mechanisms (ANXA2 and IL-1beta) and inflammation resolution (ANXA1), in parallel with PISA levels. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT06554756 (15/08/2024).
Collapse
Affiliation(s)
- Melis Yilmaz
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
- Department of Periodontology, Faculty of Dentistry, Istanbul Medipol University, Kavacık Street Ekinciler Avenue Number 19 Kavacık Intersection, Beykoz / İstanbul, 34810, Turkey
| | - İpek Bal
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
- Department of Periodontology, Faculty of Dentistry, Istanbul Medipol University, Kavacık Street Ekinciler Avenue Number 19 Kavacık Intersection, Beykoz / İstanbul, 34810, Turkey
| | - Sena Hanli
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
- Department of Periodontology, Faculty of Dentistry, Istanbul Medipol University, Kavacık Street Ekinciler Avenue Number 19 Kavacık Intersection, Beykoz / İstanbul, 34810, Turkey
| | - Emrah Turkmen
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
- Department of Periodontology, Faculty of Dentistry, Istanbul Medipol University, Kavacık Street Ekinciler Avenue Number 19 Kavacık Intersection, Beykoz / İstanbul, 34810, Turkey
| | - Nur Balci
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.
- Department of Periodontology, Faculty of Dentistry, Istanbul Medipol University, Kavacık Street Ekinciler Avenue Number 19 Kavacık Intersection, Beykoz / İstanbul, 34810, Turkey.
| | - Hilal Uslu Toygar
- Department of Periodontology, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
- Department of Periodontology, Faculty of Dentistry, Istanbul Medipol University, Kavacık Street Ekinciler Avenue Number 19 Kavacık Intersection, Beykoz / İstanbul, 34810, Turkey
| |
Collapse
|
2
|
Zhang X, Tian X, Wang Y, Yan Y, Wang Y, Su M, Lv H, Li K, Hao X, Xing X, Song S. Application of lipopolysaccharide in establishing inflammatory models. Int J Biol Macromol 2024; 279:135371. [PMID: 39244120 DOI: 10.1016/j.ijbiomac.2024.135371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Lipopolysaccharide (LPS), a unique component of the outer membrane of Gram-negative bacteria, possesses immune-activating properties. It induces an immune response by stimulating host cells to produce a lot of inflammatory cytokines with a thermogenic effect, which may cause an inflammatory response. In the past few decades, the structure and function of LPS and its mechanism leading to inflammation have been extensively analyzed. Since LPS can cause inflammation, it is often used to establish inflammation models. These models are crucial in the study of inflammatory diseases that pose a serious threat to human health. In addition, the non-pro-inflammatory effects of LPS under certain circumstances are also being studied widely. This review summarizes the methods by which LPS has been used to establish inflammatory models at the cellular and animal levels to study related diseases. It also introduces in detail the evaluation indicators necessary for the successful establishment of these models, providing a reference for future research.
Collapse
Affiliation(s)
- Xiao Zhang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiao Tian
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yan Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yong Yan
- JD Berry Agricultural Development Co., Ltd, Weihai, Shandong 264209, China.
| | - Yuan Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Meicai Su
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Haifei Lv
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Kaitao Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiaobin Hao
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiang Xing
- Marine College, Shandong University, Weihai, Shandong 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| | - Shuliang Song
- Marine College, Shandong University, Weihai, Shandong 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| |
Collapse
|
3
|
Wu H, Zhou M, Jin Q, Wang X, Xu Y, Li M, Chen S, Tang Q, Wang Q, Hu B, Wu H, Xiao M, Qu L, Zhang Q, Liu J. The upregulation of Annexin A2 by TLR4 pathway facilitates lipid accumulation and liver injury via blocking AMPK/mTOR-mediated autophagy flux during the development of non-alcoholic fatty liver disease. Hepatol Int 2024; 18:1144-1157. [PMID: 38184503 DOI: 10.1007/s12072-023-10622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND AND AIMS Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. In this study, we aimed to investigate the role and regulatory mechanism of Annexin A2 (ANXA2) in the pathogenesis of NAFLD. METHODS Histological analyses and ELISA were used to illuminate the expression of ANXA2 in NAFLD and healthy subjects. The role of ANXA2 was evaluated using high-fat diet (HFD)-fed mice via vein injection of adeno-associated viruses (AAV) knocking down ANXA2 or non-targeting control (NC) shRNAs. Moreover, HepG2 and LO2 cells were employed as in vitro hepatocyte models to investigate the expression and function of ANXA2. RESULTS ANXA2 was confirmed to be one of three hub genes in liver injury, and its expression was positively correlated with NAFLD activity score (NAS) and macrophage infiltration in NAFLD. Moreover, ANXA2 was significantly upregulated in NAFLD patients and HFD-fed mice. LPS/TLR4 pathway strongly upregulated ANXA2 expression, which is mediated by direct ANXA2 promoter binding by TLR4 downstream NF-κB p65 and c-Jun transcription factors. Increased ANXA2 expression was correlated with decreased autophagy flux and autophagy was activated by the depletion of ANXA2 in the models of NAFLD. Furthermore, ANXA2 interference led to the activation of AMPK/mTOR signaling axis, which may play a causal role in autophagy flux and the amelioration of steatosis. CONCLUSIONS ANXA2 is a pathological predictor and promising therapeutic target for NAFLD. ANXA2 plays a crucial role in linking inflammation to hepatic metabolic disorder and injury, mainly through the blockage of AMPK/mTOR-mediated lipophagy.
Collapse
Affiliation(s)
- Haifeng Wu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, Nantong, 226001, China
- Department of Emergency Medicine, Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong), Nantong, Jiangsu, China
| | - Meng Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, Nantong, 226001, China
| | - Qin Jin
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xun Wang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, Nantong, 226001, China
| | - Yue Xu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, Nantong, 226001, China
| | - Ming Li
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, Nantong, 226001, China
| | - Shuhui Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, Nantong, 226001, China
| | - Qin Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qi Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Baoying Hu
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Hongpei Wu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, Nantong, 226001, China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, Nantong, 226001, China
| | - Lishuai Qu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, Nantong, 226001, China.
| | - Qiong Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Xisi Road, Nantong, 226001, China.
| | - Jinxia Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, Nantong, 226001, China.
| |
Collapse
|
4
|
Chen Y, Hao L, Cong J, Ji J, Dai Y, Xu L, Gong B. Transcriptomic analysis reveals the crosstalk between type 2 diabetes and chronic pancreatitis. Health Sci Rep 2024; 7:e2079. [PMID: 38690006 PMCID: PMC11058262 DOI: 10.1002/hsr2.2079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Background and Aims Mounting evidence highlights a strong association between chronic pancreatitis (CP) and type 2 diabetes (T2D), although the exact mechanism of interaction remains unclear. This study aimed to investigate the crosstalk genes and pathogenesis between CP and T2D. Methods Transcriptomic gene expression profiles of CP and T2D were extracted from Gene Expression Omnibus, respectively, and the common differentially expressed genes (DEGs) were subsequently identified. Further analysis, such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction, transcription factors (TFs), microRNA (miRNAs), and candidate chemicals identification, was performed to explore the possible common signatures between the two diseases. Results In total, we acquired 281 common DEGs by interacting CP and T2D datasets, and identified 10 hub genes using CytoHubba. GO and KEGG analyses revealed that endoplasmic reticulum stress and mitochondrial dysfunction were closely related to these common DEGs. Among the shared genes, EEF2, DLD, RAB5A, and SLC30A9 showed promising diagnostic value for both diseases based on receiver operating characteristic curve and precision-recall curves. Additionally, we identified 16 key TFs and 16 miRNAs that were strongly correlated with the hub genes, which may serve as new molecular targets for CP and T2D. Finally, candidate chemicals that might become potential drugs for treating CP and T2D were screened out. Conclusion This study provides evidence that there are shared genes and pathological signatures between CP and T2D. The genes EEF2, DLD, RAB5A, and SLC30A9 have been identified as having the highest diagnostic efficiency and could be served as biomarkers for these diseases, providing new insights into precise diagnosis and treatment for CP and T2D.
Collapse
Affiliation(s)
- Youlan Chen
- Institute of Integrated Traditional Chinese and Western Medicine Digestive Diseases, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lixiao Hao
- Department of Gastroenterology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jun Cong
- Department of Gastroenterology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jianmei Ji
- Department of Gastroenterology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yancheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Li Xu
- Department of Gastroenterology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Biao Gong
- Institute of Integrated Traditional Chinese and Western Medicine Digestive Diseases, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Gastroenterology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
5
|
Ling X, Qi C, Cao K, Lu M, Yang Y, Zhang J, Zhang L, Zhu J, Ma J. METTL3-mediated deficiency of lncRNA HAR1A drives non-small cell lung cancer growth and metastasis by promoting ANXA2 stabilization. Cell Death Discov 2024; 10:203. [PMID: 38688909 PMCID: PMC11061277 DOI: 10.1038/s41420-024-01965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
We previously reported lncRNA HAR1A as a tumor suppressor in non-small cell lung cancer (NSCLC). However, the delicate working mechanisms of this lncRNA remain obscure. Herein, we demonstrated that the ectopic expression of HAR1A inhibited the proliferation, epithelial-mesenchymal transition (EMT), migration, and invasion of NSCLC cells and enhanced paclitaxel (PTX) sensitivity in vitro and in vivo. We identified the oncogenic protein annexin 2 (ANXA2) as a potential interacting patterner of HAR1A. HAR1A overexpression enhanced ANXA2 ubiquitination and accelerated its degradation via the ubiquitin-proteasome pathway. We further uncovered that HAR1A promoted the interaction between E3 ubiquitin ligase TRIM65 and ANXA2. Moreover, the ANXA2 plasmid transfection could reverse HAR1A overexpression-induced decreases in proliferation, migration, and invasion of NSCLC cells and the activity of the NF-κB signaling pathway. Finally, we found that HAR1A loss in NSCLC might be attributed to the upregulated METTL3. The m6A modification levels of HAR1A were increased in cancer cells, while YTHDF2 was responsible for recognizing m6A modification in the HAR1A, leading to the disintegration of this lncRNA. In conclusion, we found that METTL3-mediated m6A modification decreased HAR1A in NSCLC. HAR1A deficiency, in turn, stimulated tumor growth and metastasis by activating the ANXA2/p65 axis.
Collapse
Affiliation(s)
- Xiaodong Ling
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Cuicui Qi
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Kui Cao
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Mengdi Lu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Yingnan Yang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Jinfeng Zhang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Luquan Zhang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China.
- Biobank, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China.
| | - Jianqun Ma
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
6
|
Su M, Chen F, Han D, Song M, Wang Y. PRMT7-Dependent Transcriptional Activation of Hmgb2 Aggravates Severe Acute Pancreatitis by Promoting Acsl1-Induced Ferroptosis. J Proteome Res 2024; 23:1075-1087. [PMID: 38376246 DOI: 10.1021/acs.jproteome.3c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Severe acute pancreatitis (SAP) is a highly fatal abdominal emergency, and its association with protein arginine methyltransferase 7 (PRMT7), the sole known type III enzyme responsible for the monomethylation of arginine residue, remains unexplored. In this study, we observe an increase in the PRMT7 levels in the pancreas of SAP mice and Cerulein-LPS-stimulated AR42J cells. Overexpression of Prmt7 exacerbated pancreatic damage in SAP, while the inhibition of PRMT7 improved SAP-induced pancreatic damage. Furthermore, PRMT7 overexpression promoted inflammation, oxidative stress, and ferroptosis during SAP. Mechanically, PRMT7 catalyzed monomethylation at histone H4 arginine 3 (H4R3me1) at the promoter region of high mobility group proteins 2 (HMGB2), thereby enhancing its transcriptional activity. Subsequently, HMGB2 facilitated Acyl CoA synthase long-chain family member 1 (ACSL1) transcription by binding to its promoter region, resulting in the activation of ferroptosis. Inhibition of PRMT7 effectively alleviated ferroptosis in Cerulein-LPS-induced AR42J cells by suppressing the HMGB2-ACSL1 pathway. Overall, our study reveals that PRMT7 plays a crucial role in promoting SAP through its regulation of the HMGB2-ACSL1 pathway to accelerate ferroptosis.
Collapse
Affiliation(s)
- Minghua Su
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Feng Chen
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Dong Han
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Menglong Song
- Emergency Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Yifan Wang
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| |
Collapse
|
7
|
Chen F, Su M, Han D, Wang Y, Song M. METTL14 depletion ameliorates ferroptosis in severe acute pancreatitis by increasing the N6-methyladenosine modification of ACSL4 and STA1. Int Immunopharmacol 2024; 128:111495. [PMID: 38237228 DOI: 10.1016/j.intimp.2024.111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024]
Abstract
Methyltransferase-like 14 (METTL14) is implicated in the regulation of various inflammatory disorders. However, its function and molecular mechanism in severe acute pancreatitis (SAP) remains unrevealed. Here we reported an increase in METTL14 in the pancreas of SAP mice and cerulein-LPS-treated AR42J cells. METTL14 depletion reversed inflammatory response and ferroptosis by reducing the expression of SAT1 (spermidine/spermine N1-acetyltransferase 1) and ACSL4 (acyl-CoA synthetase long chain family member 4) in an m6A-dependent manner. IGF2BP2 (insulin like growth factor 2 mRNA binding protein 2) could recognize m6A-modified SAT1 and ACSL4 mRNA and enhance their stability. Moreover, METTL14 depletion ameliorated pancreatic injury, inflammation, and ferroptosis induced by SAP. METTL14 overexpression aggravated SAP by promoting ferroptosis in vivo. Therefore, these results demonstrated that METTL14-induced ferroptosis promoted the progression of SAP, and targeting METTL14 or ferroptosis could be a potential strategy for the prevention and treatment of SAP.
Collapse
Affiliation(s)
- Feng Chen
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Minghua Su
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Dong Han
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Yifan Wang
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China.
| | - Menglong Song
- Emergency Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China.
| |
Collapse
|
8
|
Tian X, Yang W, Jiang W, Zhang Z, Liu J, Tu H. Multi-Omics Profiling Identifies Microglial Annexin A2 as a Key Mediator of NF-κB Pro-inflammatory Signaling in Ischemic Reperfusion Injury. Mol Cell Proteomics 2024; 23:100723. [PMID: 38253182 PMCID: PMC10879806 DOI: 10.1016/j.mcpro.2024.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Cerebral stroke is one of the leading causes of mortality and disability worldwide. Restoring the cerebral circulation following a period of occlusion and subsequent tissue oxygenation leads to reperfusion injury. Cerebral ischemic reperfusion (I/R) injury triggers immune and inflammatory responses, apoptosis, neuronal damage, and even death. However, the cellular function and molecular mechanisms underlying cerebral I/R-induced neuronal injury are incompletely understood. By integrating proteomic, phosphoproteomic, and transcriptomic profiling in mouse hippocampi after cerebral I/R, we revealed that the differentially expressed genes and proteins mainly fall into several immune inflammatory response-related pathways. We identified that Annexin 2 (Anxa2) was exclusively upregulated in microglial cells in response to cerebral I/R in vivo and oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro. RNA-seq analysis revealed a critical role of Anxa2 in the expression of inflammation-related genes in microglia via the NF-κB signaling. Mechanistically, microglial Anxa2 is required for nuclear translocation of the p65 subunit of NF-κB and its transcriptional activity upon OGD/R in BV2 microglial cells. Anxa2 knockdown inhibited the OGD/R-induced microglia activation and markedly reduced the expression of pro-inflammatory factors, including TNF-α, IL-1β, and IL-6. Interestingly, conditional medium derived from Anxa2-depleted BV2 cell cultures with OGD/R treatment alleviated neuronal death in vitro. Altogether, our findings revealed that microglia Anxa2 plays a critical role in I/R injury by regulating NF-κB inflammatory responses in a non-cell-autonomous manner, which might be a potential target for the neuroprotection against cerebral I/R injury.
Collapse
Affiliation(s)
- Xibin Tian
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Wuyan Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Wei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Zhen Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Junqiang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China.
| |
Collapse
|
9
|
Zhao XK, Zhu MM, Wang SN, Zhang TT, Wei XN, Wang CY, Zheng J, Zhu WY, Jiang MX, Xu SW, Yang XX, Duan YJ, Zhang BC, Han JH, Miao QR, Hu H, Chen YL. Transcription factor 21 accelerates vascular calcification in mice by activating the IL-6/STAT3 signaling pathway and the interplay between VSMCs and ECs. Acta Pharmacol Sin 2023; 44:1625-1636. [PMID: 36997664 PMCID: PMC10374894 DOI: 10.1038/s41401-023-01077-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Vascular calcification is caused by the deposition of calcium salts in the intimal or tunica media layer of the aorta, which increases the risk of cardiovascular events and all-cause mortality. However, the mechanisms underlying vascular calcification are not fully clarified. Recently it has been shown that transcription factor 21 (TCF21) is highly expressed in human and mouse atherosclerotic plaques. In this study we investigated the role of TCF21 in vascular calcification and the underlying mechanisms. In carotid artery atherosclerotic plaques collected from 6 patients, we found that TCF21 expression was upregulated in calcific areas. We further demonstrated TCF21 expression was increased in an in vitro vascular smooth muscle cell (VSMC) osteogenesis model. TCF21 overexpression promoted osteogenic differentiation of VSMC, whereas TCF21 knockdown in VSMC attenuated the calcification. Similar results were observed in ex vivo mouse thoracic aorta rings. Previous reports showed that TCF21 bound to myocardin (MYOCD) to inhibit the transcriptional activity of serum response factor (SRF)-MYOCD complex. We found that SRF overexpression significantly attenuated TCF21-induced VSMC and aortic ring calcification. Overexpression of SRF, but not MYOCD, reversed TCF21-inhibited expression of contractile genes SMA and SM22. More importantly, under high inorganic phosphate (3 mM) condition, SRF overexpression reduced TCF21-induced expression of calcification-related genes (BMP2 and RUNX2) as well as vascular calcification. Moreover, TCF21 overexpression enhanced IL-6 expression and downstream STAT3 activation to facilitate vascular calcification. Both LPS and STAT3 could induce TCF21 expression, suggesting that the inflammation and TCF21 might form a positive feedback loop to amplify the activation of IL-6/STAT3 signaling pathway. On the other hand, TCF21 induced production of inflammatory cytokines IL-1β and IL-6 in endothelial cells (ECs) to promote VSMC osteogenesis. In EC-specific TCF21 knockout (TCF21ECKO) mice, VD3 and nicotine-induced vascular calcification was significantly reduced. Our results suggest that TCF21 aggravates vascular calcification by activating IL-6/STAT3 signaling and interplay between VSMC and EC, which provides new insights into the pathogenesis of vascular calcification. TCF21 enhances vascular calcification by activating the IL-6-STAT3 signaling pathway. TCF21 inhibition may be a new potential therapeutic strategy for the prevention and treatment of vascular calcification.
Collapse
Affiliation(s)
- Xiao-Kang Zhao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Meng-Meng Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Sheng-Nan Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ting-Ting Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiao-Ning Wei
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Cheng-Yi Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Juan Zheng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wen-Ya Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Mei-Xiu Jiang
- The Institute of Translational Medicine, the National Engineering Research Center for Bioengineering Drugs and the Technologies, Nanchang University, Nanchang, 330031, China
| | - Suo-Wen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
- School of Pharmacy, Bengbu Medical College, Bengbu, 233000, China
| | - Xiao-Xiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ya-Jun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Bu-Chun Zhang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Ji-Hong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Qing R Miao
- Diabetes and Obesity Research Center, New York University Long Island School of Medicine, New York, NY, USA
| | - Hao Hu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Yuan-Li Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
10
|
SRF Rearrangements in Soft Tissue Tumors with Muscle Differentiation. Biomolecules 2022; 12:biom12111678. [DOI: 10.3390/biom12111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The Serum Response Factor (SRF) is a transcription factor that regulates the expression of a wide set of genes involved in cell proliferation, migration, cytoskeletal organization and myogenesis. Accumulating evidence suggests that SRF may play a role in carcinogenesis and tumor progression in various neoplasms, where it is often involved in different fusion events. Here we investigated SRF rearrangements in soft tissue tumors, along with a gene expression profile analysis to gain insight into the oncogenic mechanism driven by SRF fusion. Whole transcriptome analysis of cell lines transiently overexpressing the SRF::E2F1 chimeric transcript uncovered the specific gene expression profile driven by the aberrant gene fusion, including overexpression of SRF-dependent target genes and of signatures related to myogenic commitment, inflammation and immune activation. This result was confirmed by the analysis of two cases of myoepitheliomas harboring SRF::E2F1 fusion with respect to EWSR1-fusion positive tumors. The recognition of the specific gene signature driven by SRF rearrangement in soft tissue tumors could aid the molecular classification of this rare tumor entity and support therapeutic decisions.
Collapse
|