1
|
Chen C, Wang X, Li Y, Zhao T, Wang H, Gao Y, Feng Y, Wang J, Shang L, Wang Y, Zhao B, Dong W. Hypobaric hypoxia causes low fecundity in zebrafish parents and impairment of skeletal development in zebrafish embryos and rat offspring. Reprod Toxicol 2024; 127:108603. [PMID: 38759877 DOI: 10.1016/j.reprotox.2024.108603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024]
Abstract
Hypobaric Hypoxia (HH) negatively affects the cardiovascular and respiratory systems as well as gonadal development and the therefore next generation. This study investigated the effects of HH on zebrafish and SD rats, by exposing them to a low-pressure environment at 6000 m elevation for 30 days to simulate high-altitude conditions. It was indicated that parental zebrafish reared amh under HH had increased embryo mortality, reduced hatchability, and abnormal cartilage development in the offspring. Furthermore, the HH-exposed SD rats had fewer reproductive cells and smaller litters. Moreover, the transcriptome analysis revealed the down-regulation of steroid hormone biosynthesis pathways. The expression of the gonad-associated genes (amh, pde8a, man2a2 and lhcgr), as well as the gonad and cartilage-related gene bmpr1a, were also down-regulated. In addition, Western blot analysis validated reduced bmpr1a protein expression in the ovaries of HH-treated rats. In summary, these data indicate the negative impact of HH on reproductive organs and offspring development, emphasizing the need for further research and precautions to protect future generations' health.
Collapse
Affiliation(s)
- Chaobao Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xin Wang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Yajuan Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Tianwei Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Huan Wang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yunqi Gao
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yuanzhou Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Lixin Shang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China.
| |
Collapse
|
2
|
Zhang H, Situ C, Guo X. Recent progress of proteomic analysis on spermatogenesis. Biol Reprod 2022; 107:109-117. [DOI: 10.1093/biolre/ioac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Testis, the only organ responsible for generating sperm, is by far the organ with the largest variety of proteins and tissue-specific proteins in humans. In testis, spermatogenesis is a multi-step complex process well-accepted that protein and mRNA are decoupled in certain stages of spermatogenesis. With the fast development of mass spectrometry-based proteomics, it is possible to systemically study protein abundances and modifications in testis and sperm to help us understand the molecular mechanisms of spermatogenesis. This review provides an overview of the recent progress of proteomics analysis on spermatogenesis, including protein expression and multiple PTMs, such as phosphorylation, glycosylation, ubiquitylation, and acetylation.
Collapse
Affiliation(s)
- Haotian Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
3
|
Thonsri U, Wongkham S, Wongkham C, Hino S, Nakao M, Roytrakul S, Koga T, Seubwai W. High glucose-ROS conditions enhance the progression in cholangiocarcinoma via upregulation of MAN2A2 and CHD8. Cancer Sci 2020; 112:254-264. [PMID: 33141432 PMCID: PMC7780024 DOI: 10.1111/cas.14719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/10/2020] [Accepted: 10/27/2020] [Indexed: 01/11/2023] Open
Abstract
Diabetes is a major risk factor in the development and progression of several cancers including cholangiocarcinoma (CCA). However, the molecular mechanism by which hyperglycemia potentiates progression of CCA is not clearly understood. Here, we showed that a high glucose condition significantly increased reactive oxygen species (ROS) production and promoted aggressive phenotypes of CCA cells, including proliferation and migration activities. Mannosidase alpha class 2a member 2 (MAN2A2), was upregulated at both mRNA and protein levels in a high glucose‐ and ROS‐dependent manner. In addition, cell proliferation and migration were significantly reduced by MAN2A2 knockdown. Based on our proteome and in silico analyses, we further found that chromodomain helicase DNA‐binding protein 8 (CHD8) was induced by ROS signaling and regulated MAN2A2 expression. Overexpression of CHD8 increased MAN2A2 expression, while CHD8 knockdown dramatically reduced proliferation and migration as well as MAN2A2 expression in CCA cells. Moreover, both MAN2A2 and CHD8 were highly expressed with positive correlation in CCA tumor tissues. Collectively, these data suggested that high glucose conditions promote CCA progression through ROS‐mediated upregulation of MAN2A2 and CHD8. Thus, glucose metabolism is a promising therapeutic target to control tumor progression in patients with CCA and diabetes.
Collapse
Affiliation(s)
- Unchalee Thonsri
- Faculty of Medicine, Department of Biochemistry, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- Faculty of Medicine, Department of Biochemistry, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Chaisiri Wongkham
- Faculty of Medicine, Department of Biochemistry, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Tomoaki Koga
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Wunchana Seubwai
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Faculty of Medicine, Department of Forensic Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
4
|
Lan R, Xin M, Hao Z, You S, Xu Y, Wu J, Dang L, Zhang X, Sun S. Biological Functions and Large-Scale Profiling of Protein Glycosylation in Human Semen. J Proteome Res 2020; 19:3877-3889. [DOI: 10.1021/acs.jproteome.9b00795] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rongxia Lan
- College of Life Science, Northwest University, Xi’an, Shaanxi Province 710069, P. R. China
| | - Miaomiao Xin
- College of Life Science, Northwest University, Xi’an, Shaanxi Province 710069, P. R. China
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodnany 38925, Czech Republic
| | - Zhifang Hao
- College of Life Science, Northwest University, Xi’an, Shaanxi Province 710069, P. R. China
| | - Shanshan You
- College of Life Science, Northwest University, Xi’an, Shaanxi Province 710069, P. R. China
| | - Yintai Xu
- College of Life Science, Northwest University, Xi’an, Shaanxi Province 710069, P. R. China
| | - Jingyu Wu
- College of Life Science, Northwest University, Xi’an, Shaanxi Province 710069, P. R. China
| | - Liuyi Dang
- College of Life Science, Northwest University, Xi’an, Shaanxi Province 710069, P. R. China
| | - Xinwen Zhang
- The Medical Genetics Centre, Xi 'an People's Hospital (Xi 'an Fourth Hospital), Xi’an Obstetrics and Gynecology Hospital, Xi’an, Shaanxi Province 710004, P. R. China
| | - Shisheng Sun
- College of Life Science, Northwest University, Xi’an, Shaanxi Province 710069, P. R. China
| |
Collapse
|
5
|
Akintayo A, Stanley P. Roles for Golgi Glycans in Oogenesis and Spermatogenesis. Front Cell Dev Biol 2019; 7:98. [PMID: 31231650 PMCID: PMC6566014 DOI: 10.3389/fcell.2019.00098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
Glycosylation of proteins by N- and O-glycans or glycosaminoglycans (GAGs) mostly begins in the endoplasmic reticulum and is further orchestrated in the Golgi compartment via the action of >100 glycosyltransferases that reside in this complex organelle. The synthesis of glycolipids occurs in the Golgi, also by resident glycosyltransferases. A defect in the glycosylation machinery may impair the functions of glycoproteins and other glycosylated molecules, and lead to a congenital disorder of glycosylation (CDG). Spermatogenesis in the male and oogenesis in the female are tightly regulated differentiation events leading to the production of functional gametes. Insights into roles for glycans in gamete production have been obtained from mutant mice following deletion or inactivation of genes that encode a glycosylation activity. In this review, we will summarize the effects of altering the synthesis of N-glycans, O-glycans, proteoglycans, glycophosphatidylinositol (GPI) anchored proteins, and glycolipids during gametogenesis in the mouse. Glycosylation genes whose deletion causes embryonic lethality have been investigated following conditional deletion using various Cre recombinase transgenes with a cell-type specific promoter. The potential effects of mutations in corresponding glycosylation genes of humans will be discussed in relation to consequences to fertility and potential for use in contraception.
Collapse
Affiliation(s)
- Ayodele Akintayo
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, United States
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
6
|
Hermo L, Oliveira RL, Smith CE, Au CE, Bergeron JJM. Dark side of the epididymis: tails of sperm maturation. Andrology 2019; 7:566-580. [PMID: 31102346 DOI: 10.1111/andr.12641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/25/2019] [Accepted: 03/30/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND The Hermes body (HB) previously called the cytoplasmic droplet is a focal distension of the flagellar cytoplasm of epididymal spermatozoa consisting mainly of isolated flattened Golgi cisternae. OBJECTIVE To define a functional role for the HB of epididymal spermatozoa. METHODS Isolated fractions of HBs of epididymal spermatozoa were prepared and by quantitative tandem mass spectrometry revealed 1511 proteins. RESULTS The glucose transporter GLUT-3 was the most abundant protein followed by hexokinase 1, which along with the presence of all glycolytic enzymes suggested a role for the HB in glycolysis. Several TMED/p24 Golgi trafficking proteins were abundant with TMED7/p27 and TMED2/p24 defining the identity of the flattened cisternae within the HB as Golgi, along with the known Golgi proteins, GBF1, GOLPH3, Man2α1, and ManIIX. The Golgi trafficking protein TMED7/p27 via small 50-nm vesicles emanating from the Golgi cisternae was proposed to transport GLUT-3 to the plasma membrane for ATP production related to sperm motility. The internal membranes revealed abundant proteins not only of Golgi cisternae, but also of endoplasmic reticulum and endosomes. COPI and COPII coats, clathrin, SNAREs, annexins, atlastins, and GTPases were identified for vesicular trafficking and membrane fusion, in addition to ribosomes, stress proteins for protection, proteasome proteins involved in degradation, and cytoskeletal elements for migration of the HB along the flagellum. The biogenesis of the HB occurring at step 19 spermatids of the testis just prior to their release was uncovered as a key step in germ cell differentiation, where several proteins were expressed, some for the first time. CONCLUSION As epididymal spermatozoa undergo remodeling of their protein makeup through selective degradation of sperm proteins during epididymal transit, then remodeling as a consequence of new protein synthesis is not excluded by our observations.
Collapse
Affiliation(s)
- L Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - R L Oliveira
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - C E Smith
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - C E Au
- Department of Medicine, McGill University Hospital Research Institute, Montreal, QC, Canada
| | - J J M Bergeron
- Department of Medicine, McGill University Hospital Research Institute, Montreal, QC, Canada
| |
Collapse
|
7
|
Au CE, Hermo L, Byrne E, Smirle J, Fazel A, Simon PHG, Kearney RE, Cameron PH, Smith CE, Vali H, Fernandez-Rodriguez J, Ma K, Nilsson T, Bergeron JJM. Expression, sorting, and segregation of Golgi proteins during germ cell differentiation in the testis. Mol Biol Cell 2015; 26:4015-32. [PMID: 25808494 PMCID: PMC4710233 DOI: 10.1091/mbc.e14-12-1632] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/19/2015] [Indexed: 12/14/2022] Open
Abstract
A total of 1318 proteins characterized in the male germ cell Golgi apparatus reveal a new germ cell–specific Golgi marker and a new pan-Golgi marker for all cells. The localization of these and other Golgi proteins reveals differential expression linked to mitosis, meiosis, acrosome formation, and postacrosome Golgi migration and destination in the late spermatid. The molecular basis of changes in structure, cellular location, and function of the Golgi apparatus during male germ cell differentiation is unknown. To deduce cognate Golgi proteins, we isolated germ cell Golgi fractions, and 1318 proteins were characterized, with 20 localized in situ. The most abundant protein, GL54D of unknown function, is characterized as a germ cell–specific Golgi-localized type II integral membrane glycoprotein. TM9SF3, also of unknown function, was revealed to be a universal Golgi marker for both somatic and germ cells. During acrosome formation, several Golgi proteins (GBF1, GPP34, GRASP55) localize to both the acrosome and Golgi, while GL54D, TM9SF3, and the Golgi trafficking protein TMED7/p27 are segregated from the acrosome. After acrosome formation, GL54D, TM9SF3, TMED4/p25, and TMED7/p27 continue to mark Golgi identity as it migrates away from the acrosome, while the others (GBF1, GPP34, GRASP55) remain in the acrosome and are progressively lost in later steps of differentiation. Cytoplasmic HSP70.2 and the endoplasmic reticulum luminal protein-folding enzyme PDILT are also Golgi recruited but only during acrosome formation. This resource identifies abundant Golgi proteins that are expressed differentially during mitosis, meiosis, and postacrosome Golgi migration, including the last step of differentiation.
Collapse
Affiliation(s)
- Catherine E Au
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Elliot Byrne
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Jeffrey Smirle
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Ali Fazel
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Paul H G Simon
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Robert E Kearney
- Department of Biomedical Engineering Department, McGill University, Montreal, QC H3A 2B4, Canada
| | - Pamela H Cameron
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Charles E Smith
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Julia Fernandez-Rodriguez
- Centre for Cellular Imaging, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Kewei Ma
- Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Tommy Nilsson
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - John J M Bergeron
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| |
Collapse
|
8
|
Caldwell GS, Pagett HE. Marine glycobiology: current status and future perspectives. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:241-252. [PMID: 20390314 DOI: 10.1007/s10126-010-9263-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 01/19/2010] [Indexed: 05/29/2023]
Abstract
Glycobiology, which is the study of the structure and function of carbohydrates and carbohydrate containing molecules, is fundamental to all biological systems.Progress in glycobiology has shed light on a range of complex biological processes associated with, for example,disease and immunology, molecular and cellular communication,and developmental biology. There is an established,if rather modest, tradition of glycobiology research in marine systems that has primarily focused on reproduction,biofouling, and chemical communication. The current status of marine glycobiology research is primarily descriptive with very limited progress on structural elucidation and the subsequent definition of precise functional roles beyond a small number of classical examples, e.g., induction of the acrosome reaction in echinoderms. However, with recent advances in analytical instrumentation, there is now the capacity to begin to characterize marine glycoconjugates,many of which will have potential biomedical and biotechnological applications. The analytical approach to glycoscience has developed to such an extent that it has acquired its own "-omics" identity. Glycomics is the quest to decipher the complex information conveyed by carbohydrate molecules--the carbohydrate code or glycocode. Due to the paucity of structural information available, this article will highlight the fundamental importance of glycobiology for many biological processes in marine organisms and will draw upon the best defined systems. These systems therefore may prove genuine candidates for full carbohydrate characterization.
Collapse
Affiliation(s)
- Gary S Caldwell
- School of Marine Science and Technology, Newcastle University, Ridley Building, Claremont Road, Newcastle upon Tyne NE17RU, England, UK.
| | | |
Collapse
|
9
|
Wong WC, Loh M, Eisenhaber F. On the necessity of different statistical treatment for Illumina BeadChip and Affymetrix GeneChip data and its significance for biological interpretation. Biol Direct 2008; 3:23. [PMID: 18522715 PMCID: PMC2453111 DOI: 10.1186/1745-6150-3-23] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 06/03/2008] [Indexed: 11/25/2022] Open
Abstract
Background The original spotted array technology with competitive hybridization of two experimental samples and measuring relative expression levels is increasingly displaced by more accurate platforms that allow determining absolute expression values for a single sample (for example, Affymetrix GeneChip and Illumina BeadChip). Unfortunately, cross-platform comparisons show a disappointingly low concordance between lists of regulated genes between the latter two platforms. Results Whereas expression values determined with a single Affymetrix GeneChip represent single measurements, the expression results obtained with Illumina BeadChip are essentially statistical means from several dozens of identical probes. In the case of multiple technical replicates, the data require, therefore, different stistical treatment depending on the platform. The key is the computation of the squared standard deviation within replicates in the case of the Illumina data as weighted mean of the square of the standard deviations of the individual experiments. With an Illumina spike experiment, we demonstrate dramatically improved significance of spiked genes over all relevant concentration ranges. The re-evaluation of two published Illumina datasets (membrane type-1 matrix metalloproteinase expression in mammary epithelial cells by Golubkov et al. Cancer Research (2006) 66, 10460; spermatogenesis in normal and teratozoospermic men, Platts et al. Human Molecular Genetics (2007) 16, 763) significantly identified more biologically relevant genes as transcriptionally regulated targets and, thus, additional biological pathways involved. Conclusion The results in this work show that it is important to process Illumina BeadChip data in a modified statistical procedure and to compute the standard deviation in experiments with technical replicates from the standard errors of individual BeadChips. This change leads also to an improved concordance with Affymetrix GeneChip results as the spermatogenesis dataset re-evaluation demonstrates. Reviewers This article was reviewed by I. King Jordan, Mark J. Dunning and Shamil Sunyaev.
Collapse
Affiliation(s)
- Wing-Cheong Wong
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, 138671, Singapore.
| | | | | |
Collapse
|
10
|
Huyghe E, Nohra J, Vezzosi D, Bennet A, Caron P, Mieusset R, Bujan L, Plante P. Contraceptions masculines non déférentielles : revue de la littérature. Prog Urol 2007; 17:156-64. [PMID: 17489310 DOI: 10.1016/s1166-7087(07)92254-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES To review the state of progress of the various male contraceptive methods (with the exception of deferential methods). MATERIAL AND METHODS A review of the literature was performed by using the key words: male/contraception, limiting the search to original articles in English and French. Articles on vasectomy and the other deferential methods of contraception are not considered in the present review. RESULTS Three methods of male contraception are widely used at the present time: withdrawal, male condom and vasectomy, although other types of male contraception have been shown to be effective, including hormonal contraception, which appears to be the most promising technique and the subject of the majority of research. Other contraceptive methods (immunological, thermal...) could constitute possible alternatives. CONCLUSION Male contraception remains under-used, as only male condoms are commonly used (apart from withdrawal and vasectomy). Consequently, new research protocols in the field of male contraception must be strongly encouraged.
Collapse
Affiliation(s)
- Eric Huyghe
- Service d'Urologie et Andrologie, Hôpital Paule de Viguier, Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
|