1
|
Ghamarypour A, Aminzadeh S, Majd A, Movahedi M. A novel thermophilic lysozyme 4356 from Cohnella sp. A01: Cloning, heterologous expression, biochemical and kinetic characterization. Int J Biol Macromol 2024; 279:135341. [PMID: 39255879 DOI: 10.1016/j.ijbiomac.2024.135341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Lysozymes have gained attention for their antiseptic properties. In silico studies have shown that the enzyme containing lysM can act as an antibacterial agent. Binding of the lysM motif of rSELys to peptidoglycan and molecular dynamics simulations showed that the protein-ligand binding is very stable. rSELys (2016 bp) is a new recombinant glycoside hydrolase from the thermophilic bacterium Cohnella sp. A01 (PTCC number: 1921). Protein expression and purification, a single band with an apparent molecular weight of ∼74 kDa was observed by SDS-PAGE. The kinetic parameters were Km 1.163 mg/ml, Vmax 670.3 U/mg, kcat 1675.75 (S-1), and kcat/Km 1440.88 (M-1S-1). Its optimum temperature was 55 °C and pH 8. Temperature stability also showed that the temperature of 50-60 °C retained more than half of its activity after 90 min. Based on the results, rSELys demonstrated antibacterial effects on both Gram-positive and Gram-negative strains, with inhibition zones of 11 and 9 mm, respectively. SEM analysis confirmed hydrolysis activity, the MIC was determined to be 31.25 μg/ml and 3.9 μg/ml, and MBC 0.97 μg/ml, respectively. CD and fluorescence studies showed that up to a temperature of 85 °C and a pH value of 8-12 no structural changes occur, and thermal stability protein was confirmed.
Collapse
Affiliation(s)
- Ameneh Ghamarypour
- Department of Biochemistry, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Ahmad Majd
- Department of Biochemistry, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Monireh Movahedi
- Department of Biochemistry, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Wang H, Wang L, Zhang F, Li X, Wang S, Gao D, Li X, Qian P. ParalichenysinDY4, a novel bacteriocin-like substance, is employed to control Clostridium perfringens. Int J Biol Macromol 2024; 279:135412. [PMID: 39245094 DOI: 10.1016/j.ijbiomac.2024.135412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Clostridium perfringens (C. perfringens) is an important pathogen that contributes to human and animal disease. At present, antibiotic therapy is one of the most effective strategies for C. perfringens. However, with the rise of antibacterial resistance, new agents with novel mechanisms of action are urgently needed. Bacteriocins are recognized as a viable alternative to antibiotics. In this study, the bacteriocin-like substance ParalichenysinDY4, derived from the Bacillus paralicheniformis (B. paralicheniformis) DY4 strain, is investigated as a potential alternative for combating Clostridium perfringens. The substance was isolated from B. paralicheniformis DY4 fermentation broth through a series of purification steps including methanol extraction, gel filtration, and high-performance liquid chromatography. Mass spectrometry analysis of ParalichenysinDY4 revealed that the detected peptide sequences did not match any previously known bacteriocins, indicating it is a novel bacteriocin-like substance. The novel bacteriocin-like substance exhibits effective antibacterial activity and broad antimicrobial spectrum against C. perfringens. Subsequent analyses utilizing methodologies including flow cytometry and scanning electron microscopy suggest that its mechanism of action is linked to its effects on the cell membrane. At the same time, due to its exceptional stability, safety, and efficient ability to remove pathogens both in vitro and in vivo, ParalichenysinDY4 holds promise as a valuable natural antimicrobial agent.
Collapse
Affiliation(s)
- Haiyan Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, People's Republic of China
| | - Linkang Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, People's Republic of China
| | - Fenqiang Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, People's Republic of China
| | - XinXin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, People's Republic of China
| | - Shuang Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, People's Republic of China
| | - Dongyang Gao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, People's Republic of China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, People's Republic of China.
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Javid M, Shahverdi AR, Ghasemi A, Moosavi-Movahedi AA, Ebrahim-Habibi A, Sepehrizadeh Z. Decoding the Structure-Function Relationship of the Muramidase Domain in E. coli O157.H7 Bacteriophage Endolysin: A Potential Building Block for Chimeric Enzybiotics. Protein J 2024; 43:522-543. [PMID: 38662183 DOI: 10.1007/s10930-024-10195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 04/26/2024]
Abstract
Bacteriophage endolysins are potential alternatives to conventional antibiotics for treating multidrug-resistant gram-negative bacterial infections. However, their structure-function relationships are poorly understood, hindering their optimization and application. In this study, we focused on the individual functionality of the C-terminal muramidase domain of Gp127, a modular endolysin from E. coli O157:H7 bacteriophage PhaxI. This domain is responsible for the enzymatic activity, whereas the N-terminal domain binds to the bacterial cell wall. Through protein modeling, docking experiments, and molecular dynamics simulations, we investigated the activity, stability, and interactions of the isolated C-terminal domain with its ligand. We also assessed its expression, solubility, toxicity, and lytic activity using the experimental data. Our results revealed that the C-terminal domain exhibits high activity and toxicity when tested individually, and its expression is regulated in different hosts to prevent self-destruction. Furthermore, we validated the muralytic activity of the purified refolded protein by zymography and standardized assays. These findings challenge the need for the N-terminal binding domain to arrange the active site and adjust the gap between crucial residues for peptidoglycan cleavage. Our study shed light on the three-dimensional structure and functionality of muramidase endolysins, thereby enriching the existing knowledge pool and laying a foundation for accurate in silico modeling and the informed design of next-generation enzybiotic treatments.
Collapse
Affiliation(s)
- Mehri Javid
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Shahverdi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Azadeh Ebrahim-Habibi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zargham Sepehrizadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Gerstmans H, Duyvejonck L, Vázquez R, Staes I, Borloo J, Abdelkader K, Leroy J, Cremelie E, Gutiérrez D, Tamés-Caunedo H, Ruas-Madiedo P, Rodríguez A, Aertsen A, Lammertyn J, Lavigne R, Briers Y. Distinct mode of action of a highly stable, engineered phage lysin killing Gram-negative bacteria. Microbiol Spectr 2023; 11:e0181323. [PMID: 37971248 PMCID: PMC10714810 DOI: 10.1128/spectrum.01813-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Engineered lysins are considered as highly promising alternatives for antibiotics. Our previous screening study using VersaTile technology identified 1D10 as a possible lead compound with activity against Acinetobacter baumannii strains under elevated human serum concentrations. In this manuscript, we reveal an unexpected mode of action and exceptional thermoresistance for lysin 1D10. Our findings shed new light on the development of engineered lysins, providing valuable insights for future research in this field.
Collapse
Affiliation(s)
- Hans Gerstmans
- Department of Biotechnology, Ghent University, Ghent, Belgium
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Lisa Duyvejonck
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Roberto Vázquez
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Ines Staes
- Department of Microbial and Molecular Systems, Leuven, Belgium
| | | | - Karim Abdelkader
- Department of Biotechnology, Ghent University, Ghent, Belgium
- Department of Microbiology and Immunology, Beni-Suef University, Beni-Suef, Egypt
| | - Jeroen Leroy
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Emma Cremelie
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Diana Gutiérrez
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Héctor Tamés-Caunedo
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Ana Rodríguez
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, Leuven, Belgium
| | | | - Rob Lavigne
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Yves Briers
- Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Shin D, Ha E, Kong M, Ryu S. Characterization of thermostable bacteriophage CPD2 and its endolysin LysCPD2 as biocontrol agents against Clostridium perfringens. Food Sci Biotechnol 2023; 32:2069-2077. [PMID: 37860732 PMCID: PMC10581990 DOI: 10.1007/s10068-023-01314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 10/21/2023] Open
Abstract
Clostridium perfringens is one of the major foodborne pathogens in humans and animals. With the prevalence of antibiotic-resistant C. perfringens strains, bacteriophages and their endolysins have received considerable attention as promising alternatives to antibiotics. In this study, C. perfringens phage CPD2 was isolated from retail chicken samples. CPD2 belongs to the Podoviridae family and exhibits remarkable thermostability. While CPD2 has narrow host specificity, its endolysin LysCPD2 showed a broader lytic range, killing not only C. perfringens strains but other Gram-positive bacteria, such as B. cereus and B. subtilis. In addition, due to its exceptional thermal stability, LysCPD2 showed significant antibacterial ability against germinating C. perfringens spores during the heat activation process (75 °C for 20 min). Taken together, these results indicate that both thermostable phage CPD2 and its endolysin LysCPD2 can be used as efficient antimicrobial agents to control C. perfringens during thermal processing of foods.
Collapse
Affiliation(s)
- Daeun Shin
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Eunsu Ha
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Minsuk Kong
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811 Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| |
Collapse
|
6
|
Zermeño-Cervantes LA, Martínez-Díaz SF, Venancio-Landeros AA, Cardona-Félix CS. Evaluating the efficacy of endolysins and membrane permeabilizers against Vibrio parahaemolyticus in marine conditions. Res Microbiol 2023; 174:104104. [PMID: 37422006 DOI: 10.1016/j.resmic.2023.104104] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/31/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Endolysins have garnered significant attention as a potential alternative to antibiotics in aquaculture, mainly for combating Vibrio spp., Gram-negative pathogens responsible for infectious outbreaks. However, endolysin effectiveness against Gram-negative bacteria is limited due to the outer membrane's poor permeability. The combat against marine pathogens poses an additional challenge of finding endolysins that retain their activity in high ionic strength conditions. Thus, this study aimed to demonstrate that certain endolysins retain muralytic activity in seawater and also evaluated outer membrane permeabilizers as endolysin adjuvants. The effectiveness of KZ144 and LysPA26 endolysins, along with EDTA and oregano essential oil, was evaluated against Vibrio parahaemolyticus ATCC-17802 in natural seawater. Results revealed the muralytic activity of both endolysins in seawater. However, the endolysins appeared to counteract the permeabilizers' effect during the initial bactericidal assays. Further investigations revealed that the observed effect was not antagonistic. After the permeabilizer action, V. parahaemolyticus likely used endolysins as a growth substrate. Endolysins may not play an indifferent role if they fail to exert a bactericidal effect. Instead, they can serve as a substrate for fast-growing bacteria, such as V. parahaemolyticus, increasing bacterial density. It should be considered a potential drawback of endolysins' proteinaceous nature as bactericidal agents.
Collapse
Affiliation(s)
- Lina Angélica Zermeño-Cervantes
- Instituto Politécnico Nacional-CICIMAR, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz, B. C. S., CP. 23096, México.
| | - Sergio Francisco Martínez-Díaz
- Instituto Politécnico Nacional-CICIMAR, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz, B. C. S., CP. 23096, México.
| | - Alberto Antony Venancio-Landeros
- Instituto Politécnico Nacional-CICIMAR, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz, B. C. S., CP. 23096, México.
| | - César Salvador Cardona-Félix
- CONACyT-Instituto Politécnico Nacional-CICIMAR, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz, B. C. S., CP. 23096, México.
| |
Collapse
|
7
|
Loganathan K, Viswanathan B. Genome editing for phage design and uses for therapeutic applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:203-224. [PMID: 37770172 DOI: 10.1016/bs.pmbts.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The over usage of antibiotics leads to antibiotic abuse which in turn eventually raises resistance mechanisms among wide range of pathogens. Due to lack of experimental data of efficacy of phages as potential antimicrobial and therapeutic agent and also more specific and cumbersome isolation process against specific pathogens makes it not so feasible technology to be looked as an alternative therapy. But, recent developments in genome editing techniques enables programmed nuclease enzymes that has effectively improvised our methodology to make accurate changes in the genomes of prokaryote as well as eukaryote cells. It is already strengthening our ability to improvise genetic engineering to disease identification by facilitating the creation of more precise models to identify the root cause. The present chapter discusses on improvisation of phage therapy using recent genome editing tools and also shares data on the methods of usage of phages and their derivatives like proteins and enzymes such as lysins and depolymerases, as a potential therapeutic or prophylaxis agent. Methods involved in recombinant based techniques were also discussed in this chapter. Combination of traditional approach with modern tools has led to a potential development of phage-based therapeutics in near future.
Collapse
|
8
|
Jasilionis A, Plotka M, Wang L, Dorawa S, Lange J, Watzlawick H, van den Bergh T, Vroling B, Altenbuchner J, Kaczorowska A, Pohl E, Kaczorowski T, Nordberg Karlsson E, Freitag‐Pohl S. AmiP from hyperthermophilic Thermus parvatiensis prophage is a thermoactive and ultrathermostable peptidoglycan lytic amidase. Protein Sci 2023; 32:e4585. [PMID: 36721347 PMCID: PMC9929850 DOI: 10.1002/pro.4585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
Bacteriophages encode a wide variety of cell wall disrupting enzymes that aid the viral escape in the final stages of infection. These lytic enzymes have accumulated notable interest due to their potential as novel antibacterials for infection treatment caused by multiple-drug resistant bacteria. Here, the detailed functional and structural characterization of Thermus parvatiensis prophage peptidoglycan lytic amidase AmiP, a globular Amidase_3 type lytic enzyme adapted to high temperatures is presented. The sequence and structure comparison with homologous lytic amidases reveals the key adaptation traits that ensure the activity and stability of AmiP at high temperatures. The crystal structure determined at a resolution of 1.8 Å displays a compact α/β-fold with multiple secondary structure elements omitted or shortened compared with protein structures of similar proteins. The functional characterization of AmiP demonstrates high efficiency of catalytic activity and broad substrate specificity toward thermophilic and mesophilic bacteria strains containing Orn-type or DAP-type peptidoglycan. The here presented AmiP constitutes the most thermoactive and ultrathermostable Amidase_3 type lytic enzyme biochemically characterized with a temperature optimum at 85°C. The extraordinary high melting temperature Tm 102.6°C confirms fold stability up to approximately 100°C. Furthermore, AmiP is shown to be more active over the alkaline pH range with pH optimum at pH 8.5 and tolerates NaCl up to 300 mM with the activity optimum at 25 mM NaCl. This set of beneficial characteristics suggests that AmiP can be further exploited in biotechnology.
Collapse
Affiliation(s)
- Andrius Jasilionis
- Division of Biotechnology, Department of ChemistryLund UniversityLundSweden
| | - Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of BiologyUniversity of GdanskGdanskPoland
| | - Lei Wang
- Institute of Biomedical GeneticsUniversity of StuttgartStuttgartGermany
| | - Sebastian Dorawa
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of BiologyUniversity of GdanskGdanskPoland
| | | | | | | | | | | | - Anna‐Karina Kaczorowska
- Collection of Plasmids and Microorganisms, Faculty of BiologyUniversity of GdanskGdanskPoland
| | - Ehmke Pohl
- Department of BiosciencesDurham UniversityDurhamUK
- Department of ChemistryDurham UniversityDurhamUK
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of BiologyUniversity of GdanskGdanskPoland
| | | | | |
Collapse
|
9
|
Enzymatic modification and adsorption of hydrophobic zein proteins on lactic acid bacteria stabilize Pickering emulsions. Food Res Int 2022; 161:111783. [DOI: 10.1016/j.foodres.2022.111783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/08/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022]
|
10
|
Yin Y, Wang X, Mou Z, Ren H, Zhang C, Zou L, Liu H, Liu W, Liu Z. Characterization and genome analysis of Pseudomonas aeruginosa phage vB_PaeP_Lx18 and the antibacterial activity of its lysozyme. Arch Virol 2022; 167:1805-1817. [PMID: 35716268 DOI: 10.1007/s00705-022-05472-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022]
Abstract
A lytic Pseudomonas aeruginosa phage, vB_PaeP_Lx18 (Lx18), was isolated from the sewage of a dairy farm. Biological characterization revealed that Lx18 was stable from 40 °C to 60 °C and over a wide range of pH values from 4 to 10. It was able to lyse 63.6% (21/33) of the P. aeruginosa strains tested and was able to reduce and disperse biofilms, with a biofilm reduction rate of 76.8%. Whole-genome sequencing showed that Lx18 is a dsDNA virus with a genome of 42,735 bp and G+C content of 62.16%. The genome contains 54 open reading frames (ORFs), 28 of which have known functions, including DNA replication and modification, transcriptional regulation, structural and packaging proteins, and host cell lysis. No virulence or tRNA genes were identified. Phylogenetic analysis showed that phage Lx18 belongs to the genus Phikmvvirus. The lysozyme of Lx18, Lys18, was cloned and expressed. The combined action of Lys18 and ethylenediaminetetraacetic acid (EDTA) had antibacterial activity against Pseudomonas aeruginosa. The study of phage Lx18 and its lysozyme will provide basic information for further research on the treatment of Pseudomonas aeruginosa infections.
Collapse
Affiliation(s)
- Yin Yin
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China
| | - Xinwei Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China
| | - Zehua Mou
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China
| | - Huiying Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China
| | - Can Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China
| | - Ling Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China
| | - Huanqi Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China.
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China.
| | - Zongzhu Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China
| |
Collapse
|
11
|
Chen P, Jin D, Yang S, Yu X, Yi G, Hu S, Sun Y, Hu Y, Cui J, Rang J, Xia L. Aeromonas veronii infection remarkably increases expression of lysozymes in grass carp (Ctenopharyngodon idellus) and injection of lysozyme expression cassette along with QCDC adjuvant significantly upregulates immune factors and decreases cumulative mortality. Microb Pathog 2022; 169:105646. [PMID: 35716927 DOI: 10.1016/j.micpath.2022.105646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
Aeromonas veronii AvX005 is a pathogenic bacterium with high toxicity to grass carp (Ctenopharyngodon idellus). The expression levels of g-type (goose-type lysozyme, Lys-g) and c-type lysozyme (chicken-type lysozyme, Lys-c) in the spleen of grass carp infected with AvX005 were significantly increased by approximately 4.5 times and 27 times, respectively. The recombinant proteins rLys-g and rLys-c produced in a recombinant expression system of Escherichia coli showed significant antibacterial activity against the pathogenic bacteria AvX005. A challenge test was conducted after rLys-g and rLys-c were expressed in grass carp L8824 liver cells, and compared with the survival rate of the control cells (46.3%), the survival rate of the experimental cells (77.6% for rLys-g and 68.6% for rLys-c) was significantly increased. Grass carp were infected with AvX005 on the second day after delivering pcDNA3.1-lys-g and pcDNA-lys-c with the Quil A/cholesterol/DDA/Carbopol (QCDC) adjuvant, and both pcDNA3.1-lys-g and pcDNA-lys-c provided 70% relative protection for grass carp. The activity of lysozyme and alkaline phosphatase in the serum of grass carp was significantly increased after injection of DNA. The expression of the immune factors IgM, C3 and IL8 in the kidney was upregulated to varying degrees for pcDNA3.1-lys-g and immune factors C3 and IgM was upregulated for pcDNA-lys-c. The results indicated that pcDNA3.1-lys-g and pcDNA-lys-c may be used as immunostimulants to protect grass carp from the pathogenic bacterium AvX005.
Collapse
Affiliation(s)
- Pei Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Duo Jin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Shijia Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Xiaojing Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Ganfeng Yi
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Yunjun Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Yibo Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Jun Cui
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Jie Rang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
12
|
Eichenseher F, Herpers BL, Badoux P, Leyva-Castillo JM, Geha RS, van der Zwart M, McKellar J, Janssen F, de Rooij B, Selvakumar L, Röhrig C, Frieling J, Offerhaus M, Loessner MJ, Schmelcher M. Linker-Improved Chimeric Endolysin Selectively Kills Staphylococcus aureus In Vitro, on Reconstituted Human Epidermis, and in a Murine Model of Skin Infection. Antimicrob Agents Chemother 2022; 66:e0227321. [PMID: 35416713 PMCID: PMC9112974 DOI: 10.1128/aac.02273-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus causes a broad spectrum of diseases in humans and animals. It is frequently associated with inflammatory skin disorders such as atopic dermatitis, where it aggravates symptoms. Treatment of S. aureus-associated skin infections with antibiotics is discouraged due to their broad-range deleterious effect on healthy skin microbiota and their ability to promote the development of resistance. Thus, novel S. aureus-specific antibacterial agents are desirable. We constructed two chimeric cell wall-lytic enzymes, Staphefekt SA.100 and XZ.700, which are composed of functional domains from the bacteriophage endolysin Ply2638 and the bacteriocin lysostaphin. Both enzymes specifically killed S. aureus and were inactive against commensal skin bacteria such as Staphylococcus epidermidis, with XZ.700 proving more active than SA.100 in multiple in vitro activity assays. When surface-attached mixed staphylococcal cultures were exposed to XZ.700 in a simplified microbiome model, the enzyme selectively removed S. aureus and retained S. epidermidis. Furthermore, XZ.700 did not induce resistance in S. aureus during repeated rounds of exposure to sublethal concentrations. Finally, we demonstrated that XZ.700 formulated as a cream is effective at killing S. aureus on reconstituted human epidermis and that an XZ.700-containing gel significantly reduces bacterial numbers compared to an untreated control in a mouse model of S. aureus-induced skin infection.
Collapse
Affiliation(s)
- Fritz Eichenseher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Micreos GmbH, Wädenswil, Switzerland
| | - Bjorn L. Herpers
- Regional Public Health Laboratory Kennemerland, Haarlem, The Netherlands
| | - Paul Badoux
- Regional Public Health Laboratory Kennemerland, Haarlem, The Netherlands
| | | | - Raif S. Geha
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Ferd Janssen
- Micreos Human Health B.V., Bilthoven, The Netherlands
| | - Bob de Rooij
- Micreos Human Health B.V., Bilthoven, The Netherlands
| | | | | | | | | | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Micreos GmbH, Wädenswil, Switzerland
| |
Collapse
|
13
|
Cernooka E, Rumnieks J, Zrelovs N, Tars K, Kazaks A. Diversity of the lysozyme fold: structure of the catalytic domain from an unusual endolysin encoded by phage Enc34. Sci Rep 2022; 12:5005. [PMID: 35322067 PMCID: PMC8943055 DOI: 10.1038/s41598-022-08765-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
Endolysins are bacteriophage-encoded peptidoglycan-degrading enzymes with potential applications for treatment of multidrug-resistant bacterial infections. Hafnia phage Enc34 encodes an unusual endolysin with an N-terminal enzymatically active domain and a C-terminal transmembrane domain. The catalytic domain of the endolysin belongs to the conserved protein family PHA02564 which has no recognizable sequence similarity to other known endolysin types. Turbidity reduction assays indicate that the Enc34 enzyme is active against peptidoglycan from a variety of Gram-negative bacteria including the opportunistic pathogen Pseudomonas aeruginosa PAO1. The crystal structure of the catalytic domain of the Enc34 endolysin shows a distinctive all-helical architecture that distantly resembles the α-lobe of the lysozyme fold. Conserved catalytically important residues suggest a shared evolutionary history between the Enc34 endolysin and GH73 and GH23 family glycoside hydrolases and propose a molecular signature for substrate cleavage for a large group of peptidoglycan-degrading enzymes.
Collapse
Affiliation(s)
- Elina Cernooka
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, 1067, Latvia
| | - Janis Rumnieks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, 1067, Latvia
| | - Nikita Zrelovs
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, 1067, Latvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, 1067, Latvia.,Faculty of Biology, University of Latvia, Jelgavas 1, Riga, 1004, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga, 1067, Latvia.
| |
Collapse
|
14
|
Abstract
Quorum sensing (QS) is used to coordinate social behaviors, such as virulence and biofilm formation, across bacterial populations. However, the role of QS in regulating phage-bacterium interactions remains unclear. Preventing phage recognition and adsorption are the first steps of bacterial defense against phages; however, both phage recognition and adsorption are a prerequisite for the successful application of phage therapy. In the present study, we report that QS upregulated the expression of phage receptors, thus increasing phage adsorption and infection rates in Pseudomonas aeruginosa. In P. aeruginosa PAO1, we found that las QS, instead of rhl QS, upregulated the expression of galU for lipopolysaccharide synthesis. Lipopolysaccharides act as the receptor of the phage vB_Pae_QDWS. This las QS-mediated phage susceptibility is a dynamic process, depending on host cell density. Our data suggest that inhibiting QS may reduce the therapeutic efficacy of phages. IMPORTANCE Phage resistance is a major limitation of phage therapy, and understanding the mechanisms by which bacteria block phage infection is critical for the successful application of phage therapy. In the present study, we found that Pseudomonas aeruginosa PAO1 uses las QS to promote phage infection by upregulating the expression of galU, which is necessary for the synthesis of phage receptor lipopolysaccharides. In contrast to the results of previous reports, we showed that QS increases the efficacy of phage-mediated bacterial killing. Since QS upregulates the expression of virulence factors and promotes biofilm development, which are positively correlated with lipopolysaccharide production in P. aeruginosa, increased phage susceptibility is a novel QS-mediated trade-off. QS inhibition may increase the efficacy of antibiotic treatment, but it will reduce the effectiveness of phage therapy.
Collapse
|
15
|
The Structure and Function of Modular Escherichia coli O157:H7 Bacteriophage FTBEc1 endolysin, LysT84: Defining a New Endolysin Catalytic Subfamily. Biochem J 2021; 479:207-223. [PMID: 34935873 DOI: 10.1042/bcj20210701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
Bacteriophage endolysins degrade peptidoglycan and have been identified as antibacterial candidates to combat antimicrobial resistance. Considering the catalytic and structural diversity of endolysins, there is a paucity of structural data to inform how these enzymes work at the molecular level-key data that is needed to realize the potential of endolysin-based antibacterial agents. Here, we determine the atomic structure and define the enzymatic function of Escherichia coli O157:H7 phage FTEBc1 endolysin, LysT84. Bioinformatic analysis reveals that LysT84 is a modular endolysin, which is unusual for Gram-negative endolysins, comprising a peptidoglycan binding domain and an enzymatic domain. The crystal structure of LysT84 (2.99 Å) revealed a mostly α-helical protein with two domains connected by a linker region but packed together. LysT84 was determined to be a monomer in solution using analytical ultracentrifugation. Small-angle X-ray scattering data revealed that LysT84 is a flexible protein but does not have the expected bimodal P(r) function of a multidomain protein, suggesting that the domains of LysT84 pack closely creating a globular protein as seen in the crystal structure. Structural analysis reveals two key glutamate residues positioned on either side of the active site cavity; mutagenesis demonstrating these residues are critical for peptidoglycan degradation. Molecular dynamic simulations suggest that the enzymatically active domain is dynamic, allowing the appropriate positioning of these catalytic residues for hydrolysis of the β(1-4) bond. Overall, our study defines the structural basis for peptidoglycan degradation by LysT84 which supports rational engineering of related endolysins into effective antibacterial agents.
Collapse
|
16
|
The Molecular Basis for Escherichia coli O157:H7 Phage FAHEc1 Endolysin Function and Protein Engineering to Increase Thermal Stability. Viruses 2021; 13:v13061101. [PMID: 34207694 PMCID: PMC8228626 DOI: 10.3390/v13061101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 02/02/2023] Open
Abstract
Bacteriophage-encoded endolysins have been identified as antibacterial candidates. However, the development of endolysins as mainstream antibacterial agents first requires a comprehensive biochemical understanding. This study defines the atomic structure and enzymatic function of Escherichia coli O157:H7 phage FAHEc1 endolysin, LysF1. Bioinformatic analysis suggests this endolysin belongs to the T4 Lysozyme (T4L)-like family of proteins and contains a highly conserved catalytic triad. We then solved the structure of LysF1 with x-ray crystallography to 1.71 Å. LysF1 was confirmed to exist as a monomer in solution by sedimentation velocity experiments. The protein architecture of LysF1 is conserved between T4L and related endolysins. Comparative analysis with related endolysins shows that the spatial orientation of the catalytic triad is conserved, suggesting the catalytic mechanism of peptidoglycan degradation is the same as that of T4L. Differences in the sequence illustrate the role coevolution may have in the evolution of this fold. We also demonstrate that by mutating a single residue within the hydrophobic core, the thermal stability of LysF1 can be increased by 9.4 °C without compromising enzymatic activity. Overall, the characterization of LysF1 provides further insight into the T4L-like class of endolysins. Our study will help advance the development of related endolysins as antibacterial agents, as rational engineering will rely on understanding mutable positions within this protein fold.
Collapse
|
17
|
Sunthornthummas S, Doi K, Fujino Y, Rangsiruji A, Sarawaneeyaruk S, Insian K, Pringsulaka O. Genomic characterisation of Lacticaseibacillus paracasei phage ΦT25 and preliminary analysis of its derived endolysin. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Zhang Y, Huang HH, Duc HM, Masuda Y, Honjoh KI, Miyamoto T. Endolysin LysSTG2: Characterization and application to control Salmonella Typhimurium biofilm alone and in combination with slightly acidic hypochlorous water. Food Microbiol 2021; 98:103791. [PMID: 33875220 DOI: 10.1016/j.fm.2021.103791] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 01/12/2023]
Abstract
The gene encoding LysSTG2, an endolysin from Salmonella-lytic bacteriophage STG2, was cloned, overexpressed, and characterized. LysSTG2 consists of a single domain belonging to the Peptidase_M15 superfamily. LysSTG2 showed strong lytic activity against chloroform-treated S. Typhimurium cells after incubation at 4-50 °C for 30 min, at pH ranging from 7.0 to 11.0, and in the presence of NaCl from 0 to 300 mmol/L. It also showed lytic activity against all the 14 tested Gram-negative strains treated with chloroform, including Salmonella, E. coli, and Pseudomonas aeruginosa, but not against the Gram-positive bacteria tested. In addition, LysSTG2 (100 μg/mL) reduced the viability of S. Typhimurium NBRC 12529 planktonic cells by 1.2 log and that of the biofilm cells after 1-h treatment. Sequential treatment of slightly acidic hypochlorous water (SAHW) containing 40 mg/L available chlorine and LysSTG2 (100 μg/mL) was effective on S. Typhimurium NBRC 12529 biofilm cells, removing more than 99% of biofilm cells. These results demonstrate that LysSTG2 alone can effectively kill S. Typhimurium cells after permeabilization treatment and successfully control S. Typhimurium in biofilms in combination with SAHW, suggesting that the combined use of LysSTG2 and SAHW might be a novel and promising method for combating S. Typhimurium in food industries.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hung-Hsin Huang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hoang Minh Duc
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Viet Nam
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
19
|
Zampara A, Sørensen MCH, Gencay YE, Grimon D, Kristiansen SH, Jørgensen LS, Kristensen JR, Briers Y, Elsser-Gravesen A, Brøndsted L. Developing Innolysins Against Campylobacter jejuni Using a Novel Prophage Receptor-Binding Protein. Front Microbiol 2021; 12:619028. [PMID: 33597938 PMCID: PMC7882524 DOI: 10.3389/fmicb.2021.619028] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Campylobacter contaminated poultry remains the major cause of foodborne gastroenteritis worldwide, calling for novel antibacterials. We previously developed the concept of Innolysin composed of an endolysin fused to a phage receptor binding protein (RBP) and provided the proof-of-concept that Innolysins exert bactericidal activity against Escherichia coli. Here, we have expanded the Innolysin concept to target Campylobacter jejuni. As no C. jejuni phage RBP had been identified so far, we first showed that the H-fiber originating from a CJIE1-like prophage of C. jejuni CAMSA2147 functions as a novel RBP. By fusing this H-fiber to phage T5 endolysin, we constructed Innolysins targeting C. jejuni (Innolysins Cj). Innolysin Cj1 exerts antibacterial activity against diverse C. jejuni strains after in vitro exposure for 45 min at 20°C, reaching up to 1.30 ± 0.21 log reduction in CAMSA2147 cell counts. Screening of a library of Innolysins Cj composed of distinct endolysins for growth inhibition, allowed us to select Innolysin Cj5 as an additional promising antibacterial candidate. Application of either Innolysin Cj1 or Innolysin Cj5 on chicken skin refrigerated to 5°C and contaminated with C. jejuni CAMSA2147 led to 1.63 ± 0.46 and 1.18 ± 0.10 log reduction of cells, respectively, confirming that Innolysins Cj can kill C. jejuni in situ. The receptor of Innolysins Cj remains to be identified, however, the RBP component (H-fiber) recognizes a novel receptor compared to lytic phages binding to capsular polysaccharide or flagella. Identification of other unexplored Campylobacter phage RBPs may further increase the repertoire of new Innolysins Cj targeting distinct receptors and working as antibacterials against Campylobacter.
Collapse
Affiliation(s)
- Athina Zampara
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Yilmaz Emre Gencay
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dennis Grimon
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | | | | | | | - Yves Briers
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | | | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Son B, Kong M, Cha Y, Bai J, Ryu S. Simultaneous Control of Staphylococcus aureus and Bacillus cereus Using a Hybrid Endolysin LysB4EAD-LysSA11. Antibiotics (Basel) 2020; 9:antibiotics9120906. [PMID: 33327470 PMCID: PMC7764928 DOI: 10.3390/antibiotics9120906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 01/01/2023] Open
Abstract
Bacteriophage endolysins have attracted attention as promising alternatives to antibiotics, and their modular structure facilitates endolysin engineering to develop novel endolysins with enhanced versatility. Here, we constructed hybrid proteins consisting of two different endolysins for simultaneous control of two critical foodborne pathogens, Staphylococcus aureus and Bacillus cereus. The full-length or enzymatically active domain (EAD) of LysB4, an endolysin from the B. cereus-infecting phage B4, was fused to LysSA11, an endolysin of the S. aureus-infecting phage SA11, via a helical linker in both orientations. The hybrid proteins maintained the lytic activity of their parental endolysins against both S. aureus and B. cereus, but they showed an extended antimicrobial spectrum. Among them, the EAD of LysB4 fused with LysSA11 (LysB4EAD-LyaSA11) showed significantly increased thermal stability compared to its parental endolysins. LysB4EAD-LysSA11 exhibited high lytic activity at pH 8.0–9.0 against S. aureus and at pH 5.0–10.0 against B. cereus, but the lytic activity of the protein decreased in the presence of NaCl. In boiled rice, treatment with 3.0 µM of LysB4EAD-LysSA11 reduced the number of S. aureus and B. cereus to undetectable levels within 2 h and also showed superior antimicrobial activity to LyB4EAD and LysSA11 in combination. These results suggest that LysB4EAD-LysSA11 could be a potent antimicrobial agent for simultaneous control of S. aureus and B. cereus.
Collapse
Affiliation(s)
- Bokyung Son
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Minsuk Kong
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Yoyeon Cha
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jaewoo Bai
- Division of Applied Food System, Food Science & Technology, Seoul Women's University, Seoul 01797, Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
21
|
Lysin LysMK34 of Acinetobacter baumannii Bacteriophage PMK34 Has a Turgor Pressure-Dependent Intrinsic Antibacterial Activity and Reverts Colistin Resistance. Appl Environ Microbiol 2020; 86:AEM.01311-20. [PMID: 32709718 DOI: 10.1128/aem.01311-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
The prevalence of extensively and pandrug-resistant strains of Acinetobacter baumannii leaves little or no therapeutic options for treatment for this bacterial pathogen. Bacteriophages and their lysins represent attractive alternative antibacterial strategies in this regard. We used the extensively drug-resistant A. baumannii strain MK34 to isolate the bacteriophage PMK34 (vB_AbaP_PMK34). This phage shows fast adsorption and lacks virulence genes; nonetheless, its narrow host spectrum based on capsule recognition limits broad application. PMK34 is a Fri1virus member of the Autographiviridae and has a 41.8-kb genome (50 open reading frames), encoding an endolysin (LysMK34) with potent muralytic activity (1,499.9 ± 131 U/μM), a typical mesophilic thermal stability up to 55°C, and a broad pH activity range (4 to 10). LysMK34 has an intrinsic antibacterial activity up to 4.8 and 2.4 log units for A. baumannii and Pseudomonas aeruginosa strains, respectively, but only when a high turgor pressure is present. The addition of 0.5 mM EDTA or application of an osmotic shock after treatment can compensate for the lack of a high turgor pressure. The combination of LysMK34 and colistin results in up to 32-fold reduction of the MIC of colistin, and colistin-resistant strains are resensitized in both Mueller-Hinton broth and 50% human serum. As such, LysMK34 may be used to safeguard the applicability of colistin as a last-resort antibiotic.IMPORTANCE A. baumannii is one of the most challenging pathogens for which development of new and effective antimicrobials is urgently needed. Colistin is a last-resort antibiotic, and even colistin-resistant A. baumannii strains exist. Here, we present a lysin that sensitizes A. baumannii for colistin and can revert colistin resistance to colistin susceptibility. The lysin also shows a strong, turgor pressure-dependent intrinsic antibacterial activity, providing new insights in the mode of action of lysins with intrinsic activity against Gram-negative bacteria.
Collapse
|
22
|
Exploiting phage receptor binding proteins to enable endolysins to kill Gram-negative bacteria. Sci Rep 2020; 10:12087. [PMID: 32694655 PMCID: PMC7374709 DOI: 10.1038/s41598-020-68983-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 07/02/2020] [Indexed: 01/21/2023] Open
Abstract
Bacteriophage-encoded endolysins degrading the bacterial peptidoglycan are promising antibacterials for combating antibiotic-resistant bacteria. However, endolysins have limited use against Gram-negative bacteria, since the outer membrane prevents access to the peptidoglycan. Here, we present Innolysins, an innovative concept for engineering endolysins to exert antibacterial activity against Gram-negative bacteria. Innolysins combine the enzymatic activity of endolysins with the binding capacity of phage receptor binding proteins (RBPs). As proof-of-concept, we constructed 12 Innolysins by fusing phage T5 endolysin and RBP Pb5 in different configurations. One of these, Innolysin Ec6 displayed antibacterial activity against Escherichia coli only in the presence of Pb5 receptor FhuA, leading to 1.22 ± 0.12 log reduction in cell counts. Accordingly, other bacterial species carrying FhuA homologs such as Shigella sonnei and Pseudomonas aeruginosa were sensitive to Innolysin Ec6. To enhance the antibacterial activity, we further constructed 228 novel Innolysins by fusing 23 endolysins with Pb5. High-throughput screening allowed to select Innolysin Ec21 as the best antibacterial candidate, leading to 2.20 ± 0.09 log reduction in E. coli counts. Interestingly, Innolysin Ec21 also displayed bactericidal activity against E. coli resistant to third-generation cephalosporins, reaching a 3.31 ± 0.53 log reduction in cell counts. Overall, the Innolysin approach expands previous endolysin-engineering strategies, allowing customization of endolysins by exploiting phage RBPs to specifically target Gram-negative bacteria.
Collapse
|
23
|
Gerstmans H, Grimon D, Gutiérrez D, Lood C, Rodríguez A, van Noort V, Lammertyn J, Lavigne R, Briers Y. A VersaTile-driven platform for rapid hit-to-lead development of engineered lysins. SCIENCE ADVANCES 2020; 6:eaaz1136. [PMID: 32537492 PMCID: PMC7269649 DOI: 10.1126/sciadv.aaz1136] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Health care authorities are calling for new antibacterial therapies to cope with the global emergence of antibiotic-resistant bacteria. Bacteriophage-encoded lysins are a unique class of antibacterials with promising (pre)clinical progress. Custom engineering of lysins allows for the creation of variants against potentially any bacterial pathogen. We here present a high-throughput hit-to-lead development platform for engineered lysins. The platform is driven by VersaTile, a new DNA assembly method for the rapid construction of combinatorial libraries of engineered lysins. We constructed approximately 10,000 lysin variants. Using an iterative screening procedure, we identified a lead variant with high antibacterial activity against Acinetobacter baumannii in human serum and an ex vivo pig burn wound model. This generic platform could offer new opportunities to populate the preclinical pipeline with engineered lysins for diverse (therapeutic) applications.
Collapse
Affiliation(s)
- H. Gerstmans
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
- Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - D. Grimon
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
| | - D. Gutiérrez
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| | - C. Lood
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | - A. Rodríguez
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| | - V. van Noort
- Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 Leiden, Netherlands
| | - J. Lammertyn
- Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - R. Lavigne
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Y. Briers
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
| |
Collapse
|
24
|
Kaur J, Singh P, Sharma D, Harjai K, Chhibber S. A potent enzybiotic against methicillin-resistant Staphylococcus aureus. Virus Genes 2020; 56:480-497. [DOI: 10.1007/s11262-020-01762-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/24/2020] [Indexed: 12/22/2022]
|
25
|
Giovannoni M, Gramegna G, Benedetti M, Mattei B. Industrial Use of Cell Wall Degrading Enzymes: The Fine Line Between Production Strategy and Economic Feasibility. Front Bioeng Biotechnol 2020; 8:356. [PMID: 32411686 PMCID: PMC7200985 DOI: 10.3389/fbioe.2020.00356] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Cell Wall Degrading Enzymes (CWDEs) are a heterogeneous group of enzymes including glycosyl-hydrolases, oxidoreductases, lyases, and esterases. Microbes with degrading activities toward plant cell wall polysaccharides are the most relevant source of CWDEs for industrial applications. These organisms secrete a wide array of CWDEs in amounts strictly necessary for their own sustenance, nonetheless the production of CWDEs from wild type microbes can be increased at large-scale by using optimized fermentation strategies. In the last decades, advances in genetic engineering allowed the expression of recombinant CWDEs also in lab-domesticated organisms such as E. coli, yeasts and plants, dramatically increasing the available options for the large-scale production of CWDEs. The optimization of a CWDE-producing biofactory is a hard challenge that biotechnologists tackle by testing different expression strategies and expression-hosts. Although both the yield and production costs are critical factors to produce biomolecules at industrial scale, these parameters are often disregarded in basic research. This review presents the main characteristics and industrial applications of CWDEs directed toward the cell wall of plants, bacteria, fungi and microalgae. Different biofactories for CWDE expression are compared in order to highlight strengths and weaknesses of each production system and how these aspects impact the final enzyme cost and, consequently, the economic feasibility of using CWDEs for industrial applications.
Collapse
Affiliation(s)
- Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Gramegna
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
26
|
Love MJ, Abeysekera GS, Muscroft-Taylor AC, Billington C, Dobson RC. On the catalytic mechanism of bacteriophage endolysins: Opportunities for engineering. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140302. [DOI: 10.1016/j.bbapap.2019.140302] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/03/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
|
27
|
Anand T, Virmani N, Kumar S, Mohanty AK, Pavulraj S, Bera BC, Vaid RK, Ahlawat U, Tripathi BN. Phage therapy for treatment of virulent Klebsiella pneumoniae infection in a mouse model. J Glob Antimicrob Resist 2019; 21:34-41. [PMID: 31604128 DOI: 10.1016/j.jgar.2019.09.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVES Klebsiella pneumoniae is an important emerging pathogen of humans and animals leading to serious clinical consequences. Increased antibiotic use has promoted the emergence of carbapenem-resistant and extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae strains. Recently, phage therapy has gained momentum as a possible alternative against emerging antimicrobial resistance. This study was performed to assess the therapeutic effects of a novel lytic phage (VTCCBPA43) in a pneumonic mouse model in order to explore the efficacy of phage therapy against virulent K. pneumoniae infection. METHODS The tailed phage VTCCBPA43 was assessed for its growth kinetics, in vitro host range, and temperature and pH sensitivity. Protein constituents were analysed by SDS-PAGE and nLC-MS/MS. Therapeutic efficacy was observed 2 h post-challenge with virulent K. pneumoniae in a BALB/c mouse model. RESULTS Phage VTCCBPA43 was found to be highly temperature-tolerant (up to 80 °C). It was most active at pH 5, had a burst size of 172 PFU/mL and exhibited a narrow host range. It was identified as a KP36-like phage by shotgun proteomics. Following intranasal application of a single dose (2 × 109 PFU/mouse) post-challenge with virulent K. pneumoniae, the presence of biologically active phage in vivo and a significant reduction in the lung bacterial load at all time points was observed. A reduction in lesion severity suggested overall beneficial effects of VTCCBPA43 phage therapy in the pneumonic mouse model. CONCLUSION This research represents the first in vivo evidence of effective phage therapy against K. pneumoniae infection by the intranasal route.
Collapse
Affiliation(s)
- Taruna Anand
- National Centre for Veterinary Type Cultures, Indian Council of Agricultural Research (ICAR)-National Research Centre on Equines, Sirsa Road, Hisar, Haryana-125001, India.
| | - Nitin Virmani
- National Centre for Veterinary Type Cultures, Indian Council of Agricultural Research (ICAR)-National Research Centre on Equines, Sirsa Road, Hisar, Haryana-125001, India
| | - Sudarshan Kumar
- ICAR-National Dairy Research Institute, Animal Biotechnology Centre, Karnal, Haryana-132001, India
| | - Ashok Kumar Mohanty
- ICAR-National Dairy Research Institute, Animal Biotechnology Centre, Karnal, Haryana-132001, India
| | - S Pavulraj
- National Centre for Veterinary Type Cultures, Indian Council of Agricultural Research (ICAR)-National Research Centre on Equines, Sirsa Road, Hisar, Haryana-125001, India
| | - Bidhan Ch Bera
- National Centre for Veterinary Type Cultures, Indian Council of Agricultural Research (ICAR)-National Research Centre on Equines, Sirsa Road, Hisar, Haryana-125001, India
| | - Rajesh K Vaid
- National Centre for Veterinary Type Cultures, Indian Council of Agricultural Research (ICAR)-National Research Centre on Equines, Sirsa Road, Hisar, Haryana-125001, India
| | - Umang Ahlawat
- National Centre for Veterinary Type Cultures, Indian Council of Agricultural Research (ICAR)-National Research Centre on Equines, Sirsa Road, Hisar, Haryana-125001, India
| | - B N Tripathi
- National Centre for Veterinary Type Cultures, Indian Council of Agricultural Research (ICAR)-National Research Centre on Equines, Sirsa Road, Hisar, Haryana-125001, India
| |
Collapse
|
28
|
Plotka M, Sancho-Vaello E, Dorawa S, Kaczorowska AK, Kozlowski LP, Kaczorowski T, Zeth K. Structure and function of the Ts2631 endolysin of Thermus scotoductus phage vB_Tsc2631 with unique N-terminal extension used for peptidoglycan binding. Sci Rep 2019; 9:1261. [PMID: 30718611 PMCID: PMC6361986 DOI: 10.1038/s41598-018-37417-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
To escape from hosts after completing their life cycle, bacteriophages often use endolysins, which degrade bacterial peptidoglycan. While mesophilic phages have been extensively studied, their thermophilic counterparts are not well characterized. Here, we present a detailed analysis of the structure and function of Ts2631 endolysin from thermophilic phage vB_Tsc2631, which is a zinc-dependent amidase. The active site of Ts2631 consists of His30, Tyr58, His131 and Cys139, which are involved in Zn2+ coordination and catalysis. We found that the active site residues are necessary for lysis yet not crucial for peptidoglycan binding. To elucidate residues involved in the enzyme interaction with peptidoglycan, we tested single-residue substitution variants and identified Tyr60 and Lys70 as essential residues. Moreover, substitution of Cys80, abrogating disulfide bridge formation, inactivates Ts2631, as do substitutions of His31, Thr32 and Asn85 residues. The endolysin contains a positively charged N-terminal extension of 20 residues that can protrude from the remainder of the enzyme and is crucial for peptidoglycan binding. We show that the deletion of 20 residues from the N-terminus abolished the bacteriolytic activity of the enzyme. Because Ts2631 exhibits intrinsic antibacterial activity and unusual thermal stability, it is perfectly suited as a scaffold for the development of antimicrobial agents.
Collapse
Affiliation(s)
- Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Gdansk, Poland.
| | - Enea Sancho-Vaello
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC,UPV/EHU), Leioa, Bizkaia, Spain
| | - Sebastian Dorawa
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Lukasz P Kozlowski
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Gdansk, Poland.
| | - Kornelius Zeth
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
29
|
Santos SB, Costa AR, Carvalho C, Nóbrega FL, Azeredo J. Exploiting Bacteriophage Proteomes: The Hidden Biotechnological Potential. Trends Biotechnol 2018; 36:966-984. [DOI: 10.1016/j.tibtech.2018.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
|
30
|
Yang Y, Le S, Shen W, Chen Q, Huang Y, Lu S, Tan Y, Li M, Hu F, Li Y. Antibacterial Activity of a Lytic Enzyme Encoded by Pseudomonas aeruginosa Double Stranded RNA Bacteriophage phiYY. Front Microbiol 2018; 9:1778. [PMID: 30127777 PMCID: PMC6088179 DOI: 10.3389/fmicb.2018.01778] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/16/2018] [Indexed: 01/15/2023] Open
Abstract
Multidrug-resistant Pseudomonas aeruginosa is one of the most life-threatening pathogens for global health. In this regard, phage encoded lytic proteins, including endolysins and virion-associated peptidoglycan hydrolases (VAPGH), have been proposed as promising antimicrobial agents to treat P. aeruginosa. Most dsDNA phages use VAPGH to degrade peptidoglycan (PG) during infection, and endolysin to lyse the host cells at the end of lytic cycle. By contrast, dsRNA phage encodes only one lytic protein, which is located in the viral membrane to digest the PG during penetration, and also serves as an endolysin to release the phage. Currently, there are only seven sequenced dsRNA phages, and phiYY is the only one that infects human pathogen P. aeruginosa. In this study, dsRNA phage phiYY encoded lysin, named Ply17, was cloned and purified. Ply17 contains a PG-binding domain and a lysozyme-like-family domain. Ply17 exhibited a broad antibacterial activity against the outer membrane permeabilizer treated Gram-negative bacteria. The best lytic activity was achieved at 37°C, pH 7.5, in the presence of 0.5 mM EDTA. Moreover, it could effectively lyse Gram-positive bacteria directly, including Staphylococcus aureus. Therefore, dsRNA phage encoded Ply17 might be a promising new agent for treating multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Yuhui Yang
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Shuai Le
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Wei Shen
- Department of Medical Laboratory, Chengdu Military General Hospital, Chengdu, China
| | - Qian Chen
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Youying Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Shuguang Lu
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Yinling Tan
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Ming Li
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Fuquan Hu
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Yang Li
- Trauma Center of PLA, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
31
|
Phage-Derived Peptidoglycan Degrading Enzymes: Challenges and Future Prospects for In Vivo Therapy. Viruses 2018; 10:v10060292. [PMID: 29844287 PMCID: PMC6024856 DOI: 10.3390/v10060292] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/17/2023] Open
Abstract
Peptidoglycan degrading enzymes are of increasing interest as antibacterial agents, especially against multi-drug resistant pathogens. Herein we present a review about the biological features of virion-associated lysins and endolysins, phage-derived enzymes that have naturally evolved to compromise the bacterial peptidoglycan from without and from within, respectively. These natural features may determine the adaptability of the enzymes to kill bacteria in different environments. Endolysins are by far the most studied group of peptidoglycan-degrading enzymes, with several studies showing that they can exhibit potent antibacterial activity under specific conditions. However, the lytic activity of most endolysins seems to be significantly reduced when tested against actively growing bacteria, something that may be related to fact that these enzymes are naturally designed to degrade the peptidoglycan from within dead cells. This may negatively impact the efficacy of the endolysin in treating some infections in vivo. Here, we present a critical view of the methods commonly used to evaluate in vitro and in vivo the antibacterial performance of PG-degrading enzymes, focusing on the major hurdles concerning in vitro-to-in vivo translation.
Collapse
|
32
|
Ha E, Son B, Ryu S. Clostridium perfringens Virulent Bacteriophage CPS2 and Its Thermostable Endolysin LysCPS2. Viruses 2018; 10:v10050251. [PMID: 29751651 PMCID: PMC5977244 DOI: 10.3390/v10050251] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/30/2022] Open
Abstract
Clostridium perfringens is one of the most common causes of food-borne illness. The increasing prevalence of multidrug-resistant bacteria requires the development of alternatives to typical antimicrobial treatments. Here, we isolated and characterized a C. perfringens-specific virulent bacteriophage CPS2 from chicken feces. The CPS2 phage contains a 17,961 bp double-stranded DNA genome with 25 putative ORFs, and belongs to the Picovirinae, subfamily of Podoviridae. Bioinformatic analysis of the CPS2 genome revealed a putative endolysin, LysCPS2, which is homologous to the endolysin of Clostridium phage phiZP2 and phiCP7R. The enzyme showed strong lytic activity against C. perfringens with optimum conditions at pH 7.5–10, 25–65 °C, and over a broad range of NaCl concentrations. Interestingly, LysCPS2 was found to be highly thermostable, with up to 30% of its lytic activity remaining after 10 min of incubation at 95 °C. The cell wall binding domain in the C-terminal region of LysCPS2 showed a binding spectrum specific to C. perfringens strains. This is the first report to characterize highly thermostable endolysin isolated from virulent C. perfringens bacteriophage. The enzyme can be used as an alternative biocontrol and detection agent against C. perfringens.
Collapse
Affiliation(s)
- Eunsu Ha
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Bokyung Son
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
33
|
Engineering of Phage-Derived Lytic Enzymes: Improving Their Potential as Antimicrobials. Antibiotics (Basel) 2018; 7:antibiotics7020029. [PMID: 29565804 PMCID: PMC6023083 DOI: 10.3390/antibiotics7020029] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 12/31/2022] Open
Abstract
Lytic enzymes encoded by bacteriophages have been intensively explored as alternative agents for combating bacterial pathogens in different contexts. The antibacterial character of these enzymes (enzybiotics) results from their degrading activity towards peptidoglycan, an essential component of the bacterial cell wall. In fact, phage lytic products have the capacity to kill target bacteria when added exogenously in the form of recombinant proteins. However, there is also growing recognition that the natural bactericidal activity of these agents can, and sometimes needs to be, substantially improved through manipulation of their functional domains or by equipping them with new functions. In addition, often, native lytic proteins exhibit features that restrict their applicability as effective antibacterials, such as poor solubility or reduced stability. Here, I present an overview of the engineering approaches that can be followed not only to overcome these and other restrictions, but also to generate completely new antibacterial agents with significantly enhanced characteristics. As conventional antibiotics are running short, the remarkable progress in this field opens up the possibility of tailoring efficient enzybiotics to tackle the most menacing bacterial infections.
Collapse
|
34
|
Maciejewska B, Źrubek K, Espaillat A, Wiśniewska M, Rembacz KP, Cava F, Dubin G, Drulis-Kawa Z. Modular endolysin of Burkholderia AP3 phage has the largest lysozyme-like catalytic subunit discovered to date and no catalytic aspartate residue. Sci Rep 2017; 7:14501. [PMID: 29109551 PMCID: PMC5674055 DOI: 10.1038/s41598-017-14797-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/16/2017] [Indexed: 01/19/2023] Open
Abstract
Endolysins are peptidoglycan-degrading enzymes utilized by bacteriophages to release the progeny from bacterial cells. The lytic properties of phage endolysins make them potential antibacterial agents for medical and industrial applications. Here, we present a comprehensive characterization of phage AP3 modular endolysin (AP3gp15) containing cell wall binding domain and an enzymatic domain (DUF3380 by BLASTP), both widespread and conservative. Our structural analysis demonstrates the low similarity of an enzymatic domain to known lysozymes and an unusual catalytic centre characterized by only a single glutamic acid residue and no aspartic acid. Thus, our findings suggest distinguishing a novel class of muralytic enzymes having the activity and catalytic centre organization of DUF3380. The lack of amino acid sequence homology between AP3gp15 and other known muralytic enzymes may reflect the evolutionary convergence of analogous glycosidases. Moreover, the broad antibacterial spectrum, lack of cytotoxic effect on human cells and the stability characteristics of AP3 endolysin advocate for its future application development.
Collapse
Affiliation(s)
- Barbara Maciejewska
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Karol Źrubek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Protein Crystallography Research Group, Malopolska Centre of Biotechnology, Gronostajowa 7A, 30-387, Krakow, Poland
| | - Akbar Espaillat
- Laboratory for Molecular Infection Medicine Sweden. Molecular Biology Department, Umeå University, SE-901 87, Umeå, Sweden
| | - Magdalena Wiśniewska
- Protein Crystallography Research Group, Malopolska Centre of Biotechnology, Gronostajowa 7A, 30-387, Krakow, Poland
| | - Krzysztof P Rembacz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Protein Crystallography Research Group, Malopolska Centre of Biotechnology, Gronostajowa 7A, 30-387, Krakow, Poland
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden. Molecular Biology Department, Umeå University, SE-901 87, Umeå, Sweden
| | - Grzegorz Dubin
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
- Protein Crystallography Research Group, Malopolska Centre of Biotechnology, Gronostajowa 7A, 30-387, Krakow, Poland.
| | - Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland.
| |
Collapse
|
35
|
Wu X, Kwon SJ, Kim J, Kane RS, Dordick JS. Biocatalytic Nanocomposites for Combating Bacterial Pathogens. Annu Rev Chem Biomol Eng 2017; 8:87-113. [DOI: 10.1146/annurev-chembioeng-060816-101612] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xia Wu
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ravi S. Kane
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
| |
Collapse
|
36
|
Latka A, Maciejewska B, Majkowska-Skrobek G, Briers Y, Drulis-Kawa Z. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol 2017; 101:3103-3119. [PMID: 28337580 PMCID: PMC5380687 DOI: 10.1007/s00253-017-8224-6] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/23/2017] [Accepted: 03/04/2017] [Indexed: 11/24/2022]
Abstract
Bacteriophages are bacterial viruses that infect the host after successful receptor recognition and adsorption to the cell surface. The irreversible adherence followed by genome material ejection into host cell cytoplasm must be preceded by the passage of diverse carbohydrate barriers such as capsule polysaccharides (CPSs), O-polysaccharide chains of lipopolysaccharide (LPS) molecules, extracellular polysaccharides (EPSs) forming biofilm matrix, and peptidoglycan (PG) layers. For that purpose, bacteriophages are equipped with various virion-associated carbohydrate active enzymes, termed polysaccharide depolymerases and lysins, that recognize, bind, and degrade the polysaccharide compounds. We discuss the existing diversity in structural locations, variable architectures, enzymatic specificities, and evolutionary aspects of polysaccharide depolymerases and virion-associated lysins (VALs) and illustrate how these aspects can correlate with the host spectrum. In addition, we present methods that can be used for activity determination and the application potential of these enzymes as antibacterials, antivirulence agents, and diagnostic tools.
Collapse
Affiliation(s)
- Agnieszka Latka
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland.,Laboratory of Applied Biotechnology, Department of Applied Biosciences, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Barbara Maciejewska
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Grazyna Majkowska-Skrobek
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Applied Biosciences, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland.
| |
Collapse
|
37
|
Carvalho C, Costa AR, Silva F, Oliveira A. Bacteriophages and their derivatives for the treatment and control of food-producing animal infections. Crit Rev Microbiol 2017; 43:583-601. [DOI: 10.1080/1040841x.2016.1271309] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carla Carvalho
- CEB-UM: Centre of Biological Engineering, University of Minho, Braga, Portugal
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Ana Rita Costa
- CEB-UM: Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Filipe Silva
- CECAV-UTAD, Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Ana Oliveira
- CEB-UM: Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
38
|
Khakhum N, Yordpratum U, Boonmee A, Tattawasart U, Rodrigues JLM, Sermswan RW. Cloning, expression, and characterization of a peptidoglycan hydrolase from the Burkholderia pseudomallei phage ST79. AMB Express 2016; 6:77. [PMID: 27637947 PMCID: PMC5025407 DOI: 10.1186/s13568-016-0251-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/08/2016] [Indexed: 01/28/2023] Open
Abstract
The lytic phage ST79 of Burkholderia pseudomallei can lyse a broad range of its host including antibiotic resistant isolates from within using a set of proteins, holin, lysB, lysC and endolysin, a peptidoglycan (PG) hydrolase enzyme. The phage ST79 endolysin gene identified as peptidase M15A was cloned, expressed and purified to evaluate its potential to lyse pathogenic bacteria. The molecular size of the purified enzyme is approximately 18 kDa and the in silico study cited here indicated the presence of a zinc-binding domain predicted to be a member of the subfamily A of a metallopeptidase. Its activity, however, was reduced by the presence of Zn2+. When Escherichia coli PG was used as a substrate and subjected to digestion for 5 min with 3 μg/ml of enzyme, the peptidase M15A showed 2 times higher in lysis efficiency when compared to the commercial lysozyme. The enzyme works in a broad alkaligenic pH range of 7.5–9.0 and temperatures from 25 to 42 °C. The enzyme was able to lyse 18 Gram-negative bacteria in which the outer membrane was permeabilized by chloroform treatment. Interestingly, it also lysed Enterococcus sp., but not other Gram-positive bacteria. In general, endolysin cannot lyse Gram-negative bacteria from outside, however, the cationic amphipathic C-terminal in some endolysins showed permeability to Gram-negative outer membranes. Genetically engineered ST79 peptidase M15A that showed a broad spectrum against Gram-negative bacterial PG or, in combination with an antibiotic the same way as combined drug methodology, could facilitate an effective treatment of severe or antibiotic resistant cases.
Collapse
|
39
|
Maciejewska B, Roszniowski B, Espaillat A, Kęsik-Szeloch A, Majkowska-Skrobek G, Kropinski AM, Briers Y, Cava F, Lavigne R, Drulis-Kawa Z. Klebsiella phages representing a novel clade of viruses with an unknown DNA modification and biotechnologically interesting enzymes. Appl Microbiol Biotechnol 2016; 101:673-684. [PMID: 27766357 PMCID: PMC5219037 DOI: 10.1007/s00253-016-7928-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/02/2016] [Accepted: 10/09/2016] [Indexed: 12/21/2022]
Abstract
Lytic bacteriophages and phage-encoded endolysins (peptidoglycan hydrolases) provide a source for the development of novel antimicrobial strategies. In the present study, we focus on the closely related (96 % DNA sequence identity) environmental myoviruses vB_KpnM_KP15 (KP15) and vB_KpnM_KP27 (KP27) infecting multidrug-resistant Klebsiella pneumoniae and Klebsiella oxytoca strains. Their genome organisation and evolutionary relationship are compared to Enterobacter phage phiEap-3 and Klebsiella phages Matisse and Miro. Due to the shared and distinct evolutionary history of these phages, we propose to create a new phage genus “Kp15virus” within the Tevenvirinae subfamily. In silico genome analysis reveals two unique putative homing endonucleases of KP27 phage, probably involved in unrevealed mechanism of DNA modification and resistance to restriction digestion, resulting in a broader host spectrum. Additionally, we identified in KP15 and KP27 a complete set of lysis genes, containing holin, antiholin, spanin and endolysin. By turbidimetric assays on permeabilized Gram-negative strains, we verified the ability of the KP27 endolysin to destroy the bacterial peptidoglycan. We confirmed high stability, absence of toxicity on a human epithelial cell line and the enzymatic specificity of endolysin, which was found to possess endopeptidase activity, cleaving the peptide stem between l-alanine and d-glutamic acid.
Collapse
Affiliation(s)
- Barbara Maciejewska
- Institute of Genetics and Microbiology, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Bartosz Roszniowski
- Institute of Genetics and Microbiology, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Akbar Espaillat
- Laboratory for Molecular Infection Medicine Sweden, Molecular Biology Department, Umeå University, SE-901 87, Umeå, Sweden
| | - Agata Kęsik-Szeloch
- Institute of Genetics and Microbiology, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Grazyna Majkowska-Skrobek
- Institute of Genetics and Microbiology, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Andrew M Kropinski
- Departments of Food Science, Molecular and Cellular Biology, and Pathobiology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Yves Briers
- Department Applied Biosciences, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Molecular Biology Department, Umeå University, SE-901 87, Umeå, Sweden
| | - Rob Lavigne
- Laboratory of Gene Technology, KULeuven, Leuven Kasteelpark Arenberg 21 Box 2462, 3001, Leuven, Belgium
| | - Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| |
Collapse
|
40
|
DUF3380 Domain from a Salmonella Phage Endolysin Shows Potent N-Acetylmuramidase Activity. Appl Environ Microbiol 2016; 82:4975-81. [PMID: 27287318 DOI: 10.1128/aem.00446-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/02/2016] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Bacteriophage-encoded endolysins are highly diverse enzymes that cleave the bacterial peptidoglycan layer. Current research focuses on their potential applications in medicine, in food conservation, and as biotechnological tools. Despite the wealth of applications relying on the use of endolysin, little is known about the enzymatic properties of these enzymes, especially in the case of endolysins of bacteriophages infecting Gram-negative species. Automated genome annotations therefore remain to be confirmed. Here, we report the biochemical analysis and cleavage site determination of a novel Salmonella bacteriophage endolysin, Gp110, which comprises an uncharacterized domain of unknown function (DUF3380; pfam11860) in its C terminus and shows a higher specific activity (34,240 U/μM) than that of 14 previously characterized endolysins active against peptidoglycan from Gram-negative bacteria (corresponding to 1.7- to 364-fold higher activity). Gp110 is a modular endolysin with an optimal pH of enzymatic activity of pH 8 and elevated thermal resistance. Reverse-phase high-performance liquid chromatography (RP-HPLC) analysis coupled to mass spectrometry showed that DUF3380 has N-acetylmuramidase (lysozyme) activity cleaving the β-(1,4) glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine residues. Gp110 is active against directly cross-linked peptidoglycans with various peptide stem compositions, making it an attractive enzyme for developing novel antimicrobial agents. IMPORTANCE We report the functional and biochemical characterization of the Salmonella phage endolysin Gp110. This endolysin has a modular structure with an enzymatically active domain and a cell wall binding domain. The enzymatic activity of this endolysin exceeds that of all other endolysins previously characterized using the same methods. A domain of unknown function (DUF3380) is responsible for this high enzymatic activity. We report that DUF3380 has N-acetylmuramidase activity against directly cross-linked peptidoglycans with various peptide stem compositions. This experimentally verified activity allows better classification and understanding of the enzymatic activities of endolysins, which mostly are inferred by sequence similarities. Three-dimensional structure predictions for Gp110 suggest a fold that is completely different from that of known structures of enzymes with the same peptidoglycan cleavage specificity, making this endolysin quite unique. All of these features, combined with increased thermal resistance, make Gp110 an attractive candidate for engineering novel endolysin-based antibacterials.
Collapse
|
41
|
Oliveira H, Vilas Boas D, Mesnage S, Kluskens LD, Lavigne R, Sillankorva S, Secundo F, Azeredo J. Structural and Enzymatic Characterization of ABgp46, a Novel Phage Endolysin with Broad Anti-Gram-Negative Bacterial Activity. Front Microbiol 2016; 7:208. [PMID: 26955368 PMCID: PMC4768612 DOI: 10.3389/fmicb.2016.00208] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 02/08/2016] [Indexed: 12/12/2022] Open
Abstract
The present study demonstrates the antibacterial potential of a phage endolysin against Gram-negative pathogens, particularly against multidrug resistant strains of Acinetobacter baumannii. We have cloned, heterologously expressed and characterized a novel endolysin (ABgp46) from Acinetobacter phage vb_AbaP_CEB1 and tested its antibacterial activity against several multidrug-resistant A. baumannii strains. LC-MS revealed that ABgp46 is an N-acetylmuramidase, that is also active over a broad pH range (4.0-10.0) and temperatures up to 50°C. Interestingly, ABgp46 has intrinsic and specific anti-A. baumannii activity, reducing multidrug resistant strains by up to 2 logs within 2 h. By combining ABgp46 with several organic acids that act as outer membrane permeabilizing agents, it is possible to increase and broaden antibacterial activity to include other Gram-negative bacterial pathogens. In the presence of citric and malic acid, ABgp46 reduces A. baumannii below the detection limit (>5 log) and more than 4 logs Pseudomonas aeruginosa and Salmonella typhimurium strains. Overall, this globular endolysin exhibits a broad and high activity against Gram-negative pathogens, that can be enhanced in presence of citric and malic acid, and be used in human and veterinary medicine.
Collapse
Affiliation(s)
- Hugo Oliveira
- Centre of Biological Engineering, Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho Braga, Portugal
| | - Diana Vilas Boas
- Centre of Biological Engineering, Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho Braga, Portugal
| | - Stéphane Mesnage
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield Sheffield, UK
| | - Leon D Kluskens
- Centre of Biological Engineering, Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho Braga, Portugal
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven Leuven, Belgium
| | - Sanna Sillankorva
- Centre of Biological Engineering, Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho Braga, Portugal
| | - Francesco Secundo
- Istituto di Chimica del Riconoscimento Molecolare - Consiglio Nazionale delle Ricerche Milano, Italy
| | - Joana Azeredo
- Centre of Biological Engineering, Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho Braga, Portugal
| |
Collapse
|
42
|
Li M, Li M, Lin H, Wang J, Jin Y, Han F. Characterization of the novel T4-like Salmonella enterica bacteriophage STP4-a and its endolysin. Arch Virol 2015; 161:377-84. [PMID: 26563319 DOI: 10.1007/s00705-015-2647-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022]
Abstract
While screening for new antimicrobial agents for multidrug-resistant Salmonella enterica, the novel lytic bacteriophage STP4-a was isolated and characterized. Phage morphology revealed that STP4-a belongs to the family Myoviridae. Bacterial challenge assays showed that different serovars of Salmonella enterica were susceptible to STP4-a infection. The genomic characteristics of STP4-a, containing 159,914 bp of dsDNA with an average GC content of 36.86 %, were determined. Furthermore, the endolysin of STP4-a was expressed and characterized. The novel endolysin, LysSTP4, has hydrolytic activity towards outer-membrane-permeabilized S. enterica and Escherichia coli. These results provide essential information for the development of novel phage-based biocontrol agents against S. enterica.
Collapse
Affiliation(s)
- Meng Li
- Food Safety Laboratory, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Mengzhe Li
- Food Safety Laboratory, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Hong Lin
- Food Safety Laboratory, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Jingxue Wang
- Food Safety Laboratory, Ocean University of China, Qingdao, 266003, People's Republic of China.
| | - Yanqiu Jin
- Food Safety Laboratory, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Feng Han
- Food Safety Laboratory, Ocean University of China, Qingdao, 266003, People's Republic of China
| |
Collapse
|
43
|
Plotka M, Kaczorowska AK, Morzywolek A, Makowska J, Kozlowski LP, Thorisdottir A, Skírnisdottir S, Hjörleifsdottir S, Fridjonsson OH, Hreggvidsson GO, Kristjansson JK, Dabrowski S, Bujnicki JM, Kaczorowski T. Biochemical Characterization and Validation of a Catalytic Site of a Highly Thermostable Ts2631 Endolysin from the Thermus scotoductus Phage vB_Tsc2631. PLoS One 2015; 10:e0137374. [PMID: 26375388 PMCID: PMC4573324 DOI: 10.1371/journal.pone.0137374] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/17/2015] [Indexed: 01/21/2023] Open
Abstract
Phage vB_Tsc2631 infects the extremophilic bacterium Thermus scotoductus MAT2631 and uses the Ts2631 endolysin for the release of its progeny. The Ts2631 endolysin is the first endolysin from thermophilic bacteriophage with an experimentally validated catalytic site. In silico analysis and computational modelling of the Ts2631 endolysin structure revealed a conserved Zn2+ binding site (His30, Tyr58, His131 and Cys139) similar to Zn2+ binding site of eukaryotic peptidoglycan recognition proteins (PGRPs). We have shown that the Ts2631 endolysin lytic activity is dependent on divalent metal ions (Zn2+ and Ca2+). The Ts2631 endolysin substitution variants H30N, Y58F, H131N and C139S dramatically lost their antimicrobial activity, providing evidence for the role of the aforementioned residues in the lytic activity of the enzyme. The enzyme has proven to be not only thermoresistant, retaining 64.8% of its initial activity after 2 h at 95°C, but also highly thermodynamically stable (Tm = 99.82°C, ΔHcal = 4.58 × 104 cal mol-1). Substitutions of histidine residues (H30N and H131N) and a cysteine residue (C139S) resulted in variants aggregating at temperatures ≥75°C, indicating a significant role of these residues in enzyme thermostability. The substrate spectrum of the Ts2631 endolysin included extremophiles of the genus Thermus but also Gram-negative mesophiles, such as Escherichia coli, Salmonella panama, Pseudomonas fluorescens and Serratia marcescens. The broad substrate spectrum and high thermostability of this endolysin makes it a good candidate for use as an antimicrobial agent to combat Gram-negative pathogens.
Collapse
Affiliation(s)
- Magdalena Plotka
- Department of Microbiology, University of Gdansk, Gdansk, Poland
| | | | | | | | - Lukasz P. Kozlowski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | | | | | | | - Gudmundur O. Hreggvidsson
- Matis, Reykjavik, Iceland
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Janusz M. Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | | |
Collapse
|
44
|
Endersen L, Coffey A, Ross RP, McAuliffe O, Hill C, O'Mahony J. Characterisation of the antibacterial properties of a bacterial derived peptidoglycan hydrolase (LysCs4), active against C. sakazakii and other Gram-negative food-related pathogens. Int J Food Microbiol 2015; 215:79-85. [PMID: 26342306 DOI: 10.1016/j.ijfoodmicro.2015.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/25/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
Abstract
Illness caused by the consumption of contaminated food products continues to represent one of the main challenges facing food manufacturers worldwide. Even with current intervention technologies and increased hygiene measures, foodborne illness remains a significant threat to public health. This coupled with the increasing emergence of multidrug resistant pathogens has increased the need for the development of novel technologies for pathogen control. Bacterial derived peptidoglycan hydrolases represent a vast and highly diverse group of enzymes with potential for biocontrol of a range of Gram-positive and Gram-negative foodborne pathogens. In this study, we describe the identification, cloning, expression and purification of a peptidoglycan hydrolase (LysCs4) derived from Cronobacter sakazakii for biocontrol of the aforementioned infant formula pathogen itself. In silico analysis of LysCs4 revealed the gene to display greatest sequence similarity to a putative lysozyme encoded by the lytic Cronobacter phage ES2. Conserved domain analysis of LysCs4 revealed the presence of a single catalytic domain predicted to display O-Glycosyl hydrolase activity and to be a member of the GH24 family. The ability of this enzyme to hydrolyse the peptidoglycan of 25 Gram-negative strains, across 4 different genera, highlights its potential as a novel candidate for biocontrol of C. sakazakii and other Gram-negative food related pathogens.
Collapse
Affiliation(s)
- Lorraine Endersen
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland.
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland.
| | - R Paul Ross
- College of Sefs Office, University College Cork, Cork, Ireland.
| | - Olivia McAuliffe
- Biotechnology Department, Teagasc, Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland.
| | - Colin Hill
- Alimentary Pharmabiotic Centre and Department of Microbiology, University College Cork, Cork, Ireland.
| | - Jim O'Mahony
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland.
| |
Collapse
|
45
|
Nakonieczna A, Cooper CJ, Gryko R. Bacteriophages and bacteriophage-derived endolysins as potential therapeutics to combat Gram-positive spore forming bacteria. J Appl Microbiol 2015; 119:620-31. [PMID: 26109320 DOI: 10.1111/jam.12881] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/28/2015] [Accepted: 06/11/2015] [Indexed: 01/21/2023]
Abstract
Since their discovery in 1915, bacteriophages have been routinely used within Eastern Europe to treat a variety of bacterial infections. Although initially ignored by the West due to the success of antibiotics, increasing levels and diversity of antibiotic resistance is driving a renaissance for bacteriophage-derived therapy, which is in part due to the highly specific nature of bacteriophages as well as their relative abundance. This review focuses on the bacteriophages and derived lysins of relevant Gram-positive spore formers within the Bacillus cereus group and Clostridium genus that could have applications within the medical, food and environmental sectors.
Collapse
Affiliation(s)
- A Nakonieczna
- Biological Threats Identification and Countermeasure Center of the Military Institute of Hygiene and Epidemiology, Pulawy, Poland
| | - C J Cooper
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - R Gryko
- Biological Threats Identification and Countermeasure Center of the Military Institute of Hygiene and Epidemiology, Pulawy, Poland
| |
Collapse
|
46
|
García-Cano I, Campos-Gómez M, Contreras-Cruz M, Serrano-Maldonado CE, González-Canto A, Peña-Montes C, Rodríguez-Sanoja R, Sánchez S, Farrés A. Expression, purification, and characterization of a bifunctional 99-kDa peptidoglycan hydrolase from Pediococcus acidilactici ATCC 8042. Appl Microbiol Biotechnol 2015; 99:8563-73. [PMID: 25940238 DOI: 10.1007/s00253-015-6593-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/01/2015] [Accepted: 04/05/2015] [Indexed: 10/23/2022]
Abstract
Pediococcus acidilactici ATCC 8042 is a lactic acid bacteria that inhibits pathogenic microorganisms such as Staphylococcus aureus through the production of two proteins with lytic activity, one of 110 kDa and the other of 99 kDa. The 99-kDa one has high homology to a putative peptidoglycan hydrolase (PGH) enzyme reported in the genome of P. acidilactici 7_4, where two different lytic domains have been identified but not characterized. The aim of this work was the biochemical characterization of the recombinant enzyme of 99 kDa. The enzyme was cloned and expressed successfully and retains its activity against Micrococcus lysodeikticus. It has a higher N-acetylglucosaminidase activity, but the N-acetylmuramoyl-L-alanine amidase can also be detected spectrophotometrically. The protein was then purified using gel filtration chromatography. Antibacterial activity showed an optimal pH of 6.0 and was stable between 5.0 and 7.0. The optimal temperature for activity was 60 °C, and all activity was lost after 1 h of incubation at 70 °C. The number of strains susceptible to the recombinant 99-kDa enzyme was lower than that susceptible to the mixture of the 110- and 99-kDa PGHs of P. acidilactici, a result that suggests synergy between these two enzymes. This is the first PGH from LAB that has been shown to possess two lytic sites. The results of this study will aid in the design of new antibacterial agents from natural origin that can combat foodborne disease and improve hygienic practices in the industrial sector.
Collapse
Affiliation(s)
- Israel García-Cano
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México D.F., México
| | - Manuel Campos-Gómez
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México D.F., México
| | - Mariana Contreras-Cruz
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México D.F., México
| | - Carlos Eduardo Serrano-Maldonado
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México D.F., México
| | - Augusto González-Canto
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México y Hospital General de México, 06720, México D.F., México
| | - Carolina Peña-Montes
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México D.F., México
| | - Romina Rodríguez-Sanoja
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México D.F., México
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México D.F., México
| | - Amelia Farrés
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México D.F., México.
| |
Collapse
|
47
|
The zeamine antibiotics affect the integrity of bacterial membranes. Appl Environ Microbiol 2014; 81:1139-46. [PMID: 25452285 DOI: 10.1128/aem.03146-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The zeamines (zeamine, zeamine I, and zeamine II) constitute an unusual class of cationic polyamine-polyketide-nonribosomal peptide antibiotics produced by Serratia plymuthica RVH1. They exhibit potent bactericidal activity, killing a broad range of Gram-negative and Gram-positive bacteria, including multidrug-resistant pathogens. Examination of their specific mode of action and molecular target revealed that the zeamines affect the integrity of cell membranes. The zeamines provoke rapid release of carboxyfluorescein from unilamellar vesicles with different phospholipid compositions, demonstrating that they can interact directly with the lipid bilayer in the absence of a specific target. DNA, RNA, fatty acid, and protein biosynthetic processes ceased simultaneously at subinhibitory levels of the antibiotics, presumably as a direct consequence of membrane disruption. The zeamine antibiotics also facilitated the uptake of small molecules, such as 1-N-phenylnaphtylamine, indicating their ability to permeabilize the Gram-negative outer membrane (OM). The valine-linked polyketide moiety present in zeamine and zeamine I was found to increase the efficiency of this process. In contrast, translocation of the large hydrophilic fluorescent peptidoglycan binding protein PBDKZ-GFP was not facilitated, suggesting that the zeamines cause subtle perturbation of the OM rather than drastic alterations or defined pore formation. At zeamine concentrations above those required for growth inhibition, membrane lysis occurred as indicated by time-lapse microscopy. Together, these findings show that the bactericidal activity of the zeamines derives from generalized membrane permeabilization, which likely is initiated by electrostatic interactions with negatively charged membrane components.
Collapse
|
48
|
Abstract
The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-based antibacterials efficiently kill Gram-positive bacteria upon contact by specific cell wall hydrolysis. However, a major hurdle in their exploitation as antibacterials against Gram-negative pathogens is the impermeable lipopolysaccharide layer surrounding their cell wall. Therefore, we developed and optimized an approach to engineer these enzymes as outer membrane-penetrating endolysins (Artilysins), rendering them highly bactericidal against Gram-negative pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii. Artilysins combining a polycationic nonapeptide and a modular endolysin are able to kill these (multidrug-resistant) strains in vitro with a 4 to 5 log reduction within 30 min. We show that the activity of Artilysins can be further enhanced by the presence of a linker of increasing length between the peptide and endolysin or by a combination of both polycationic and hydrophobic/amphipathic peptides. Time-lapse microscopy confirmed the mode of action of polycationic Artilysins, showing that they pass the outer membrane to degrade the peptidoglycan with subsequent cell lysis. Artilysins are effective in vitro (human keratinocytes) and in vivo (Caenorhabditis elegans). Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins—enzymes derived from bacterial viruses—represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against Pseudomonas aeruginosa and Acinetobacter baumannii, two of the most hazardous drug-resistant Gram-negative pathogens.
Collapse
|
49
|
Cheng G, Hao H, Xie S, Wang X, Dai M, Huang L, Yuan Z. Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Front Microbiol 2014; 5:217. [PMID: 24860564 PMCID: PMC4026712 DOI: 10.3389/fmicb.2014.00217] [Citation(s) in RCA: 325] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/25/2014] [Indexed: 12/21/2022] Open
Abstract
It is a common practice for decades to use of sub-therapeutic dose of antibiotics in food-animal feeds to prevent animals from diseases and to improve production performance in modern animal husbandry. In the meantime, concerns over the increasing emergence of antibiotic-resistant bacteria due to the unreasonable use of antibiotics and an appearance of less novelty antibiotics have prompted efforts to develop so-called alternatives to antibiotics. Whether or not the alternatives could really replace antibiotics remains a controversial issue. This review summarizes recent development and perspectives of alternatives to antibiotics. The mechanism of actions, applications, and prospectives of the alternatives such as immunity modulating agents, bacteriophages and their lysins, antimicrobial peptides, pro-, pre-, and synbiotics, plant extracts, inhibitors targeting pathogenicity (bacterial quorum sensing, biofilm, and virulence), and feeding enzymes are thoroughly discussed. Lastly, the feasibility of alternatives to antibiotics is deeply analyzed. It is hard to conclude that the alternatives might substitute antibiotics in veterinary medicine in the foreseeable future. At the present time, prudent use of antibiotics and the establishment of scientific monitoring systems are the best and fastest way to limit the adverse effects of the abuse of antibiotics and to ensure the safety of animal-derived food and environment.
Collapse
Affiliation(s)
- Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University Wuhan, China ; MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University Wuhan, China
| | - Xu Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Menghong Dai
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University Wuhan, China ; MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University Wuhan, China
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China ; National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University Wuhan, China ; MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
50
|
Park Y, Lim JA, Kong M, Ryu S, Rhee S. Structure of bacteriophage SPN1S endolysin reveals an unusual two-module fold for the peptidoglycan lytic and binding activity. Mol Microbiol 2014; 92:316-25. [PMID: 24641441 DOI: 10.1111/mmi.12555] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2014] [Indexed: 11/28/2022]
Abstract
Bacteriophage SPN1S infects the pathogenic Gram-negative bacterium Salmonella typhimurium and expresses endolysin for the release of phage progeny by degrading peptidoglycan of the host cell walls. Bacteriophage SPN1S endolysin exhibits high glycosidase activity against peptidoglycans, resulting in antimicrobial activity against a broad range of outer membrane-permeabilized Gram-negative bacteria. Here, we report a crystal structure of SPN1S endolysin, indicating that unlike most endolysins from Gram-negative bacteria background, the α-helical protein consists of two modular domains, a large and a small domain, with a concave groove between them. Comparison with other structurally homologous glycoside hydrolases indicated a possible peptidoglycan binding site in the groove, and the presence of a catalytic dyad in the vicinity of the groove, one residue in a large domain and the other in a junction between the two domains. The catalytic dyad was further validated by antimicrobial activity assay against outer membrane-permeabilized Escherichia coli. The three-helix bundle in the small domain containing a novel class of sequence motif exhibited binding affinity against outer membrane-permeabilized E. coli and was therefore proposed as the peptidoglycan-binding domain. These structural and functional features suggest that endolysin from a Gram-negative bacterial background has peptidoglycan-binding activity and performs glycoside hydrolase activity through the catalytic dyad.
Collapse
Affiliation(s)
- Yangshin Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|