1
|
Sinn M, Riede L, Fleming JR, Funck D, Lutz H, Bachmann A, Mayans O, Hartig JS. Metformin hydrolase is a recently evolved nickel-dependent heteromeric ureohydrolase. Nat Commun 2024; 15:8045. [PMID: 39271653 PMCID: PMC11399263 DOI: 10.1038/s41467-024-51752-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
The anti-diabetic drug metformin is one of the most widely prescribed medicines in the world. Together with its degradation product guanylurea, it is a major pharmaceutical pollutant in wastewater treatment plants and surface waters. An operon comprising two genes of the ureohydrolase family in Pseudomonas and Aminobacter species has recently been implicated in metformin degradation. However, the corresponding proteins have not been characterized. Here we show that these genes encode a Ni2+-dependent enzyme that efficiently and specifically hydrolyzes metformin to guanylurea and dimethylamine. The active enzyme is a heteromeric complex of α- and β- subunits in which only the α-subunits contain the conserved His and Asp residues for the coordination of two Ni2+ ions in the active site. A crystal structure of metformin hydrolase reveals an α2β4 stoichiometry of the hexameric complex, which is unprecedented in the ureohydrolase family. By studying a closely related but more widely distributed enzyme, we find that the putative predecessor specifically hydrolyzes dimethylguanidine instead of metformin. Our findings establish the molecular basis for metformin hydrolysis to guanylurea as the primary pathway for metformin biodegradation and provide insight into the recent evolution of ureohydrolase family proteins in response to an anthropogenic compound.
Collapse
Affiliation(s)
- M Sinn
- Department of Chemistry, University of Konstanz, Konstanz, Germany.
| | - L Riede
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - J R Fleming
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - D Funck
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - H Lutz
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - A Bachmann
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - O Mayans
- Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - J S Hartig
- Department of Chemistry, University of Konstanz, Konstanz, Germany.
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany.
| |
Collapse
|
2
|
Tassoulas LJ, Rankin JA, Elias MH, Wackett LP. Dinickel enzyme evolved to metabolize the pharmaceutical metformin and its implications for wastewater and human microbiomes. Proc Natl Acad Sci U S A 2024; 121:e2312652121. [PMID: 38408229 PMCID: PMC10927577 DOI: 10.1073/pnas.2312652121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024] Open
Abstract
Metformin is the first-line treatment for type II diabetes patients and a pervasive pollutant with more than 180 million kg ingested globally and entering wastewater. The drug's direct mode of action is currently unknown but is linked to effects on gut microbiomes and may involve specific gut microbial reactions to the drug. In wastewater treatment plants, metformin is known to be transformed by microbes to guanylurea, although genes encoding this metabolism had not been elucidated. In the present study, we revealed the function of two genes responsible for metformin decomposition (mfmA and mfmB) found in isolated bacteria from activated sludge. MfmA and MfmB form an active heterocomplex (MfmAB) and are members of the ureohydrolase protein superfamily with binuclear metal-dependent activity. MfmAB is nickel-dependent and catalyzes the hydrolysis of metformin to dimethylamine and guanylurea with a catalytic efficiency (kcat/KM) of 9.6 × 103 M-1s-1 and KM for metformin of 0.82 mM. MfmAB shows preferential activity for metformin, being able to discriminate other close substrates by several orders of magnitude. Crystal structures of MfmAB show coordination of binuclear nickel bound in the active site of the MfmA subunit but not MfmB subunits, indicating that MfmA is the active site for the MfmAB complex. Mutagenesis of residues conserved in the MfmA active site revealed those critical to metformin hydrolase activity and its small substrate binding pocket allowed for modeling of bound metformin. This study characterizes the products of the mfmAB genes identified in wastewater treatment plants on three continents, suggesting that metformin hydrolase is widespread globally in wastewater.
Collapse
Affiliation(s)
- Lambros J. Tassoulas
- Department of Biochemistry, Biophysics, and Molecular Biology, University of Minnesota, Minneapolis, MN55455
- BioTechnology Institute, University of Minnesota, St. Paul, MN55108
| | - Joel A. Rankin
- Department of Biochemistry, Biophysics, and Molecular Biology, University of Minnesota, Minneapolis, MN55455
- BioTechnology Institute, University of Minnesota, St. Paul, MN55108
| | - Mikael H. Elias
- Department of Biochemistry, Biophysics, and Molecular Biology, University of Minnesota, Minneapolis, MN55455
- BioTechnology Institute, University of Minnesota, St. Paul, MN55108
| | - Lawrence P. Wackett
- Department of Biochemistry, Biophysics, and Molecular Biology, University of Minnesota, Minneapolis, MN55455
- BioTechnology Institute, University of Minnesota, St. Paul, MN55108
| |
Collapse
|
3
|
Saharan K, Baral S, Shaikh NH, Vasudevan D. Structure-function analyses reveal Arabidopsis thaliana HDA7 to be an inactive histone deacetylase. Curr Res Struct Biol 2024; 7:100136. [PMID: 38463934 PMCID: PMC10920125 DOI: 10.1016/j.crstbi.2024.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Histone deacetylases (HDACs), responsible for the removal of acetyl groups from histone tails, are important epigenetic factors. They play a critical role in the regulation of gene expression and are significant in the context of plant growth and development. The Rpd3/Hda1 family of HDACs is reported to regulate key biological processes in plants, such as stress response, seed, embryonic, and floral development. Here, we characterized Arabidopsis thaliana HDA7, a Class I, Rpd3/Hda1 family HDAC. SAXS and AUC results show that the recombinantly expressed and purified histone deacetylase domain of AtHDA7 exists as a monomer in solution. Further, the crystal structure showed AtHDA7 to fold into the typical α/β arginase fold, characteristic of Rpd3/Hda1 family HDACs. Sequence analysis revealed that the Asp and His residues of the catalytic 'XDXH' motif present in functional Rpd3/Hda1 family HDACs are mutated to Gly and Pro, respectively, in AtHDA7, suggesting that it might be catalytically inactive. The Asp and His residues are important for Zn2+-binding. Not surprisingly, the crystal structure did not have Zn2+ bound in the catalytic pocket, which is essential for the HDAC activity. Further, our in vitro activity assay revealed AtHDA7 to be inactive as an HDAC. A search in the sequence databases suggested that homologs of AtHDA7 are found exclusively in the Brassicaceae family to which Arabidopsis belongs. It is possible that HDA7 descended from HDA6 through whole genome duplication and triplication events during evolution, as suggested in a previous phylogenetic study.
Collapse
Affiliation(s)
- Ketul Saharan
- Structural Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, 751023, India
- Regional Centre for Biotechnology (RCB), Faridabad, 121001, India
| | - Somanath Baral
- Structural Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, 751023, India
| | - Nausad Hossain Shaikh
- Structural Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, 751023, India
| | - Dileep Vasudevan
- Structural Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, 751023, India
- Structural Biology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India
| |
Collapse
|
4
|
Sarkar D, Sau AK. Illuminating the structure-function landscape of an evolutionary nonconserved motif in the arginases of Helicobacter gastric pathogens. IUBMB Life 2023; 75:782-793. [PMID: 37086465 DOI: 10.1002/iub.2728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/03/2023] [Indexed: 04/24/2023]
Abstract
The bimetallic enzyme arginase catalyses the conversion of L-arginine to L-ornithine and urea. In Helicobacter pylori (a known human gastric pathogen), this enzyme is an important virulence factor. In spite of the conservation of the catalytic and the metal-binding residues, the H. pylori homolog possesses a 13-residue motif (-153 ESEEKAWQKLCSL165 -) present in the middle of the protein sequence, whose role was recently elucidated. Despite several reviews available on arginases, no report has thoroughly illustrated the underlying basis for the importance of the above motif of the H. pylori enzyme in structure and function. In this review, we systematically describe a mechanistic basis for its importance in structure and function based on the known data. This motif of the H. pylori enzyme is present exclusively in the arginases of other Helicobacter gastric pathogens, where the critical residues are conserved, implying that the nonconserved stretch has been selected during the evolution of the enzyme in these gastric pathogens in a specific manner to perform its role in the structure and function. The combined information can be useful for understanding the function of arginases in other Helicobacter gastric pathogens. Additionally, this knowledge can be utilised to screen and design new small molecule inhibitors, specific to the arginases of these pathogens.
Collapse
Affiliation(s)
- Ditsa Sarkar
- Protein Engineering Laboratory, National Institute of Immunology, New Delhi, Delhi, India
| | - Apurba Kumar Sau
- Protein Engineering Laboratory, National Institute of Immunology, New Delhi, Delhi, India
| |
Collapse
|
5
|
Watson PR, Christianson DW. Structure and Function of Kdac1, a Class II Deacetylase from the Multidrug-Resistant Pathogen Acinetobacter baumannii. Biochemistry 2023; 62:2689-2699. [PMID: 37624144 PMCID: PMC10528293 DOI: 10.1021/acs.biochem.3c00288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Proteomics studies indicate that 10% of proteins in the opportunistic pathogen Acinetobacter baumannii are acetylated, suggesting that lysine acetyltransferases and deacetylases function to maintain and regulate a robust bacterial acetylome. As the first step in exploring these fascinating prokaryotic enzymes, we now report the preparation and characterization of the lysine deacetylase Kdac1. We show that Kdac1 catalyzes the deacetylation of free acetyllysine and acetyllysine tetrapeptide assay substrates, and we also report the X-ray crystal structures of unliganded Kdac1 as well as its complex with the hydroxamate inhibitor Citarinostat. Kdac1 is a tetramer in solution and in the crystal; the crystal structure reveals that the L1 loop functions to stabilize quaternary structure, forming inter-subunit hydrogen bonds and salt bridges around a central arginine residue (R30). Surprisingly, the L1 loop partially blocks entry to the active site, but it is sufficiently flexible to allow for the binding of two Citarinostat molecules in the active site. The L12 loop is also important for maintaining quaternary structure; here, a conserved arginine (R278) accepts hydrogen bonds from the backbone carbonyl groups of residues in an adjacent monomer. Structural comparisons with two other prokaryotic lysine deacetylases reveal conserved residues in the L1 and L12 loops that similarly support tetramer assembly. These studies provide a structural foundation for understanding enzymes that regulate protein function in bacteria through reversible lysine acetylation, serving as a first step in the exploration of these enzymes as possible targets for the development of new antibiotics.
Collapse
Affiliation(s)
- Paris R. Watson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104-6323, United States
| |
Collapse
|
6
|
Frühauf A, Behringer M, Meyer-Almes FJ. Significance of Five-Membered Heterocycles in Human Histone Deacetylase Inhibitors. Molecules 2023; 28:5686. [PMID: 37570656 PMCID: PMC10419652 DOI: 10.3390/molecules28155686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/15/2023] [Accepted: 07/15/2023] [Indexed: 08/13/2023] Open
Abstract
Five-membered heteroaromatic rings, in particular, have gained prominence in medicinal chemistry as they offer enhanced metabolic stability, solubility and bioavailability, crucial factors in developing effective drugs. The unique physicochemical properties and biological effects of five-membered heterocycles have positioned them as key structural motifs in numerous clinically effective drugs. Hence, the exploration of five-ring heterocycles remains an important research area in medicinal chemistry, with the aim of discovering new therapeutic agents for various diseases. This review addresses the incorporation of heteroatoms such as nitrogen, oxygen and sulfur into the aromatic ring of these heterocyclic compounds, enhancing their polarity and facilitating both aromatic stacking interactions and the formation of hydrogen bonds. Histone deacetylases are present in numerous multiprotein complexes within the epigenetic machinery and play a central role in various cellular processes. They have emerged as important targets for cancer, neurodegenerative diseases and other therapeutic indications. In histone deacetylase inhibitors (HDACi's), five-ring heterocycles perform various functions as a zinc-binding group, a linker or head group, contributing to binding activity and selective recognition. This review focuses on providing an up-to-date overview of the different five-membered heterocycles utilized in HDACi motifs, highlighting their biological properties. It summarizes relevant publications from the past decade, offering insights into the recent advancements in this field of research.
Collapse
Affiliation(s)
- Anton Frühauf
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany
| | - Martin Behringer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany
| |
Collapse
|
7
|
Wong HS, Freeman DA, Zhang Y. Not just a cousin of the naked mole-rat: Damaraland mole-rats offer unique insights into biomedicine. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110772. [PMID: 35710053 PMCID: PMC10155858 DOI: 10.1016/j.cbpb.2022.110772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Evolutionary medicine has been a fast-growing field of biological research in the past decade. One of the strengths of evolutionary medicine is to use non-traditional model organisms which often exhibit unusual characteristics shaped by natural selection. Studying these unusual traits could provide valuable insight to understand biomedical questions, since natural selection likely discovers solutions to those complex biological problems. Because of many unusual traits, the naked mole-rat (NMR) has attracted attention from different research areas such as aging, cancer, and hypoxia- and hypercapnia-related disorders. However, such uniqueness of NMR physiology may sometimes make the translational study to human research difficult. Damaraland mole-rat (DMR) shares multiple characteristics in common with NMR, but shows higher degree of similarity with human in some aspects of their physiology. Research on DMR could therefore offer alternative insights and might bridge the gap between experimental findings from NMR to human biomedical research. In this review, we discuss studies of DMR as an extension of the current set of model organisms to help better understand different aspects of human biology and disease. We hope to encourage researchers to consider studying DMR together with NMR. By studying these two similar but evolutionarily distinct species, we can harvest the power of convergent evolution and avoid the potential biased conclusions based on life-history of a single species.
Collapse
Affiliation(s)
- Hoi-Shan Wong
- Nine Square Therapeutics, South San Francisco, CA 94080, United States of America.
| | - David A Freeman
- Department of Biological Sciences, The University of Memphis, Memphis, TN 38152, United States of America
| | - Yufeng Zhang
- College of Health Sciences, The University of Memphis, Memphis, TN 38152, United States of America.
| |
Collapse
|
8
|
Vong P, Ouled-Haddou H, Garçon L. Histone Deacetylases Function in the Control of Early Hematopoiesis and Erythropoiesis. Int J Mol Sci 2022; 23:9790. [PMID: 36077192 PMCID: PMC9456231 DOI: 10.3390/ijms23179790] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous studies have highlighted the role of post-translational modifications in the regulation of cell proliferation, differentiation and death. Among these modifications, acetylation modifies the physicochemical properties of proteins and modulates their activity, stability, localization and affinity for partner proteins. Through the deacetylation of a wide variety of functional and structural, nuclear and cytoplasmic proteins, histone deacetylases (HDACs) modulate important cellular processes, including hematopoiesis, during which different HDACs, by controlling gene expression or by regulating non-histone protein functions, act sequentially to provide a fine regulation of the differentiation process both in early hematopoietic stem cells and in more mature progenitors. Considering that HDAC inhibitors represent promising targets in cancer treatment, it is necessary to decipher the role of HDACs during hematopoiesis which could be impacted by these therapies. This review will highlight the main mechanisms by which HDACs control the hematopoietic stem cell fate, particularly in the erythroid lineage.
Collapse
Affiliation(s)
- Pascal Vong
- Université Picardie Jules Verne, HEMATIM UR4666, 80000 Amiens, France
| | | | - Loïc Garçon
- Université Picardie Jules Verne, HEMATIM UR4666, 80000 Amiens, France
- Service d’Hématologie Biologique, Centre Hospitalier Universitaire, CEDEX 1, 80054 Amiens, France
- Laboratoire de Génétique Constitutionnelle, Centre Hospitalier Universitaire, CEDEX 1, 80054 Amiens, France
| |
Collapse
|
9
|
K D, Kuramitsu S, Yokoyama S, Thirumananseri K, Ponnuraj K. Crystal structure analysis and molecular dynamics simulations of arginase from Thermus thermophilus. J Biomol Struct Dyn 2022:1-11. [PMID: 35994323 DOI: 10.1080/07391102.2022.2112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Arginase is a manganese-dependent metalloenzyme that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. The product L-ornithine is an important component which has wide applications in the healthcare and pharmaceutical industry. Enzymatic biosynthesis of L-ornithine is one of the effective methods in which arginase is used as a bio-catalyst. Here, we report the crystal structure of arginase from Thermus thermophilus (TtArginase) in three different crystal forms. All structures were solved by molecular replacement and refined at 2.0 Å, 2.3 Å and 2.91 Å resolution respectively. TtArginase is compared with other structural homologs and the putative catalytic site residues were identified. To understand the thermophilic nature of TtArginase, the sequence and structural factors of TtArginase was compared with its mesophilic counterpart Bacillus subtilis arginase (BsArginase). To get insights on structural stability, molecular dynamics (MD) simulations were carried for TtArginase and BsArginase at three different temperatures (300 K, 333 K and 353 K). The results indicate that TtArginase is comparatively more stable than BsArginase. MD simulations were carried out in the absence of the metal ions at the active site which revealed high plasticity of the active site. The results suggest that metal ions are critical not only for the catalytic function, but also required for the maintenance of the proper active site geometry. Since arginase can be employed for large-scale industrial production of L-ornithine, the structural details of thermophilic arginases such as TtArginase will be helpful to engineer the protein to optimize its enzymatic action in a variety of conditions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dhanalakshmi K
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Seiki Kuramitsu
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Shigeyuki Yokoyama
- Structural Biology Laboratory, RIKEN Yokohama Institute, RIKEN, Tsurumi, Yokohama, Japan
| | - Kumarevel Thirumananseri
- Structural Biology Laboratory, RIKEN Yokohama Institute, RIKEN, Tsurumi, Yokohama, Japan.,Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamic Research, RIKEN Yokohama Institute, Tsurumi, Yokohama, Japan
| | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| |
Collapse
|
10
|
Mothersole RG, Kolesnikov M, Chan ACK, Oduro E, Murphy MEP, Wolthers KR. Sequence Divergence in the Arginase Domain of Ornithine Decarboxylase/Arginase in Fusobacteriacea Leads to Loss of Function in Oral Associated Species. Biochemistry 2022; 61:1378-1391. [PMID: 35732022 DOI: 10.1021/acs.biochem.2c00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A number of species within the Fusobacteriaceae family of Gram-negative bacteria uniquely encode for an ornithine decarboxylase/arginase (ODA) that ostensibly channels l-ornithine generated by hydrolysis of l-arginine to putrescine formation. However, two aspartate residues required for coordination to a catalytically obligatory manganese cluster of arginases are substituted for a serine and an asparagine. Curiously, these natural substitutions occur only in a clade of Fusobacterium species that inhabit the oral cavity. Herein, we expressed and isolated full-length ODA from the opportunistic oral pathogen Fusobacterium nucleatum along with the individual arginase and ornithine decarboxylase components. The crystal structure of the arginase domain reveals that it adopts the classical α/β arginase-fold, but metal ions are absent in the active site. As expected, the ureohydrolase activity with l-arginine was not detected for wild-type ODA or the isolated arginase domain. However, engineering of the complete metal coordination environment through site-directed mutagenesis restored Mn2+ binding capacity and arginase activity, although the catalytic efficiency for l-arginine was low (60-100 M-1 s-1). Full-length ODA and the isolated ODC component were able to decarboxylate both l-ornithine and l-arginine to form putrescine and agmatine, respectively, but kcat/KM of l-ornithine was ∼20-fold higher compared to l-arginine. We discuss environmental conditions that may have led to the natural selection of an inactive arginase in the oral associated species of Fusobacterium.
Collapse
Affiliation(s)
- Robert G Mothersole
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada
| | - Maxim Kolesnikov
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Anson C K Chan
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Emmanuella Oduro
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada
| |
Collapse
|
11
|
Zhang Y, Cao L, Xie Y, Wang C, Liu X, Zhang X, Chen J. Agmatinase facilitates the tumorigenesis of pancreatic adenocarcinoma through the TGFβ/Smad pathway. Exp Ther Med 2022; 24:490. [PMID: 35837051 PMCID: PMC9257765 DOI: 10.3892/etm.2022.11417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/19/2022] [Indexed: 11/08/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is one of the most lethal malignancies. Due to the lack of typical symptoms and difficulties in early diagnosis, PAAD has a high mortality rate. Therefore, it is essential to identify novel specific biomarkers for the application of targeted therapies. A previous study suggested that agmatinase (AGMAT) may fulfill important roles in tumor progression; however, these roles and the underlying mechanisms of AGMAT involvement in PAAD have yet to be thoroughly investigated. To address this shortcoming, in the present study the expression and prognostic significance of AGMAT were analyzed via several bioinformatics databases. Gain- and loss-of-function experiments were subsequently performed to observe the impact of AGMAT on the proliferation and metastasis of PAAD cells via Cell Counting Kit 8 (CCK-8) assay, colony formation assay, and cell migration and invasion assays in vitro. In order to probe the mechanisms involved, western blot assays were performed. AGMAT was found to be overexpressed in PAAD, and it was positively associated with a poor prognosis. Stable overexpression of AGMAT was found to lead to a marked increase in cell proliferation and metastasis through activation of the transforming growth factor-β (TGFβ)/Smad pathway, and via enhancing epithelial-mesenchymal transition (EMT). In conclusion, the results of the present study suggest that AGMAT may be an oncogene, and a pivotal mechanism has been uncovered in which AGMAT facilitates the progression of PAAD tumorigenesis through the TGFβ/Smad pathway.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, P.R. China
| | - Lijun Cao
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, P.R. China
| | - Yaya Xie
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, P.R. China
| | - Chunmei Wang
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, P.R. China
| | - Xianju Liu
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, P.R. China
| | - Xingxing Zhang
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, P.R. China
| | - Jinlian Chen
- Department of Gastroenterology, Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai 201499, P.R. China
| |
Collapse
|
12
|
Funck D, Sinn M, Fleming JR, Stanoppi M, Dietrich J, López-Igual R, Mayans O, Hartig JS. Discovery of a Ni 2+-dependent guanidine hydrolase in bacteria. Nature 2022; 603:515-521. [PMID: 35264792 DOI: 10.1038/s41586-022-04490-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022]
Abstract
Nitrogen availability is a growth-limiting factor in many habitats1, and the global nitrogen cycle involves prokaryotes and eukaryotes competing for this precious resource. Only some bacteria and archaea can fix elementary nitrogen; all other organisms depend on the assimilation of mineral or organic nitrogen. The nitrogen-rich compound guanidine occurs widely in nature2-4, but its utilization is impeded by pronounced resonance stabilization5, and enzymes catalysing hydrolysis of free guanidine have not been identified. Here we describe the arginase family protein GdmH (Sll1077) from Synechocystis sp. PCC 6803 as a Ni2+-dependent guanidine hydrolase. GdmH is highly specific for free guanidine. Its activity depends on two accessory proteins that load Ni2+ instead of the typical Mn2+ ions into the active site. Crystal structures of GdmH show coordination of the dinuclear metal cluster in a geometry typical for arginase family enzymes and allow modelling of the bound substrate. A unique amino-terminal extension and a tryptophan residue narrow the substrate-binding pocket and identify homologous proteins in further cyanobacteria, several other bacterial taxa and heterokont algae as probable guanidine hydrolases. This broad distribution suggests notable ecological relevance of guanidine hydrolysis in aquatic habitats.
Collapse
Affiliation(s)
- D Funck
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - M Sinn
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - J R Fleming
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - M Stanoppi
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - J Dietrich
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - R López-Igual
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and C.S.I.C, Seville, Spain
| | - O Mayans
- Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Graduate School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - J S Hartig
- Department of Chemistry, University of Konstanz, Konstanz, Germany. .,Konstanz Graduate School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany.
| |
Collapse
|
13
|
Frühauf A, Meyer-Almes FJ. Non-Hydroxamate Zinc-Binding Groups as Warheads for Histone Deacetylases. Molecules 2021; 26:5151. [PMID: 34500583 PMCID: PMC8434074 DOI: 10.3390/molecules26175151] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylases (HDACs) remove acetyl groups from acetylated lysine residues and have a large variety of substrates and interaction partners. Therefore, it is not surprising that HDACs are involved in many diseases. Most inhibitors of zinc-dependent HDACs (HDACis) including approved drugs contain a hydroxamate as a zinc-binding group (ZBG), which is by far the biggest contributor to affinity, while chemical variation of the residual molecule is exploited to create more or less selectivity against HDAC isozymes or other metalloproteins. Hydroxamates have a propensity for nonspecificity and have recently come under considerable suspicion because of potential mutagenicity. Therefore, there are significant concerns when applying hydroxamate-containing compounds as therapeutics in chronic diseases beyond oncology due to unwanted toxic side effects. In the last years, several alternative ZBGs have been developed, which can replace the critical hydroxamate group in HDACis, while preserving high potency. Moreover, these compounds can be developed into highly selective inhibitors. This review aims at providing an overview of the progress in the field of non-hydroxamic HDACis in the time period from 2015 to present. Formally, ZBGs are clustered according to their binding mode and structural similarity to provide qualitative assessments and predictions based on available structural information.
Collapse
Affiliation(s)
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany;
| |
Collapse
|
14
|
Hernández VM, Arteaga A, Dunn MF. Diversity, properties and functions of bacterial arginases. FEMS Microbiol Rev 2021; 45:6308370. [PMID: 34160574 DOI: 10.1093/femsre/fuab034] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
The metalloenzyme arginase hydrolyzes L-arginine to produce L-ornithine and urea. In bacteria, arginase has important functions in basic nitrogen metabolism and redistribution, production of the key metabolic precursor L-ornithine, stress resistance and pathogenesis. We describe the regulation and specific functions of the arginase pathway as well as summarize key characteristics of related arginine catabolic pathways. The use of arginase-derived ornithine as a precursor molecule is reviewed. We discuss the biochemical and transcriptional regulation of arginine metabolism, including arginase, with the latter topic focusing on the RocR and AhrC transcriptional regulators in the model organism Bacillus subtilis. Finally, we consider similarities and contrasts in the structure and catalytic mechanism of the arginases from Bacillus caldovelox and Helicobacter pylori. The overall aim of this review is to provide a panorama of the diversity of physiological functions, regulation, and biochemical features of arginases in a variety of bacterial species.
Collapse
Affiliation(s)
- Victor M Hernández
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas-Universidad Nacional Autonoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| | - Alejandra Arteaga
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas-Universidad Nacional Autonoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| | - Michael F Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas-Universidad Nacional Autonoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| |
Collapse
|
15
|
Chitrakar I, Ahmed SF, Torelli AT, French JB. Structure of the E. coli agmatinase, SPEB. PLoS One 2021; 16:e0248991. [PMID: 33857156 PMCID: PMC8049259 DOI: 10.1371/journal.pone.0248991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/09/2021] [Indexed: 01/05/2023] Open
Abstract
Agmatine amidinohydrolase, or agmatinase, catalyzes the conversion of agmatine to putrescine and urea. This enzyme is found broadly across kingdoms of life and plays a critical role in polyamine biosynthesis and the regulation of agmatine concentrations. Here we describe the high-resolution X-ray crystal structure of the E. coli agmatinase, SPEB. The data showed a relatively high degree of pseudomerohedral twinning, was ultimately indexed in the P31 space group and led to a final model with eighteen chains, corresponding to three full hexamers in the asymmetric unit. There was a solvent content of 38.5% and refined R/Rfree values of 0.166/0.216. The protein has the conserved fold characteristic of the agmatine ureohydrolase family and displayed a high degree of structural similarity among individual protomers. Two distinct peaks of electron density were observed in the active site of most of the eighteen chains of SPEB. As the activity of this protein is known to be dependent upon manganese and the fold is similar to other dinuclear metallohydrolases, these peaks were modeled as manganese ions. The orientation of the conserved active site residues, in particular those amino acids that participate in binding the metal ions and a pair of acidic residues (D153 and E274 in SPEB) that play a role in catalysis, are similar to other agmatinase and arginase enzymes and is consistent with a hydrolytic mechanism that proceeds via a metal-activated hydroxide ion.
Collapse
Affiliation(s)
- Iva Chitrakar
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY, United States of America
| | - Syed Fardin Ahmed
- Department of Chemistry, Ithaca College, Ithaca, NY, United States of America
| | - Andrew T. Torelli
- Department of Chemistry, Ithaca College, Ithaca, NY, United States of America
| | - Jarrod B. French
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
- Chemistry Department, Stony Brook University, Stony Brook, NY, United States of America
- Hormel Institute, University of Minnesota, Austin, MN, United States of America
| |
Collapse
|
16
|
Polis B, Karasik D, Samson AO. Alzheimer's disease as a chronic maladaptive polyamine stress response. Aging (Albany NY) 2021; 13:10770-10795. [PMID: 33811757 PMCID: PMC8064158 DOI: 10.18632/aging.202928] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/27/2021] [Indexed: 12/21/2022]
Abstract
Polyamines are nitrogen-rich polycationic ubiquitous bioactive molecules with diverse evolutionary-conserved functions. Their activity interferes with numerous genes' expression resulting in cell proliferation and signaling modulation. The intracellular levels of polyamines are precisely controlled by an evolutionary-conserved machinery. Their transient synthesis is induced by heat stress, radiation, and other traumatic stimuli in a process termed the polyamine stress response (PSR). Notably, polyamine levels decline gradually with age; and external supplementation improves lifespan in model organisms. This corresponds to cytoprotective and reactive oxygen species scavenging properties of polyamines. Paradoxically, age-associated neurodegenerative disorders are characterized by upsurge in polyamines levels, indicating polyamine pleiotropic, adaptive, and pathogenic roles. Specifically, arginase overactivation and arginine brain deprivation have been shown to play an important role in Alzheimer's disease (AD) pathogenesis. Here, we assert that a universal short-term PSR associated with acute stimuli is beneficial for survival. However, it becomes detrimental and maladaptive following chronic noxious stimuli, especially in an aging organism. Furthermore, we regard cellular senescence as an adaptive response to stress and suggest that PSR plays a central role in age-related neurodegenerative diseases' pathogenesis. Our perspective on AD proposes an inclusive reassessment of the causal relationships between the classical hallmarks and clinical manifestation. Consequently, we offer a novel treatment strategy predicated upon this view and suggest fine-tuning of arginase activity with natural inhibitors to preclude or halt the development of AD-related dementia.
Collapse
Affiliation(s)
- Baruh Polis
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - David Karasik
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, USA
- Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Abraham O. Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
17
|
A synthetic peptide as an allosteric inhibitor of human arginase I and II. Mol Biol Rep 2021; 48:1959-1966. [PMID: 33590412 PMCID: PMC7925462 DOI: 10.1007/s11033-021-06176-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/20/2021] [Indexed: 01/09/2023]
Abstract
Arginine metabolism mediated by arginases plays a critical role in cell and tissue function. The arginine hydrolysis is deeply involved in the urea cycle, which helps the kidney excrete ammonia from blood. Upregulation of arginases affects microenvironment stability due to the presence of excess urea in blood. To regulate the arginase activities properly, a synthetic peptide based on the structure of human arginase I was designed and assessed. Preliminary data shows it inhibits human arginase I and II with an IC50 of 2.4 ± 0.3 and 1.8 ± 0.1 mmol, respectively. Our kinetic analysis indicates the inhibition is not competitive with substrate – suggesting an allosteric mechanism. This result provides a step towards specific inhibitors design.
Collapse
|
18
|
S. Clemente G, van Waarde A, F. Antunes I, Dömling A, H. Elsinga P. Arginase as a Potential Biomarker of Disease Progression: A Molecular Imaging Perspective. Int J Mol Sci 2020; 21:E5291. [PMID: 32722521 PMCID: PMC7432485 DOI: 10.3390/ijms21155291] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Arginase is a widely known enzyme of the urea cycle that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. The action of arginase goes beyond the boundaries of hepatic ureogenic function, being widespread through most tissues. Two arginase isoforms coexist, the type I (Arg1) predominantly expressed in the liver and the type II (Arg2) expressed throughout extrahepatic tissues. By producing L-ornithine while competing with nitric oxide synthase (NOS) for the same substrate (L-arginine), arginase can influence the endogenous levels of polyamines, proline, and NO•. Several pathophysiological processes may deregulate arginase/NOS balance, disturbing the homeostasis and functionality of the organism. Upregulated arginase expression is associated with several pathological processes that can range from cardiovascular, immune-mediated, and tumorigenic conditions to neurodegenerative disorders. Thus, arginase is a potential biomarker of disease progression and severity and has recently been the subject of research studies regarding the therapeutic efficacy of arginase inhibitors. This review gives a comprehensive overview of the pathophysiological role of arginase and the current state of development of arginase inhibitors, discussing the potential of arginase as a molecular imaging biomarker and stimulating the development of novel specific and high-affinity arginase imaging probes.
Collapse
Affiliation(s)
- Gonçalo S. Clemente
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Inês F. Antunes
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands;
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| |
Collapse
|
19
|
Sekula B. The Neighboring Subunit Is Engaged to Stabilize the Substrate in the Active Site of Plant Arginases. FRONTIERS IN PLANT SCIENCE 2020; 11:987. [PMID: 32754173 PMCID: PMC7370999 DOI: 10.3389/fpls.2020.00987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/17/2020] [Indexed: 05/27/2023]
Abstract
Arginine acts as a precursor of polyamines in plants in two known pathways, agmatine and ornithine routes. It is decarboxylated to agmatine by arginine decarboxylase, and then transformed to putrescine by the consecutive action of agmatine iminohydrolase and N-carbamoylputrescine amidohydrolase. Alternatively, it can be hydrolyzed to ornithine by arginase and then decarboxylated by ornithine decarboxylase to putrescine. Some plants lack a functional ornithine pathway, but all have one or two arginases that can have dual cellular localization, in mitochondria and plastids. It was recently shown that arginases from Arabidopsis thaliana and soybean act also as agmatinases, thus they can produce putrescine directly from agmatine. Therefore, arginase (together with arginine decarboxylase) can complement putrescine production in plastids, providing a third polyamine biosynthesis pathway in plants. Phylogenetic analysis suggests that arginases, highly conserved in the plant kingdom, create the only group of enzymes recognized in the family of ureohydrolases in plants. Arginases are metalloenzymes with binuclear manganese cluster in the active site. In this work, two arginases from A. thaliana and Medicago truncatula are structurally characterized and their binding properties are discussed. Crystal structures with bound ornithine show that plant hexameric arginases engage a long loop from the neighboring subunit to stabilize α-amino and carboxyl groups of the ligand. This unique ligand binding mode is unobserved in arginases from other domains of life. Structural analysis shows that substrate binding by residues from two neighboring subunits might also characterize some prokaryotic agmatinases. This feature of plant arginases is most likely the determinant of their ability to recognize not only arginine but also agmatine as their substrates, thus, to act as arginase and agmatinase.
Collapse
|
20
|
Foulquier F, Legrand D. Biometals and glycosylation in humans: Congenital disorders of glycosylation shed lights into the crucial role of Golgi manganese homeostasis. Biochim Biophys Acta Gen Subj 2020; 1864:129674. [PMID: 32599014 DOI: 10.1016/j.bbagen.2020.129674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022]
Abstract
About half of the eukaryotic proteins bind biometals that participate in their structure and functions in virtually all physiological processes, including glycosylation. After reviewing the biological roles and transport mechanisms of calcium, magnesium, manganese, zinc and cobalt acting as cofactors of the metalloproteins involved in sugar metabolism and/or glycosylation, the paper will outline the pathologies resulting from a dysregulation of these metals homeostasis and more particularly Congenital Disorders of Glycosylation (CDGs) caused by ion transporter defects. Highlighting of CDGs due to defects in SLC39A8 (ZIP8) and TMEM165, two proteins transporting manganese from the extracellular space to cytosol and from cytosol to the Golgi lumen, respectively, has emphasized the importance of manganese homeostasis for glycosylation. Based on our current knowledge of TMEM165 structure and functions, this review will draw a picture of known and putative mechanisms regulating manganese homeostasis in the secretory pathway.
Collapse
Affiliation(s)
- François Foulquier
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille F-59000, France
| | - Dominique Legrand
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille F-59000, France.
| |
Collapse
|
21
|
Shreya S, Malavika D, Priya VR, Selvamurugan N. Regulation of Histone Deacetylases by MicroRNAs in Bone. Curr Protein Pept Sci 2019; 20:356-367. [PMID: 30381072 DOI: 10.2174/1389203720666181031143129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 02/08/2023]
Abstract
Formation of new bone by osteoblasts is mediated via the activation of signaling pathways, such as TGF-β, BMP, and Wnt. A number of transcription factors participate in the signaling cascades that are tightly regulated by other regulatory factors. Histone deacetylases (HDACs) are one such class of regulatory factors that play an essential role in influencing chromatin architecture and regulate the expression of the genes that play a role in osteoblast differentiation by the mechanism of deacetylation. Four classes of HDACs have been identified namely, class I, class II A, class II B, class III and class IV. MicroRNAs (miRNAs) are small fragments of non-coding RNAs typically 19-25 nucleotides long that target mRNAs to upregulate or downregulate gene expression at a post-transcriptional level. A number of miRNAs that target HDACs in bone have been recently reported. Hence, in this review, we elaborate on the various miRNAs that target the different classes of HDACs and impact of the same on osteogenesis.
Collapse
Affiliation(s)
- S Shreya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - D Malavika
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - V Raj Priya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
22
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
23
|
Metal ions-induced stability and function of bimetallic human arginase-I, a therapeutically important enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1153-1164. [DOI: 10.1016/j.bbapap.2018.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/21/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022]
|
24
|
Petitjean C, Makarova KS, Wolf YI, Koonin EV. Extreme Deviations from Expected Evolutionary Rates in Archaeal Protein Families. Genome Biol Evol 2018; 9:2791-2811. [PMID: 28985292 PMCID: PMC5737733 DOI: 10.1093/gbe/evx189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 02/07/2023] Open
Abstract
Origin of new biological functions is a complex phenomenon ranging from single-nucleotide substitutions to the gain of new genes via horizontal gene transfer or duplication. Neofunctionalization and subfunctionalization of proteins is often attributed to the emergence of paralogs that are subject to relaxed purifying selection or positive selection and thus evolve at accelerated rates. Such phenomena potentially could be detected as anomalies in the phylogenies of the respective gene families. We developed a computational pipeline to search for such anomalies in 1,834 orthologous clusters of archaeal genes, focusing on lineage-specific subfamilies that significantly deviate from the expected rate of evolution. Multiple potential cases of neofunctionalization and subfunctionalization were identified, including some ancient, house-keeping gene families, such as ribosomal protein S10, general transcription factor TFIIB and chaperone Hsp20. As expected, many cases of apparent acceleration of evolution are associated with lineage-specific gene duplication. On other occasions, long branches in phylogenetic trees correspond to horizontal gene transfer across long evolutionary distances. Significant deceleration of evolution is less common than acceleration, and the underlying causes are not well understood; functional shifts accompanied by increased constraints could be involved. Many gene families appear to be “highly evolvable,” that is, include both long and short branches. Even in the absence of precise functional predictions, this approach allows one to select targets for experimentation in search of new biology.
Collapse
Affiliation(s)
- Celine Petitjean
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
25
|
Diez-Fernandez C, Rüfenacht V, Gemperle C, Fingerhut R, Häberle J. Mutations and common variants in the human arginase 1 (ARG1
) gene: Impact on patients, diagnostics, and protein structure considerations. Hum Mutat 2018; 39:1029-1050. [DOI: 10.1002/humu.23545] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Carmen Diez-Fernandez
- University Children's Hospital Zurich; Division of Metabolism and Children's Research Center; Zurich Switzerland
| | - Véronique Rüfenacht
- University Children's Hospital Zurich; Division of Metabolism and Children's Research Center; Zurich Switzerland
| | - Corinne Gemperle
- University Children's Hospital Zurich; Division of Metabolism and Children's Research Center; Zurich Switzerland
| | - Ralph Fingerhut
- University Children's Hospital Zurich; Division of Metabolism and Children's Research Center; Zurich Switzerland
| | - Johannes Häberle
- University Children's Hospital Zurich; Division of Metabolism and Children's Research Center; Zurich Switzerland
| |
Collapse
|
26
|
Maharem TM, Zahran WE, Hassan RE, Abdel Fattah MM. Unique properties of arginase purified from camel liver cytosol. Int J Biol Macromol 2018; 108:88-97. [DOI: 10.1016/j.ijbiomac.2017.11.141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
|
27
|
Genomic-driven discovery of an amidinohydrolase involved in the biosynthesis of mediomycin A. Appl Microbiol Biotechnol 2018; 102:2225-2234. [PMID: 29349495 DOI: 10.1007/s00253-017-8729-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022]
Abstract
Clethramycin (1) and mediomycin A (2) belong to the linear polyene polyketide (LPP) family of antibiotics that exhibit potent antifungal activity. Structural similarities exist between 1 and 2, except that 2 contains an amino moiety substituted for the guanidino moiety. Herein, the draft genome sequence of Streptomyces mediocidicus ATCC23936, a strain which produces both 1 and 2, was obtained through de novo sequencing. Bioinformatic analysis of the genome revealed a clethramycin (cle) gene cluster that contained 25 open reading frames (orfs). However, amidinohydrolase for 2 formation was not found in the cle gene cluster. Further genomic analysis revealed an amidinohydrolase MedX, which can hydrolyse the guanidino form (1) into the amino form (2) via heterologous co-expression of the cle cluster in Streptomyces lividans or by in vitro catalysis. These results also suggest the feasibility of engineering novel LPPs for drug discovery by manipulating the biosynthetic machinery of S. mediocidicus.
Collapse
|
28
|
Guo Z, Zhang Z, Wang Q, Zhang J, Wang L, Zhang Q, Li H, Wu S. Manganese chloride induces histone acetylation changes in neuronal cells: Its role in manganese-induced damage. Neurotoxicology 2017; 65:255-263. [PMID: 29155171 DOI: 10.1016/j.neuro.2017.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/03/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022]
Abstract
Manganese neurotoxicity presents with Parkinson-like symptoms, with degeneration of dopaminergic neurons in the basal ganglia as the principal pathological feature. Manganese neurotoxicity studies may contribute to a better understanding of the mechanism of Parkinson's disease. Here, we examined the effects of manganese on histone acetylation, a major epigenetic change in chromatin that can regulate gene expression, chromatin remodelling, cell cycle progression, DNA repair and apoptosis. In this study, we found that manganese chloride (MnCl2) may significantly suppress the acetylation of histone H3 and H4 in PC12 cells and SHSY5Y cells in a time-dependent manner. Then we tested the role of manganese chloride on histone acetyltransferase (HAT) and histone deacetylase (HDAC). The results showed that MnCl2 increased the activity of HDAC but decreased that of HAT in PC12 cells. Further experiments showed that MnCl2 selectively increased the expression levels of HDAC3 and HDAC4 rather than HDAC1 and HDAC2, but decreased that of HAT in PC12 cells and SHSY5Y cells. Pretreatment with the HAT inhibitor anacardic acid (AA) enhanced manganese-induced decrease in cell viability and apoptosis, but HDAC inhibition by TSA drug had an opposite effect in PC12 cells. Collectively, MnCl2 inhibited the acetylation of core histones in cell culture models of PD, and that inhibition of HDAC activity by TSA protects against manganese-induced cell death, indicating that histone acetylation may represent key epigenetic changes in manganese-induced dopaminergic neurotoxicity.
Collapse
Affiliation(s)
- Zhenkun Guo
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhipeng Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Qingqing Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jie Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Lijin Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Qunwei Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Environmental and Occupational Health Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Huangyuan Li
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Siying Wu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
29
|
Hong H, Samborskyy M, Usachova K, Schnatz K, Leadlay PF. Sulfation and amidinohydrolysis in the biosynthesis of giant linear polyenes. Beilstein J Org Chem 2017; 13:2408-2415. [PMID: 29234468 PMCID: PMC5704753 DOI: 10.3762/bjoc.13.238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022] Open
Abstract
Clethramycin from Streptomyces malaysiensis DSM4137, and mediomycins (produced together with clethramycin from Streptomyces mediocidicus), are near-identical giant linear polyenes apparently constructed from, respectively, a 4-guanidinobutanoate or 4-aminobutanoate starter unit and 27 polyketide extender units, and bearing a specific O-sulfonate modification at the C-29 hydroxy group. We show here that mediomycins are actually biosynthesised not by use of a different starter unit but by direct late-stage deamidination of (desulfo)clethramycin. A gene (slf) encoding a candidate sulfotransferase has been located in both gene clusters. Deletion of this gene in DSM4137 led to accumulation of desulfoclethramycin only, instead of a mixture of desulfoclethramycin and clethramycin. The mediomycin gene cluster does not encode an amidinohydrolase, but when three candidate amidinohydrolase genes from elsewhere in the S. mediocidicus genome were individually expressed in Escherichia coli and assayed, only one of them (medi4948), located 670 kbp away from the mediomycin gene cluster on the chromosome, catalysed the removal of the amidino group from desulfoclethramycin. Subsequent cloning of medi4948 into DSM4137 caused mediomycins A and B to accumulate at the expense of clethramycin and desulfoclethramycin, respectively, a rare case where an essential biosynthetic gene is not co-located with other pathway genes. Clearly, both desulfoclethramycin and clethramycin are substrates for this amidinohydrolase. Also, purified recombinant sulfotransferase from DSM4137, in the presence of 3'-phosphoadenosine-5'-phosphosulfate as donor, efficiently converted mediomycin B to mediomycin A in vitro. Thus, in the final steps of mediomycin A biosynthesis deamidination and sulfotransfer can take place in either order.
Collapse
Affiliation(s)
- Hui Hong
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | | - Katharina Schnatz
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Peter F Leadlay
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
30
|
Evolution of biosynthetic diversity. Biochem J 2017; 474:2277-2299. [DOI: 10.1042/bcj20160823] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022]
Abstract
Since the emergence of the last common ancestor from which all extant life evolved, the metabolite repertoire of cells has increased and diversified. Not only has the metabolite cosmos expanded, but the ways in which the same metabolites are made have diversified. Enzymes catalyzing the same reaction have evolved independently from different protein folds; the same protein fold can produce enzymes recognizing different substrates, and enzymes performing different chemistries. Genes encoding useful enzymes can be transferred between organisms and even between the major domains of life. Organisms that live in metabolite-rich environments sometimes lose the pathways that produce those same metabolites. Fusion of different protein domains results in enzymes with novel properties. This review will consider the major evolutionary mechanisms that generate biosynthetic diversity: gene duplication (and gene loss), horizontal and endosymbiotic gene transfer, and gene fusion. It will also discuss mechanisms that lead to convergence as well as divergence. To illustrate these mechanisms, one of the original metabolisms present in the last universal common ancestor will be employed: polyamine metabolism, which is essential for the growth and cell proliferation of archaea and eukaryotes, and many bacteria.
Collapse
|
31
|
Lisi L, Pizzoferrato M, Miscioscia FT, Topai A, Navarra P. Interactions between integrase inhibitors and human arginase 1. J Neurochem 2017; 142:153-159. [PMID: 28397245 DOI: 10.1111/jnc.14039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/03/2017] [Indexed: 12/27/2022]
Abstract
The neuro-pathogenic mechanism(s) underlying HIV-associated neurocognitive disorders are mostly unknown. HIV-infected macrophages and microglial cells play a crucial role and the metabolic fate of l-arginine may be highly relevant to microglia activation. In this context, arginase (ARG), which uses l-arginine as substrate, can be on the same time a target and source of oxidative stress and inflammation. In this study, we investigated whether integrase strand transfer inhibitors share with the other antiretroviral drugs the ability to inhibit ARG activity. We used the previously validated cell model, namely the human microglia cell line, as well as the computational chemistry approach. Furthermore, here we characterized the activity of purified human ARG in a cell-free in vitro system, and investigated the effects of integrase strand transfer inhibitors in this newly validated model. Overall evidence shows that Dolutegravir, Raltegravir and Elvitegravir inhibit ARG activity.
Collapse
Affiliation(s)
- Lucia Lisi
- Institute of Pharmacology, Catholic University Medical School, Rome, Italy
| | | | | | - Alessandra Topai
- Colosseum Combinatorial Chemistry Centre for Technology, Rome, Italy
| | - Pierluigi Navarra
- Institute of Pharmacology, Catholic University Medical School, Rome, Italy
| |
Collapse
|
32
|
Zhang T, Yang J, Yin X, Yu P, Mooney R, Huang X, Qi M. Three novel mutations of ARG1 identified in Chinese patients with argininemia detected by newborn screening. Clin Chim Acta 2017; 466:68-71. [DOI: 10.1016/j.cca.2017.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 12/31/2022]
|
33
|
Deardorff MA, Porter NJ, Christianson DW. Structural aspects of HDAC8 mechanism and dysfunction in Cornelia de Lange syndrome spectrum disorders. Protein Sci 2016; 25:1965-1976. [PMID: 27576763 PMCID: PMC5079251 DOI: 10.1002/pro.3030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 11/08/2022]
Abstract
Cornelia de Lange Syndrome (CdLS) encompasses a broad spectrum of phenotypes characterized by distinctive craniofacial abnormalities, limb malformations, growth retardation, and intellectual disability. CdLS spectrum disorders are referred to as cohesinopathies, with ∼70% of patients having a mutation in a gene encoding a core cohesin protein (SMC1A, SMC3, or RAD21) or a cohesin regulatory protein (NIPBL or HDAC8). Notably, the regulatory function of HDAC8 in cohesin biology has only recently been discovered. This Zn2+ -dependent hydrolase catalyzes the deacetylation of SMC3, a necessary step for cohesin recycling during the cell cycle. To date, 23 different missense mutants in the gene encoding HDAC8 have been identified in children with developmental features that overlap those of CdLS. Enzymological, biophysical, and structural studies of CdLS HDAC8 protein mutants have yielded critical insight on compromised catalysis in vitro. Most CdLS HDAC8 mutations trigger structural changes that directly or indirectly impact substrate binding and catalysis. Additionally, several mutations significantly compromise protein thermostability. Intriguingly, catalytic activity in many HDAC8 mutants can be partially or fully restored by an N-acylthiourea activator, suggesting a plausible strategy for the chemical rescue of compromised HDAC8 catalysis in vivo.
Collapse
Affiliation(s)
- Matthew A Deardorff
- Division of Human Genetics and Molecular Biology, The Children's Hospital of Philadelphia, Pennsylvania, 19104.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104.
| | - Nicholas J Porter
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104-6323
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104-6323.
| |
Collapse
|
34
|
Hong H, Samborskyy M, Lindner F, Leadlay PF. An Amidinohydrolase Provides the Missing Link in the Biosynthesis of Amino Marginolactone Antibiotics. Angew Chem Int Ed Engl 2016; 55:1118-23. [PMID: 26630438 PMCID: PMC4737276 DOI: 10.1002/anie.201509300] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 01/23/2023]
Abstract
Desertomycin A is an aminopolyol polyketide containing a macrolactone ring. We have proposed that desertomycin A and similar compounds (marginolactones) are formed by polyketide synthases primed not with γ-aminobutanoyl-CoA but with 4-guanidinylbutanoyl-CoA, to avoid facile cyclization of the starter unit. This hypothesis requires that there be a final-stage de-amidination of the corresponding guanidino-substituted natural product, but no enzyme for such a process has been described. We have now identified candidate amidinohydrolase genes within the desertomycin and primycin clusters. Deletion of the putative desertomycin amidinohydrolase gene dstH in Streptomyces macronensis led to the accumulation of desertomycin B, the guanidino form of the antibiotic. Also, purified DstH efficiently catalyzed the in vitro conversion of desertomycin B into the A form. Hence this amidinohydrolase furnishes the missing link in this proposed naturally evolved example of protective-group chemistry.
Collapse
Affiliation(s)
- Hui Hong
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Markiyan Samborskyy
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Frederick Lindner
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
- Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1 B, 30167, Hannover, Germany
| | - Peter F Leadlay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
35
|
Hong H, Samborskyy M, Lindner F, Leadlay PF. An Amidinohydrolase Provides the Missing Link in the Biosynthesis of Amino Marginolactone Antibiotics. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Hui Hong
- Department of Biochemistry; University of Cambridge; 80 Tennis Court Road Cambridge CB2 1GA UK
| | - Markiyan Samborskyy
- Department of Biochemistry; University of Cambridge; 80 Tennis Court Road Cambridge CB2 1GA UK
| | - Frederick Lindner
- Department of Biochemistry; University of Cambridge; 80 Tennis Court Road Cambridge CB2 1GA UK
- Institut für Organische Chemie; Leibniz Universität Hannover; Schneiderberg 1 B 30167 Hannover Germany
| | - Peter F. Leadlay
- Department of Biochemistry; University of Cambridge; 80 Tennis Court Road Cambridge CB2 1GA UK
| |
Collapse
|
36
|
Hai Y, Kerkhoven E, Barrett MP, Christianson DW. Crystal structure of an arginase-like protein from Trypanosoma brucei that evolved without a binuclear manganese cluster. Biochemistry 2015; 54:458-71. [PMID: 25536859 PMCID: PMC4303290 DOI: 10.1021/bi501366a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/09/2014] [Indexed: 11/28/2022]
Abstract
The X-ray crystal structure of an arginase-like protein from the parasitic protozoan Trypanosoma brucei, designated TbARG, is reported at 1.80 and 2.38 Å resolution in its reduced and oxidized forms, respectively. The oxidized form of TbARG is a disulfide-linked hexamer that retains the overall architecture of a dimer of trimers in the reduced form. Intriguingly, TbARG does not contain metal ions in its putative active site, and amino acid sequence comparisons indicate that all but one of the residues required for coordination to the catalytically obligatory binuclear manganese cluster in other arginases are substituted here with residues incapable of metal ion coordination. Therefore, the structure of TbARG is the first of a member of the arginase/deacetylase superfamily that is not a metalloprotein. Although we show that metal binding activity is easily reconstituted in TbARG by site-directed mutagenesis and confirmed in X-ray crystal structures, it is curious that this protein and its parasitic orthologues evolved away from metal binding function. Knockout of the TbARG gene from the genome demonstrated that its function is not essential to cultured bloodstream-form T. brucei, and metabolomics analysis confirmed that the enzyme has no role in the conversion of l-arginine to l-ornithine in these cells. While the molecular function of TbARG remains enigmatic, the fact that the T. brucei genome encodes only this protein and not a functional arginase indicates that the parasite must import l-ornithine from its host to provide a source of substrate for ornithine decarboxylase in the polyamine biosynthetic pathway, an active target for the development of antiparasitic drugs.
Collapse
Affiliation(s)
- Yang Hai
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Eduard
J. Kerkhoven
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Michael P. Barrett
- Wellcome
Trust Centre of Molecular Parasitology and Glasgow Polyomics, Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - David W. Christianson
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
37
|
Winter G, Todd CD, Trovato M, Forlani G, Funck D. Physiological implications of arginine metabolism in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:534. [PMID: 26284079 PMCID: PMC4520006 DOI: 10.3389/fpls.2015.00534] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/29/2015] [Indexed: 05/18/2023]
Abstract
Nitrogen is a limiting resource for plant growth in most terrestrial habitats since large amounts of nitrogen are needed to synthesize nucleic acids and proteins. Among the 21 proteinogenic amino acids, arginine has the highest nitrogen to carbon ratio, which makes it especially suitable as a storage form of organic nitrogen. Synthesis in chloroplasts via ornithine is apparently the only operational pathway to provide arginine in plants, and the rate of arginine synthesis is tightly regulated by various feedback mechanisms in accordance with the overall nutritional status. While several steps of arginine biosynthesis still remain poorly characterized in plants, much wider attention has been paid to inter- and intracellular arginine transport as well as arginine-derived metabolites. A role of arginine as alternative source besides glutamate for proline biosynthesis is still discussed controversially and may be prevented by differential subcellular localization of enzymes. Apparently, arginine is a precursor for nitric oxide (NO), although the molecular mechanism of NO production from arginine remains unclear in higher plants. In contrast, conversion of arginine to polyamines is well documented, and in several plant species also ornithine can serve as a precursor for polyamines. Both NO and polyamines play crucial roles in regulating developmental processes as well as responses to biotic and abiotic stress. It is thus conceivable that arginine catabolism serves on the one hand to mobilize nitrogen storages, while on the other hand it may be used to fine-tune development and defense mechanisms against stress. This review summarizes the recent advances in our knowledge about arginine metabolism, with a special focus on the model plant Arabidopsis thaliana, and pinpoints still unresolved critical questions.
Collapse
Affiliation(s)
- Gudrun Winter
- Laboratory of Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Maurizio Trovato
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Forlani
- Laboratory of Plant Physiology and Biochemistry, Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Dietmar Funck
- Laboratory of Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Konstanz, Germany
- *Correspondence: Dietmar Funck, Laboratory of Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany,
| |
Collapse
|
38
|
Fang X, Seim I, Huang Z, Gerashchenko MV, Xiong Z, Turanov AA, Zhu Y, Lobanov AV, Fan D, Yim SH, Yao X, Ma S, Yang L, Lee SG, Kim EB, Bronson RT, Šumbera R, Buffenstein R, Zhou X, Krogh A, Park TJ, Zhang G, Wang J, Gladyshev VN. Adaptations to a subterranean environment and longevity revealed by the analysis of mole rat genomes. Cell Rep 2014; 8:1354-64. [PMID: 25176646 PMCID: PMC4350764 DOI: 10.1016/j.celrep.2014.07.030] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 05/11/2014] [Accepted: 07/17/2014] [Indexed: 02/06/2023] Open
Abstract
Subterranean mammals spend their lives in dark, unventilated environments that are rich in carbon dioxide and ammonia and low in oxygen. Many of these animals are also long-lived and exhibit reduced aging-associated diseases, such as neurodegenerative disorders and cancer. We sequenced the genome of the Damaraland mole rat (DMR, Fukomys damarensis) and improved the genome assembly of the naked mole rat (NMR, Heterocephalus glaber). Comparative genome analyses, along with the transcriptomes of related subterranean rodents, revealed candidate molecular adaptations for subterranean life and longevity, including a divergent insulin peptide, expression of oxygen-carrying globins in the brain, prevention of high CO2-induced pain perception, and enhanced ammonia detoxification. Juxtaposition of the genomes of DMR and other more conventional animals with the genome of NMR revealed several truly exceptional NMR features: unusual thermogenesis, an aberrant melatonin system, pain insensitivity, and unique processing of 28S rRNA. Together, these genomes and transcriptomes extend our understanding of subterranean adaptations, stress resistance, and longevity.
Collapse
Affiliation(s)
- Xiaodong Fang
- BGI-Shenzhen, Shenzhen 518083, China; Department of Biology, University of Copenhagen, Copenhagen, 2200 Copenhagen N, Denmark
| | - Inge Seim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, South Korea
| | | | - Maxim V Gerashchenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Anton A Turanov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Alexei V Lobanov
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Sun Hee Yim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Siming Ma
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lan Yang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Sang-Goo Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, South Korea
| | - Eun Bae Kim
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, South Korea
| | - Roderick T Bronson
- Rodent Histopathology Laboratory, Harvard Medical School, Boston, MA 02115, USA
| | - Radim Šumbera
- University of South Bohemia, Faculty of Science, Ceske Budejovice 37005, Czech Republic
| | - Rochelle Buffenstein
- Department of Physiology and The Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | - Xin Zhou
- BGI-Shenzhen, Shenzhen 518083, China
| | - Anders Krogh
- Department of Biology, University of Copenhagen, Copenhagen, 2200 Copenhagen N, Denmark
| | - Thomas J Park
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen 518083, China; Department of Biology, University of Copenhagen, Copenhagen, 2200 Copenhagen N, Denmark
| | - Jun Wang
- BGI-Shenzhen, Shenzhen 518083, China; Department of Biology, University of Copenhagen, Copenhagen, 2200 Copenhagen N, Denmark; King Abdulaziz University, Jeddah 21441, Saudi Arabia.
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, South Korea.
| |
Collapse
|
39
|
Hai Y, Dugery RJ, Healy D, Christianson DW. Formiminoglutamase from Trypanosoma cruzi is an arginase-like manganese metalloenzyme. Biochemistry 2013; 52:9294-309. [PMID: 24261485 DOI: 10.1021/bi401352h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The crystal structure of formiminoglutamase from Trypanosoma cruzi (TcFIGase) is reported at 1.85 Å resolution. Although the structure of this enzyme was previously determined by the Structural Genomics of Pathogenic Protozoa Consortium (PDB accession code 2A0M), this structure was determined at low pH and lacked bound metal ions; accordingly, the protein was simply annotated as "arginase superfamily protein" with undetermined function. We show that reconstitution of this protein with Mn²⁺ confers maximal catalytic activity in the hydrolysis of formiminoglutamate to yield glutamate and formamide, thereby demonstrating that this protein is a metal-dependent formiminoglutamase. Equilibration of TcFIGase crystals with MnCl₂ at higher pH yields a binuclear manganese cluster similar to that observed in arginase, except that the histidine ligand to the Mn²⁺(A) ion of arginase is an asparagine ligand (N114) to the Mn²⁺(A) ion of TcFIGase. The crystal structure of N114H TcFIGase reveals a binuclear manganese cluster essentially identical to that of arginase, but the mutant exhibits a modest 35% loss of catalytic efficiency (k(cat)/K(M)). Interestingly, when TcFIGase is prepared and crystallized in the absence of reducing agents at low pH, a disulfide linkage forms between C35 and C242 in the active site. When reconstituted with Mn²⁺ at higher pH, this oxidized enzyme exhibits a modest 33% loss of catalytic efficiency. Structure determinations of the metal-free and metal-bound forms of oxidized TcFIGase reveal that although disulfide formation constricts the main entrance to the active site, other structural changes open alternative channels to the active site that may help sustain catalytic activity.
Collapse
Affiliation(s)
- Yang Hai
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, PA 19104-6323, U.S.A
| | | | | | | |
Collapse
|
40
|
Arrar M, de Oliveira CAF, Andrew McCammon J. Inactivating mutation in histone deacetylase 3 stabilizes its active conformation. Protein Sci 2013; 22:1306-12. [PMID: 23904210 PMCID: PMC3795489 DOI: 10.1002/pro.2317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022]
Abstract
Histone deacetylases (HDACs), together with histone acetyltransferases (HATs), regulate gene expression by modulating the acetylation level of chromatin. HDAC3 is implicated in many important cellular processes, particularly in cancer cell proliferation and metastasis, making inhibition of HDAC3 a promising epigenetic treatment for certain cancers. HDAC3 is activated upon complex formation with both inositol tetraphosphate (IP4) and the deacetylase-activating domain (DAD) of multi-protein nuclear receptor corepressor complexes. In previous studies, we have shown that binding of DAD and IP4 to HDAC3 significantly restricts its conformational space towards its stable ternary complex conformation, and suggest this to be the active conformation. Here, we report a single mutation of HDAC3 that is capable of mimicking the stabilizing effects of DAD and IP4, without the presence of either. This mutation, however, results in a total loss of deacetylase activity, prompting a closer evaluation of our understanding of the activation of HDAC3.
Collapse
Affiliation(s)
- Mehrnoosh Arrar
- Department of Chemistry and Biochemistry, University of California San DiegoLa Jolla, California, 92093-0365
| | - Cesar Augusto F de Oliveira
- Department of Chemistry and Biochemistry, University of California San DiegoLa Jolla, California, 92093-0365
- Howard Hughes Medical Institute, University of California San DiegoLa Jolla, California, 92093-0365
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San DiegoLa Jolla, California, 92093-0365
- Howard Hughes Medical Institute, University of California San DiegoLa Jolla, California, 92093-0365
| |
Collapse
|
41
|
Synthesis and evaluation of N⁸-acetylspermidine analogues as inhibitors of bacterial acetylpolyamine amidohydrolase. Bioorg Med Chem 2013; 21:4530-40. [PMID: 23790721 DOI: 10.1016/j.bmc.2013.05.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/14/2013] [Accepted: 05/18/2013] [Indexed: 12/23/2022]
Abstract
Polyamines are small essential polycations involved in many biological processes. Enzymes of polyamine metabolism have been extensively studied and are attractive drug targets. Nevertheless, the reversible acetylation of polyamines remains poorly understood. Although eukaryotic N(8)-acetylspermidine deacetylase activity has already been detected and studied, the specific enzyme responsible for this activity has not yet been identified. However, a zinc deacetylase from Mycoplana ramosa, acetylpolyamine amidohydrolase (APAH), has been reported to use various acetylpolyamines as substrates. The recently solved crystal structure of this polyamine deacetylase revealed the formation of an 'L'-shaped active site tunnel at the dimer interface, with ideal dimensions and electrostatic properties for accommodating narrow, flexible, cationic polyamine substrates. Here, we report the design, synthesis, and evaluation of N(8)-acetylspermidine analogues bearing different zinc binding groups as potential inhibitors of APAH. Most of the synthesized compounds exhibit modest potency, with IC₅₀ values in the mid-micromolar range, but compounds bearing hydroxamate or trifluoromethylketone zinc binding groups exhibit enhanced inhibitory potency in the mid-nanomolar range. These inhibitors will enable future explorations of acetylpolyamine function in both prokaryotes and eukaryotes.
Collapse
|
42
|
Role of arginase 1 from myeloid cells in th2-dominated lung inflammation. PLoS One 2013; 8:e61961. [PMID: 23637937 PMCID: PMC3634833 DOI: 10.1371/journal.pone.0061961] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 03/16/2013] [Indexed: 12/18/2022] Open
Abstract
Th2-driven lung inflammation increases Arginase 1 (Arg1) expression in alternatively-activated macrophages (AAMs). AAMs modulate T cell and wound healing responses and Arg1 might contribute to asthma pathogenesis by inhibiting nitric oxide production, regulating fibrosis, modulating arginine metabolism and restricting T cell proliferation. We used mice lacking Arg1 in myeloid cells to investigate the contribution of Arg1 to lung inflammation and pathophysiology. In six model systems encompassing acute and chronic Th2-mediated lung inflammation we observed neither a pathogenic nor protective role for myeloid-expressed Arg1. The number and composition of inflammatory cells in the airways and lungs, mucus secretion, collagen deposition, airway hyper-responsiveness, and T cell cytokine production were not altered if AAMs were deficient in Arg1 or simultaneously in both Arg1 and NOS2. Our results argue that Arg1 is a general feature of alternative activation but only selectively regulates Th2 responses. Therefore, attempts to experimentally or therapeutically inhibit arginase activity in the lung should be examined with caution.
Collapse
|
43
|
Carvalho DR, Brand GD, Brum JM, Takata RI, Speck-Martins CE, Pratesi R. Analysis of novel ARG1 mutations causing hyperargininemia and correlation with arginase I activity in erythrocytes. Gene 2012; 509:124-30. [PMID: 22959135 DOI: 10.1016/j.gene.2012.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/06/2012] [Accepted: 08/01/2012] [Indexed: 02/09/2023]
Abstract
Hyperargininemia (HA) is an autosomal recessive disease that typically has a clinical presentation that is distinct from other urea cycle disorders. It is caused by the deficient activity of the enzyme arginase I, encoded by the gene ARG1. We screened for ARG1 mutations and measured erythrocyte enzyme activity in a series of 16 Brazilian HA patients. Novel mutations, in addition to previously described missense mutations, were analysed for their effect on the structure, stability and/or function of arginase I (ARG1) using bioinformatics tools. Three previously reported mutations were found (p.R21X; p.I11T and p.W122X), and five novel mutations were identified (p.G27D; p.G74V; p.T134I; p.R308Q; p.I174fs179). The p.T134I mutation was the most frequent in the Brazilian population. Patients carrying the p.R308Q mutation had higher residual ARG1 decreased activity, but presented no distinguishable phenotype compared to the other patients. Bioinformatics analyses revealed that missense mutations (1) affect the ARG1 active site, (2) interfere with the stability of the ARG1 folded conformation or (3) alter the quaternary structure of the ARG1. Our study reinforced the role of Arg308 residue for assembly of the ARG1 homotrimer. The panel of heterogeneous ARG1 mutations that cause HA was expanded, nevertheless a clear genotype-phenotype correlation was not observed in our series.
Collapse
Affiliation(s)
- Daniel Rocha Carvalho
- Genetic Unit, SARAH Rehabilitation Hospital, SMHS Quadra 501 Conj. A, Brasilia, Distrito Federal, 70335-901, Brazil.
| | | | | | | | | | | |
Collapse
|
44
|
Vogelauer M, Krall AS, McBrian MA, Li JY, Kurdistani SK. Stimulation of histone deacetylase activity by metabolites of intermediary metabolism. J Biol Chem 2012; 287:32006-16. [PMID: 22822071 DOI: 10.1074/jbc.m112.362467] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Histone deacetylases (HDACs) function in a wide range of molecular processes, including gene expression, and are of significant interest as therapeutic targets. Although their native complexes, subcellular localization, and recruitment mechanisms to chromatin have been extensively studied, much less is known about whether the enzymatic activity of non-sirtuin HDACs can be regulated by natural metabolites. Here, we show that several coenzyme A (CoA) derivatives, such as acetyl-CoA, butyryl-CoA, HMG-CoA, and malonyl-CoA, as well as NADPH but not NADP(+), NADH, or NAD(+), act as allosteric activators of recombinant HDAC1 and HDAC2 in vitro following a mixed activation kinetic. In contrast, free CoA, like unconjugated butyrate, inhibits HDAC activity in vitro. Analysis of a large number of engineered HDAC1 mutants suggests that the HDAC activity can potentially be decoupled from "activatability" by the CoA derivatives. In vivo, pharmacological inhibition of glucose-6-phosphate dehydrogenase (G6PD) to decrease NADPH levels led to significant increases in global levels of histone H3 and H4 acetylation. The similarity in structures of the identified metabolites and the exquisite selectivity of NADPH over NADP(+), NADH, and NAD(+) as an HDAC activator reveal a previously unrecognized biochemical feature of the HDAC proteins with important consequences for regulation of histone acetylation as well as the development of more specific and potent HDAC inhibitors.
Collapse
Affiliation(s)
- Maria Vogelauer
- Department of Biological Chemistry,UCLA, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
45
|
Romero PA, Stone E, Lamb C, Chantranupong L, Krause A, Miklos AE, Hughes RA, Fechtel B, Ellington AD, Arnold FH, Georgiou G. SCHEMA-designed variants of human Arginase I and II reveal sequence elements important to stability and catalysis. ACS Synth Biol 2012; 1:221-8. [PMID: 22737599 DOI: 10.1021/sb300014t] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Arginases catalyze the divalent cation-dependent hydrolysis of L-arginine to urea and L-ornithine. There is significant interest in using arginase as a therapeutic antineogenic agent against L-arginine auxotrophic tumors and in enzyme replacement therapy for treating hyperargininemia. Both therapeutic applications require enzymes with sufficient stability under physiological conditions. To explore sequence elements that contribute to arginase stability we used SCHEMA-guided recombination to design a library of chimeric enzymes composed of sequence fragments from the two human isozymes Arginase I and II. We then developed a novel active learning algorithm that selects sequences from this library that are both highly informative and functional. Using high-throughput gene synthesis and our two-step active learning algorithm, we were able to rapidly create a small but highly informative set of seven enzymatically active chimeras that had an average variant distance of 40 mutations from the closest parent arginase. Within this set of sequences, linear regression was used to identify the sequence elements that contribute to the long-term stability of human arginase under physiological conditions. This approach revealed a striking correlation between the isoelectric point and the long-term stability of the enzyme to deactivation under physiological conditions.
Collapse
Affiliation(s)
| | | | | | | | - Andreas Krause
- Department of Computer Science, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
In the present study, a comprehensive analysis of the arginase gene family in metazoans was performed. A total of 126 arginase genes have been identified in 44 species. Phylogenetic analyses indicate that arginase genes consist of four groups. Conservative and divergent gene structures are found among the groups. The syntenies also exist in distantly related genomes among multiple species. Adaptive evolution shows that, while purifying selection may have been the main force driving the evolution of the arginases, some of critical sites responsible for the functional divergence may have been under positive selection. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the arginase gene family and of the function and evolution of this family in metazoans.
Collapse
Affiliation(s)
- Jun Cao
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu, 212013, P.R. China.
| | | |
Collapse
|
47
|
Lombardi PM, Cole KE, Dowling DP, Christianson DW. Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. Curr Opin Struct Biol 2011; 21:735-43. [PMID: 21872466 DOI: 10.1016/j.sbi.2011.08.004] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
Metal-dependent histone deacetylases (HDACs) catalyze the hydrolysis of acetyl-L-lysine side chains in histone and nonhistone proteins to yield l-lysine and acetate. This chemistry plays a critical role in the regulation of numerous biological processes. Aberrant HDAC activity is implicated in various diseases, and HDACs are validated targets for drug design. Two HDAC inhibitors are currently approved for cancer chemotherapy, and other inhibitors are in clinical trials. To date, X-ray crystal structures are available for four human HDACs (2, 4, 7, and 8) and three HDAC-related deacetylases from bacteria (histone deacetylase-like protein (HDLP); histone deacetylase-like amidohydrolase (HDAH); acetylpolyamine amidohydrolase (APAH)). Structural comparisons among these enzymes reveal a conserved constellation of active site residues, suggesting a common mechanism for the metal-dependent hydrolysis of acetylated substrates. Structural analyses of HDACs and HDAC-related deacetylases guide the design of tight-binding inhibitors, and future prospects for developing isozyme-specific inhibitors are quite promising.
Collapse
Affiliation(s)
- Patrick M Lombardi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | | | | | | |
Collapse
|
48
|
Ilies M, Dowling DP, Lombardi PM, Christianson DW. Synthesis of a new trifluoromethylketone analogue of l-arginine and contrasting inhibitory activity against human arginase I and histone deacetylase 8. Bioorg Med Chem Lett 2011; 21:5854-8. [PMID: 21875805 DOI: 10.1016/j.bmcl.2011.07.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/25/2011] [Accepted: 07/26/2011] [Indexed: 01/12/2023]
Abstract
As part of our continuing search for new amino acid inhibitors of metalloenzymes, we now report the synthesis and biological evaluation of the trifluoromethylketone analogue of L-arginine, (S)-2-amino-8,8,8-trifluoro-7-oxo-octanoic acid (10). While this novel amino acid was initially designed as a potential inhibitor of human arginase I, it exhibits no measurable inhibitory activity against this enzyme. Surprisingly, however, 10 is a potent inhibitor of human histone deacetylase 8, with IC(50)=1.5 ± 0.2 μM. Additionally, 10 weakly inhibits the related bacterial enzyme, acetylpolyamine amidohydrolase, with IC(50)=110 ± 30 μM. The lack of inhibitory activity against human arginase I may result from unfavorable interactions of the bulky trifluoromethyl group of 10 in the constricted active site. Since the active site of histone deacetylase 8 is less constricted, we hypothesize that it accommodates 10 as the gem-diol, which mimics the tetrahedral intermediate and its flanking transition states in catalysis. Therefore, we suggest that 10 represents a new lead in the design of an amino acid or peptide-based inhibitor of histone deacetylases with simpler structure than previously studied trifluoromethylketones.
Collapse
Affiliation(s)
- Monica Ilies
- Department of Chemistry, Drexel University, Philadelphia, PA 19104-2875, USA
| | | | | | | |
Collapse
|
49
|
Lee SJ, Kim DJ, Kim HS, Lee BI, Yoon HJ, Yoon JY, Kim KH, Jang JY, Im HN, An DR, Song JS, Kim HJ, Suh SW. Crystal structures of Pseudomonas aeruginosa guanidinobutyrase and guanidinopropionase, members of the ureohydrolase superfamily. J Struct Biol 2011; 175:329-38. [PMID: 21600989 DOI: 10.1016/j.jsb.2011.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/13/2011] [Accepted: 05/04/2011] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa guanidinobutyrase (GbuA) and guanidinopropionase (GpuA) catalyze the hydrolysis of 4-guanidinobutyrate and 3-guanidinopropionate, respectively. They belong to the ureohydrolase superfamily, which includes arginase, agmatinase, proclavaminate amidinohydrolase, and formiminoglutamase. In this study, we have determined the crystal structures of GbuA and GpuA from P. aeruginosa to provide a structural insight into their substrate specificity. Although GbuA and GpuA share a common structural fold of the typical ureohydrolase superfamily, they exhibit significant variations in two active site loops. Mutagenesis of Met161 of GbuA and Tyr157 of GpuA, both of which are located in the active site loop 1 and predicted to be involved in substrate recognition, significantly affected their enzymatic properties, implying their important roles in catalysis.
Collapse
Affiliation(s)
- Sang Jae Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Stone EM, Chantranupong L, Georgiou G. The second-shell metal ligands of human arginase affect coordination of the nucleophile and substrate. Biochemistry 2010; 49:10582-8. [PMID: 21053939 PMCID: PMC2998210 DOI: 10.1021/bi101542t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
The active sites of eukaryotic arginase enzymes are strictly conserved, especially the first- and second-shell ligands that coordinate the two divalent metal cations that generate a hydroxide molecule for nucleophilic attack on the guanidinium carbon of l-arginine and the subsequent production of urea and l-ornithine. Here by using comprehensive pairwise saturation mutagenesis of the first- and second-shell metal ligands in human arginase I, we demonstrate that several metal binding ligands are actually quite tolerant to amino acid substitutions. Of >2800 double mutants of first- and second-shell residues analyzed, we found more than 80 unique amino acid substitutions, of which four were in first-shell residues. Remarkably, certain second-shell mutations could modulate the binding of both the nucleophilic water/hydroxide molecule and substrate or product ligands, resulting in activity greater than that of the wild-type enzyme. The data presented here constitute the first comprehensive saturation mutagenesis analysis of a metallohydrolase active site and reveal that the strict conservation of the second-shell metal binding residues in eukaryotic arginases does not reflect kinetic optimization of the enzyme during the course of evolution.
Collapse
Affiliation(s)
- Everett M Stone
- Department of Chemical Engineering, University of Texas, Austin, Texas 78712, United States
| | | | | |
Collapse
|