1
|
Xu X, Taha R, Chu C, Xiao L, Wang T, Wang X, Huang X, Jiang Z, Sun L. Indirubin mediates adverse intestinal reactions in guinea pigs by downregulating the expression of AchE through AhR. Xenobiotica 2024; 54:83-94. [PMID: 38164702 DOI: 10.1080/00498254.2023.2297745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Indirubin is the main component of the traditional Chinese medicine Indigo naturalis (IN), a potent agonist of aryl hydrocarbon receptors (AhRs). In China, IN is used to treat psoriasis and ulcerative colitis, and indirubin is used for the treatment of chronic myelogenous leukaemia. However, IN and indirubin have adverse reactions, such as abdominal pain, diarrhoea, and intussusception, and their specific mechanism is unclear.The purpose of our research was to determine the specific mechanism underlying the adverse effects of IN and indirubin. By tracking the modifications in guinea pigs after the intragastric administration of indirubin for 28 days.The results demonstrate that indirubin could accelerate bowel movements and decrease intestinal acetylcholinesterase (AchE) expression. Experiments with NCM460 cells revealed that indirubin significantly reduced the expression of AchE, and the AchE levels were increased after the silencing of AhR and re-exposure to indirubin.This study showed that the inhibition of AchE expression by indirubin plays a key role in the occurrence of adverse reactions to indirubin and that the underlying mechanism is related to AhR-mediated AchE downregulation.
Collapse
Affiliation(s)
- Xiaoting Xu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Reham Taha
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Chenghan Chu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Li Xiao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, China
| | - Tao Wang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Xinzhi Wang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Xin Huang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Zhenzhou Jiang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Lixin Sun
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Pérez-Aguilar B, Marquardt JU, Muñoz-Delgado E, López-Durán RM, Gutiérrez-Ruiz MC, Gomez-Quiroz LE, Gómez-Olivares JL. Changes in the Acetylcholinesterase Enzymatic Activity in Tumor Development and Progression. Cancers (Basel) 2023; 15:4629. [PMID: 37760598 PMCID: PMC10526250 DOI: 10.3390/cancers15184629] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Acetylcholinesterase is a well-known protein because of the relevance of its enzymatic activity in the hydrolysis of acetylcholine in nerve transmission. In addition to the catalytic action, it exerts non-catalytic functions; one is associated with apoptosis, in which acetylcholinesterase could significantly impact the survival and aggressiveness observed in cancer. The participation of AChE as part of the apoptosome could explain the role in tumors, since a lower AChE content would increase cell survival due to poor apoptosome assembly. Likewise, the high Ach content caused by the reduction in enzymatic activity could induce cell survival mediated by the overactivation of acetylcholine receptors (AChR) that activate anti-apoptotic pathways. On the other hand, in tumors in which high enzymatic activity has been observed, AChE could be playing a different role in the aggressiveness of cancer; in this review, we propose that AChE could have a pro-inflammatory role, since the high enzyme content would cause a decrease in ACh, which has also been shown to have anti-inflammatory properties, as discussed in this review. In this review, we analyze the changes that the enzyme could display in different tumors and consider the different levels of regulation that the acetylcholinesterase undergoes in the control of epigenetic changes in the mRNA expression and changes in the enzymatic activity and its molecular forms. We focused on explaining the relationship between acetylcholinesterase expression and its activity in the biology of various tumors. We present up-to-date knowledge regarding this fascinating enzyme that is positioned as a remarkable target for cancer treatment.
Collapse
Affiliation(s)
- Benjamín Pérez-Aguilar
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico; (B.P.-A.); (M.C.G.-R.)
- Department of Medicine I, University of Lübeck, 23562 Lübeck, Germany;
| | - Jens U. Marquardt
- Department of Medicine I, University of Lübeck, 23562 Lübeck, Germany;
| | | | - Rosa María López-Durán
- Laboratorio de Biomembranas, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico;
| | - María Concepción Gutiérrez-Ruiz
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico; (B.P.-A.); (M.C.G.-R.)
| | - Luis E. Gomez-Quiroz
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico; (B.P.-A.); (M.C.G.-R.)
| | - José Luis Gómez-Olivares
- Laboratorio de Biomembranas, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico;
| |
Collapse
|
3
|
Calaf GM, Crispin LA, Muñoz JP, Aguayo F, Bleak TC. Muscarinic Receptors Associated with Cancer. Cancers (Basel) 2022; 14:cancers14092322. [PMID: 35565451 PMCID: PMC9100020 DOI: 10.3390/cancers14092322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Recently, cancer research has described the presence of the cholinergic machinery, specifically muscarinic receptors, in a wide variety of cancers due to their activation and signaling pathways associated with tumor progression and metastasis, providing a wide overview of their contribution to different cancer formation and development for new antitumor targets. This review focused on determining the molecular signatures associated with muscarinic receptors in breast and other cancers and the need for pharmacological, molecular, biochemical, technological, and clinical approaches to improve new therapeutic targets. Abstract Cancer has been considered the pathology of the century and factors such as the environment may play an important etiological role. The ability of muscarinic agonists to stimulate growth and muscarinic receptor antagonists to inhibit tumor growth has been demonstrated for breast, melanoma, lung, gastric, colon, pancreatic, ovarian, prostate, and brain cancer. This work aimed to study the correlation between epidermal growth factor receptors and cholinergic muscarinic receptors, the survival differences adjusted by the stage clinical factor, and the association between gene expression and immune infiltration level in breast, lung, stomach, colon, liver, prostate, and glioblastoma human cancers. Thus, targeting cholinergic muscarinic receptors appears to be an attractive therapeutic alternative due to the complex signaling pathways involved.
Collapse
Affiliation(s)
- Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
- Correspondence:
| | - Leodan A. Crispin
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Francisco Aguayo
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile;
| | - Tammy C. Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| |
Collapse
|
4
|
Wu Q, Bai P, Xia Y, Lai QWS, Guo MSS, Dai K, Zheng Z, Ling CSJ, Dong TTX, Pi R, Tsim KWK. Solar light induces expression of acetylcholinesterase in skin keratinocytes: Signalling mediated by activator protein 1 transcription factor. Neurochem Int 2020; 141:104861. [PMID: 33038610 DOI: 10.1016/j.neuint.2020.104861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 11/24/2022]
Abstract
Acetylcholinesterase (AChE) hydrolyses acetylcholine to choline and acetate, playing an important role in terminating the neurotransmission in brain and muscle. Recently, the non-neuronal functions of AChE have been proposed in different tissues, in which there are various factors to regulate the expression of AChE. In mammalian skin, AChE was identified in melanocytes and keratinocytes. Our previous study has indicated that AChE in keratinocyte affects the process of solar light-induced skin pigmentation; however, the expression of AChE in keratinocytes in responding to sunlight remains unknown. Here, we provided several lines of evidence to support a notion that AChE could be upregulated at transcriptional and translational levels in keratinocytes when exposed to solar light. The light-mediated AChE expression was triggered by Ca2+, supported by an induction of Ca2+ ionophore A23187 and a blockage by Ca2+ chelator BAPTA-AM. In addition, this increase on AChE transcriptional expression was eliminated by mutagenesis on the activating protein 1 (AP1) site in ACHE gene. Hence, the solar light-induced AChE expression is mediated by Ca2+ signalling through AP1 site. This finding supports the role of solar light in affecting the cholinergic system in skin cells, and which may further influence the dermatological function.
Collapse
Affiliation(s)
- Qiyun Wu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, 518000, China; Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Panzhu Bai
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yingjie Xia
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Queenie W S Lai
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Maggie S S Guo
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Kun Dai
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zhongyu Zheng
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Christine S J Ling
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tina T X Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, 518000, China; Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Rongbiao Pi
- School of Medicine, Sun Yat-Sen University, Guangzhou, 518000, China
| | - Karl W K Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, 518000, China; Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
5
|
Xu ML, Luk WK, Liu EY, Kong XP, Wu QY, Xia YJ, Dong TT, Tsim KW. Differentiation of erythroblast requires the dimeric form of acetylcholinesterase: Interference with erythropoietin receptor. Chem Biol Interact 2019; 308:317-322. [DOI: 10.1016/j.cbi.2019.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/24/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022]
|
6
|
Xu ML, Luk WKW, Bi CWC, Liu EYL, Wu KQY, Yao P, Dong TTX, Tsim KWK. Erythropoietin regulates the expression of dimeric form of acetylcholinesterase during differentiation of erythroblast. J Neurochem 2018; 146:390-402. [PMID: 29675901 DOI: 10.1111/jnc.14448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/11/2018] [Accepted: 03/27/2018] [Indexed: 01/28/2023]
Abstract
Acetylcholinesterase (AChE; EC 3.1.1.7) is known to hydrolyze acetylcholine at cholinergic synapses. In mammalian erythrocyte, AChE exists as a dimer (G2 ) and is proposed to play role in erythropoiesis. To reveal the regulation of AChE during differentiation of erythroblast, erythroblast-like cells (TF-1) were induced to differentiate by application of erythropoietin (EPO). The expression of AChE was increased in parallel to the stages of differentiation. Application of EPO in cultured TF-1 cells induced transcriptional activity of ACHE gene, as well as its protein product. This EPO-induced event was in parallel with erythrocytic proteins, for example, α- and β-globins. The EPO-induced AChE expression was mediated by phosphorylations of Akt and GATA-1; because the application of Akt kinase inhibitor blocked the gene activation. Erythroid transcription factor also known as GATA-1, a downstream transcription factor of EPO signaling, was proposed here to account for regulation of AChE in TF-1 cell. A binding sequence of GATA-1 was identified in ACHE gene promoter, which was further confirmed by chromatin immunoprecipitation (ChIP) assay. Over-expression of GATA-1 in TF-1 cultures induced AChE expression, as well as activity of ACHE promoter tagged with luciferase gene (pAChE-Luc). The deletion of GATA-1 sequence on the ACHE promoter, pAChEΔGATA-1 -Luc, reduced the promoter activity during erythroblastic differentiation. On the contrary, the knock-down of AChE in TF-1 cultures could lead to a reduction in EPO-induced expression of erythrocytic proteins. These findings indicated specific regulation of AChE during maturation of erythroblast, which provided an insight into elucidating possible mechanisms in regulating erythropoiesis.
Collapse
Affiliation(s)
- Miranda L Xu
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China.,Shenzhen Key Laboratory of Edible and Medicinal Bioresourses, Shenzhen Research Institute, Shenzhen, China
| | - Wilson K W Luk
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Cathy W C Bi
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Etta Y L Liu
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Kevin Q Y Wu
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ping Yao
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tina T X Dong
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China.,Shenzhen Key Laboratory of Edible and Medicinal Bioresourses, Shenzhen Research Institute, Shenzhen, China
| | - Karl W K Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China.,Shenzhen Key Laboratory of Edible and Medicinal Bioresourses, Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
7
|
Pickett MA, Dush MK, Nascone-Yoder NM. Acetylcholinesterase plays a non-neuronal, non-esterase role in organogenesis. Development 2017; 144:2764-2770. [PMID: 28684626 DOI: 10.1242/dev.149831] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/19/2017] [Indexed: 01/10/2023]
Abstract
Acetylcholinesterase (AChE) is crucial for degrading acetylcholine at cholinergic synapses. In vitro studies suggest that, in addition to its role in nervous system signaling, AChE can also modulate non-neuronal cell properties, although it remains controversial whether AChE functions in this capacity in vivo Here, we show that AChE plays an essential non-classical role in vertebrate gut morphogenesis. Exposure of Xenopus embryos to AChE-inhibiting chemicals results in severe defects in intestinal development. Tissue-targeted loss-of-function assays (via microinjection of antisense morpholino or CRISPR-Cas9) confirm that AChE is specifically required in the gut endoderm tissue, a non-neuronal cell population, where it mediates adhesion to fibronectin and regulates cell rearrangement events that drive gut lengthening and digestive epithelial morphogenesis. Notably, the classical esterase activity of AChE is dispensable for this activity. As AChE is deeply conserved, widely expressed outside of the nervous system, and the target of many environmental chemicals, these results have wide-reaching implications for development and toxicology.
Collapse
Affiliation(s)
- Melissa A Pickett
- Department of Biology, Environmental and Molecular Toxicology Program, North Carolina State University, Raleigh, NC 27606, USA
| | - Michael K Dush
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Nanette M Nascone-Yoder
- Department of Biology, Environmental and Molecular Toxicology Program, North Carolina State University, Raleigh, NC 27606, USA .,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
8
|
Pérez-Aguilar B, Vidal CJ, Palomec G, García-Dolores F, Gutiérrez-Ruiz MC, Bucio L, Gómez-Olivares JL, Gómez-Quiroz LE. Acetylcholinesterase is associated with a decrease in cell proliferation of hepatocellular carcinoma cells. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1380-7. [PMID: 25869328 DOI: 10.1016/j.bbadis.2015.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/27/2015] [Accepted: 04/02/2015] [Indexed: 01/08/2023]
Abstract
Acetylcholinesterase (AChE), the enzyme that rapidly splits acetylcholine into acetate and choline, presents non-cholinergic functions through which may participate in the control of cell proliferation and apoptosis. These two features are relevant in cancer, particularly in hepatocellular carcinoma (HCC), a very aggressive liver tumor with high incidence and poor prognosis in advanced stages. Here we explored the relation between acetylcholinesterase and HCC growth by testing the influence of AChE on proliferation of Huh-7 and HepG2 cell lines, addressed in monolayer cultures, spheroid formation and human liver tumor samples. Results showed a clear relation in AChE expression and cell cycle progression, an effect which depended on cell confluence. Inhibition of AChE activity led to an increase in cell proliferation, which was associated with downregulation of p27 and cyclins. The fact that Huh-7 and HepG2 cell lines provided similar results lent weight to the relationship of AChE expression with cell cycle progression in hepatoma cell lines at least. Human liver tumor samples exhibited a decrease in AChE activity as compared with normal tissue. The evidence presented herein provides additional support for the proposed tumor suppressor role of AChE, which makes it a potential therapeutic target in therapies against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Benjamín Pérez-Aguilar
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, México DF, Mexico; Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México DF, Mexico
| | - Cecilio J Vidal
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Guillermina Palomec
- Laboratorio de Biomembranas, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México DF, Mexico
| | | | - María Concepción Gutiérrez-Ruiz
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México DF, Mexico
| | - Leticia Bucio
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México DF, Mexico
| | - José Luis Gómez-Olivares
- Laboratorio de Biomembranas, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México DF, Mexico.
| | - Luis Enrique Gómez-Quiroz
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México DF, Mexico.
| |
Collapse
|
9
|
Xi HJ, Wu RP, Liu JJ, Zhang LJ, Li ZS. Role of acetylcholinesterase in lung cancer. Thorac Cancer 2015; 6:390-8. [PMID: 26273392 PMCID: PMC4511315 DOI: 10.1111/1759-7714.12249] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/07/2015] [Indexed: 12/14/2022] Open
Abstract
Acetylcholinesterase (AChE) plays a key role in catalytic hydrolysis of cholinergic neurotransmitters. Intensive research has proven the involvement of this protein in novel functions, such as cell adhesion, differentiation, and proliferation. In addition, several recent studies have indicated that acetylcholinesterase is potentially a marker and regulator of apoptosis. Importantly, AChE is also a promising tumor suppressor. In this review, we briefly summarize the involvement of AChE in apoptosis and cancer, focusing on the role of AChE in lung cancer, as well as the therapeutic consideration of AChE for cancer therapy.
Collapse
Affiliation(s)
- Hui-Jun Xi
- Digestive Endoscopy Center, Changhai Hospital, Second Military Medical University Shanghai, China
| | - Ren-Pei Wu
- Digestive Endoscopy Center, Changhai Hospital, Second Military Medical University Shanghai, China
| | - Jing-Jing Liu
- School of Nursing, Second Military Medical University Shanghai, China
| | - Ling-Juan Zhang
- Department of Nursing, Changhai Hospital, Second Military Medical University Shanghai, China
| | - Zhao-Shen Li
- Digestive Endoscopy Center, Changhai Hospital, Second Military Medical University Shanghai, China ; Department of Gastroenterology, Changhai Hospital, Second Military Medical University Shanghai, China
| |
Collapse
|
10
|
Swartling FJ, Čančer M, Frantz A, Weishaupt H, Persson AI. Deregulated proliferation and differentiation in brain tumors. Cell Tissue Res 2015; 359:225-54. [PMID: 25416506 PMCID: PMC4286433 DOI: 10.1007/s00441-014-2046-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/22/2014] [Indexed: 01/24/2023]
Abstract
Neurogenesis, the generation of new neurons, is deregulated in neural stem cell (NSC)- and progenitor-derived murine models of malignant medulloblastoma and glioma, the most common brain tumors of children and adults, respectively. Molecular characterization of human malignant brain tumors, and in particular brain tumor stem cells (BTSCs), has identified neurodevelopmental transcription factors, microRNAs, and epigenetic factors known to inhibit neuronal and glial differentiation. We are starting to understand how these factors are regulated by the major oncogenic drivers in malignant brain tumors. In this review, we will focus on the molecular switches that block normal neuronal differentiation and induce brain tumor formation. Genetic or pharmacological manipulation of these switches in BTSCs has been shown to restore the ability of tumor cells to differentiate. We will discuss potential brain tumor therapies that will promote differentiation in order to reduce treatment resistance, suppress tumor growth, and prevent recurrence in patients.
Collapse
Affiliation(s)
- Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Matko Čančer
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Aaron Frantz
- Departments of Neurology and Neurological Surgery, Sandler Neurosciences Center, University of California, San Francisco, CA, 94158, USA
- Brain Tumor Research Center, University of California, San Francisco, CA, 94158, USA
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, SE-751 85, Sweden
| | - Anders I Persson
- Departments of Neurology and Neurological Surgery, Sandler Neurosciences Center, University of California, San Francisco, CA, 94158, USA
- Brain Tumor Research Center, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
11
|
Xu H, Shen Z, Xiao J, Yang Y, Huang W, Zhou Z, Shen J, Zhu Y, Liu XY, Chu L. Acetylcholinesterase overexpression mediated by oncolytic adenovirus exhibited potent anti-tumor effect. BMC Cancer 2014; 14:668. [PMID: 25220382 PMCID: PMC4169801 DOI: 10.1186/1471-2407-14-668] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/09/2014] [Indexed: 12/14/2022] Open
Abstract
Background Acetylcholinesterase (AChE) mainly functions as an efficient terminator for acetylcholine signaling transmission. Here, we reported the effect of AChE on gastric cancer therapy. Methods The expression of AChE in gastric cancerous tissues and adjacent non-cancerous tissues was examined by immunohistochemistry. Gastric cancer cells were treated with AChE delivered by replication-deficient adenoviral vector (Ad.AChE) or oncolytic adenoviral vector (ZD55-AChE), respectively, followed by measurement of cell viability and apoptosis by MTT assay and apoptosis detection assays. In vivo, the tumor growth of gastric cancer xenografts in mice treated with Ad.AChE or ZD55-AChE (1 × 109 PFU) were measured. In addition, the cell viability of gastric cancer stem cells treated with Ad.AChE or ZD55-AChE were evaluated by MTT assay. Results A positive correlation was found between higher level of AChE expression in gastric cancer patient samples and longer survival time of the patients. Ad.AChE and ZD55-AChE inhibited gastric cancer cell growth, and low dose of ZD55-AChE induced mitochondrial pathway of apoptosis in cells. ZD55-AChE repressed tumor growth in vivo, and the anti-tumor efficacy is greater than Ad.AChE. Moreover, ZD55-AChE suppressed the growth of gastric cancer stem cells. Conclusion ZD55-AChE represented potential therapeutic effect for human gastric cancer. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-668) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yizhun Zhu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | | | | |
Collapse
|
12
|
Bi CWC, Luk WKW, Campanari ML, Liu YH, Xu L, Lau KM, Xu ML, Choi RCY, Sáez-Valero J, Tsim KWK. Quantification of the transcripts encoding different forms of AChE in various cell types: real-time PCR coupled with standards in revealing the copy number. J Mol Neurosci 2014; 53:461-8. [PMID: 24385197 DOI: 10.1007/s12031-013-0210-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/10/2013] [Indexed: 01/05/2023]
Abstract
Acetylcholinesterase (AChE) is encoded by a single gene, and the alternative splicing at the 3' end produces different isoforms, including tailed (AChET), read-through (AChER), and hydrophobic (AChEH). Different forms of this enzyme exist in different cell types. Each AChE form has been proposed to have unique function, and all of them could be found in same cell type. Thus, the splicing process of different AChE forms remains unclear. Here, we aimed to establish a quantification method in measuring the absolute amount of each AChE splicing variants within a cell type. By using real-time PCR coupled with standard curves of defined copy of AChE variants, the copies of AChET transcript per 100 ng of total RNA were 5.7 × 10(4) in PC12 (rat neuronal cell), 1.3 × 10(4) in Caco-2 (human intestinal cell), 0.67 × 10(4) in TF-1 (human erythropoietic precursor), 133.3 in SH-SY5Y (human neuronal cell), and 56.7 in human umbilical vein endothelial cells (human endothelial cells). The copies of AChEH in these cell types were 0.3 × 10(4), 3.3 × 10(4), 2.7 × 10(4), 133.3, and 46.7, respectively, and AChER were 0.07 × 10(4), 0.13 × 10(4), 890, 3.3, and 2.7, respectively. Furthermore, PC12 and TF-1 cells were chosen for the analysis of AChE splicing pattern during differentiation. The results demonstrated a selective increase in AChET mRNA but not AChER or AChEH mRNAs in PC12 upon nerve growth factor-induced neuronal differentiation. PC12 cells could therefore act as a good cell model for the study on alternative splicing mechanism and regulation of AChET.
Collapse
Affiliation(s)
- Cathy W C Bi
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fauser J, Matthews G, Cummins A, Howarth G. Induction of Apoptosis by the Medium-Chain Length Fatty Acid Lauric Acid in Colon Cancer Cells due to Induction of Oxidative Stress. Chemotherapy 2013; 59:214-24. [DOI: 10.1159/000356067] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 09/30/2013] [Indexed: 11/19/2022]
|
14
|
A protocol for in situ enzyme assays to assess the differentiation of human intestinal Caco-2 cells. Toxicol In Vitro 2011; 26:1247-51. [PMID: 22123491 DOI: 10.1016/j.tiv.2011.11.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/15/2011] [Accepted: 11/09/2011] [Indexed: 11/24/2022]
Abstract
The Caco-2 cell line spontaneously differentiates into polarised enterocytes expressing high levels of brush border enzymes typical of small intestinal epithelial cells (peptidases, alkaline phosphatase, disaccharidases). The activities of these enzymes gradually increase after cell confluence reaching a plateau after 2-3 weeks of culture and can be used as reliable markers to evaluate differentiation of Caco-2 cells. We have developed a rapid in situ method on live cells to measure activities of alkaline phosphatase, alanyl amino peptidase and sucrase. The substrates were added to the apical compartment of confluent cells maintained for 8, 15 and 21 days on polycarbonate filter inserts and sampling was performed at time intervals. Alkaline phosphatase and alanyl aminopeptidase were assayed using as substrates p-Nitrophenyl phosphate and alanine-p-nitroanilide, respectively, and the yellow product detected spectrophotometrically at 405 nm. Sucrase activity was measured as the release of glucose from sucrose using a fluorimetric assay (Amplex® Red Glucose Assay Kit) in which H(2)O(2), produced by the coupled glucose oxidase/horseradish peroxidase reactions, oxidises the colourless reagent to red-fluorescent resorufin. All these assays are rapid and reproducible and can easily be adapted to robotised high throughput platforms.
Collapse
|
15
|
Xie J, Jiang H, Wan YH, Du AY, Guo KJ, Liu T, Ye WY, Niu X, Wu J, Dong XQ, Zhang XJ. Induction of a 55 kDa acetylcholinesterase protein during apoptosis and its negative regulation by the Akt pathway. J Mol Cell Biol 2011; 3:250-9. [PMID: 21377978 DOI: 10.1093/jmcb/mjq047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Acetylcholinesterase (AChE) is emerging as an important contributor to apoptosis in various cell types. However, overexpression of AChE does not initiate apoptosis, and cells which express AChE at basal levels grow normally, suggesting that AChE may function differently between normal and apoptotic conditions. In this study, we determined that an AChE-derived protein (∼55 kDa) positively correlated with cellular apoptotic levels. The 55 kDa AChE protein was not a result of a novel splice variant of the AChE primary transcript. Instead, it was determined to be a cleaved fragment of the full-length 68 kDa AChE protein that could not be inhibited by cycloheximide (CHX) but could be suppressed by caspase inhibitors in apoptotic PC-12 cells. Furthermore, activation of the Akt cascade abolished the 55 kDa protein, and both AChE protein forms (68 and 55 kDa) accumulated in the nucleus during apoptosis. In a mouse model for ischemia/reperfusion (I/R)-induced acute renal failure, the 55 kDa AChE protein was detected in the impaired organs but not in the normal ones, and its levels correlated with the genotype of the mice. In summary, a 55 kDa AChE protein resulting from the cleavage of 68 kDa AChE is induced during apoptosis, and it is negatively regulated by the Akt pathway. This study suggests that an alternative form of AChE may play a role in apoptosis.
Collapse
Affiliation(s)
- Jing Xie
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|