1
|
Felice JI, Milesi V, Fabricius G. Exploration of the Parameter Space of an Ion Channel Kinetic Model by a Markov-Chain-Based Methodology. J Chem Inf Model 2024; 64:555-562. [PMID: 38159289 DOI: 10.1021/acs.jcim.3c01811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
In this work, we propose a methodology based on Monte Carlo Markov chains to explore the parameter space of kinetic models for ion channels. The methodology allows the detection of potential parameter sets of a model that are compatible with experimentally obtained whole-cell currents, which could remain hidden when methods focus on obtaining the parameters that provide the best fit. To show its implementation and utility, we considered a four-state kinetic model proposed in the literature to describe the activation of the voltage-gated proton channel (Hv1), Biophysical Journal, 2014, 107, 1564. In that work, a set of values for the rate transitions that describe the channel kinetics at different intracellular H+ concentration (pHi) were obtained by the Simplex method. With our approach, we find that, in fact, there is more than one parameter set for each pHi, which renders the same open probability temporal course within the experimental error margin for all of the considered voltages. The large differences that we obtained for the values of some rate constants among the different solutions show that there is more than one possible interpretation of this channel behavior as a function of pHi. We also simulated a proposed new experimental condition where it is possible to observe that different sets of parameters yield different results. Our study highlights the importance of a comprehensive analysis of parameter space in kinetic models and the utility of the proposed methodology for finding potential solutions.
Collapse
Affiliation(s)
- Juan I Felice
- UNLP, CONICET, Asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), La Plata 1900, Argentina
- CCT CONICET La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, Argentina
| | - Verónica Milesi
- UNLP, CONICET, Asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), La Plata 1900, Argentina
- CCT CONICET La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, Argentina
| | - Gabriel Fabricius
- CONICET and Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CC 16, Suc. 4, La Plata 1900, Argentina
- CCT CONICET La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata 1900, Argentina
| |
Collapse
|
2
|
Winter SL, Golani G, Lolicato F, Vallbracht M, Thiyagarajah K, Ahmed SS, Lüchtenborg C, Fackler OT, Brügger B, Hoenen T, Nickel W, Schwarz US, Chlanda P. The Ebola virus VP40 matrix layer undergoes endosomal disassembly essential for membrane fusion. EMBO J 2023:e113578. [PMID: 37082863 DOI: 10.15252/embj.2023113578] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Ebola viruses (EBOVs) assemble into filamentous virions, whose shape and stability are determined by the matrix viral protein 40 (VP40). Virus entry into host cells occurs via membrane fusion in late endosomes; however, the mechanism of how the remarkably long virions undergo uncoating, including virion disassembly and nucleocapsid release into the cytosol, remains unknown. Here, we investigate the structural architecture of EBOVs entering host cells and discover that the VP40 matrix disassembles prior to membrane fusion. We reveal that VP40 disassembly is caused by the weakening of VP40-lipid interactions driven by low endosomal pH that equilibrates passively across the viral envelope without a dedicated ion channel. We further show that viral membrane fusion depends on VP40 matrix integrity, and its disassembly reduces the energy barrier for fusion stalk formation. Thus, pH-driven structural remodeling of the VP40 matrix acts as a molecular switch coupling viral matrix uncoating to membrane fusion during EBOV entry.
Collapse
Affiliation(s)
- Sophie L Winter
- Schaller Research Groups, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Gonen Golani
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Melina Vallbracht
- Schaller Research Groups, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Keerthihan Thiyagarajah
- Schaller Research Groups, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Samy Sid Ahmed
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Insitut, Greifswald-Insel Riems, Greifswald, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Ulrich S Schwarz
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Petr Chlanda
- Schaller Research Groups, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
3
|
Swain DK, Sharma P, Shah N, Sethi M, Mahajan A, Gupta S, Mishra AK, Yadav S. Introduction to the pathways involved in the activation and regulation of sperm motility: A review of the relevance of ion channels. Anim Reprod Sci 2022; 246:107052. [PMID: 35987804 DOI: 10.1016/j.anireprosci.2022.107052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022]
Abstract
To participate in sperm-oocyte fusion, spermatozoa need to be motile. In the testes, spermatozoa are immotile, although these gametes acquire the capacity for motility during the transit through the epididymis. During the period of epididymal transport from the male genital tract to the female genital tract, spermatozoa exhibit various types of motility that are regulated by complex signalling and communication mechanisms. Because motility is very dynamic, it can be affected by small changes in the external or internal environment of spermatozoa within a very short time. This indicates that regulatory membrane proteins, known as sperm ion channels, are involved in the regulation of sperm motility. Research results from studies, where there was use of electrophysiological, pharmacological, molecular and knock-out approaches, indicate ion channels are possibly involved in the regulation of sperm membrane polarisation, intracellular pH, motility, energy homeostasis, membrane integrity, capacitation, hyperactivity, acrosome reaction and fertilisation processes. In this review, there is summarisation of the key functions that ion channels have in the regulation, initiation, maintenance, and modulation of sperm motility. In addition, in this review there is highlighting of novel insights about the pathways of ion channels that are activated in spermatozoa while these gametes are located in the oviduct leading to the fertilisation capacity of these cells.
Collapse
Affiliation(s)
- Dilip Kumar Swain
- Sperm Signaling Laboratory, Department of Veterinary Physiology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, Uttar Pradesh, India.
| | - Pratishtha Sharma
- Sperm Signaling Laboratory, Department of Veterinary Physiology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, Uttar Pradesh, India
| | - Nadeem Shah
- Department of Veterinary Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Manisha Sethi
- Department of Veterinary Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Abhishek Mahajan
- Sperm Signaling Laboratory, Department of Veterinary Physiology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, Uttar Pradesh, India
| | - Shashikant Gupta
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izzatnagar, Bareilly 243122, Uttar Pradesh, India
| | | | - Sarvajeet Yadav
- Sperm Signaling Laboratory, Department of Veterinary Physiology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, Uttar Pradesh, India
| |
Collapse
|
4
|
Delgado-Bermúdez A, Yeste M, Bonet S, Pinart E. A Review on the Role of Bicarbonate and Proton Transporters during Sperm Capacitation in Mammals. Int J Mol Sci 2022; 23:ijms23116333. [PMID: 35683013 PMCID: PMC9180951 DOI: 10.3390/ijms23116333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Alkalinization of sperm cytosol is essential for plasma membrane hyperpolarization, hyperactivation of motility, and acrosomal exocytosis during sperm capacitation in mammals. The plasma membrane of sperm cells contains different ion channels implicated in the increase of internal pH (pHi) by favoring either bicarbonate entrance or proton efflux. Bicarbonate transporters belong to the solute carrier families 4 (SLC4) and 26 (SLC26) and are currently grouped into Na+/HCO3− transporters and Cl−/HCO3− exchangers. Na+/HCO3− transporters are reported to be essential for the initial and fast entrance of HCO3− that triggers sperm capacitation, whereas Cl−/HCO3− exchangers are responsible for the sustained HCO3− entrance which orchestrates the sequence of changes associated with sperm capacitation. Proton efflux is required for the fast alkalinization of capacitated sperm cells and the activation of pH-dependent proteins; according to the species, this transport can be mediated by Na+/H+ exchangers (NHE) belonging to the SLC9 family and/or voltage-gated proton channels (HVCN1). Herein, we discuss the involvement of each of these channels in sperm capacitation and the acrosome reaction.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), ES-08010 Barcelona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
- Correspondence: ; Tel.: +34-972-419-514
| |
Collapse
|
5
|
Orts DJB, Arcisio-Miranda M. Cell glycosaminoglycans content modulates human voltage-gated proton channel (H V 1) gating. FEBS J 2021; 289:2593-2612. [PMID: 34800064 DOI: 10.1111/febs.16290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/01/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022]
Abstract
Voltage-gated proton channels (HV 1) have been found in many mammalian cells and play a crucial role in the immune system, male fertility, and cancer progression. Glycosaminoglycans play a significant role in various aspects of cell physiology, including the modulation of membrane receptors and ion channel function. We present here evidence that mechanosensitivity of the dimeric HV 1 channel transduce changes on cell membrane fluidity related to the defective biosynthesis of chondroitin sulfate and heparan sulfate in Chinese Hamster Ovary (CHO-745) cells into a leftward shift in the activation voltage dependence. This effect was accompanied by an increase in the H+ current, and an acceleration of the activation kinetics, under symmetrical or asymmetrical pH gradient (ΔpH) conditions. Similar gating alterations were evoked by two naturally occurring HV 1 N-terminal truncated isoforms expressed in wild-type CHO-K1 and CHO-745 cells. On three different monomeric HV 1 constructs, no alterations in the biophysical parameters were observed. Moreover, we have shown that HV 1 gating can be modulated by manipulating CHO-K1 cell membrane fluidity. Our results suggest that the defective biosynthesis of chondroitin sulfate and heparan sulfate on CHO-745 cell increases membrane fluidity and allosterically modulates the coupling between voltage- and ΔpH-sensing through the dimeric HV 1 channel.
Collapse
Affiliation(s)
- Diego J B Orts
- Departamento de Biofísica, Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Universidade Federal de São Paulo - UNIFESP, Brasil
| | - Manoel Arcisio-Miranda
- Departamento de Biofísica, Laboratório de Neurobiologia Estrutural e Funcional (LaNEF), Universidade Federal de São Paulo - UNIFESP, Brasil
| |
Collapse
|
6
|
Capasso L, Ganot P, Planas-Bielsa V, Tambutté S, Zoccola D. Intracellular pH regulation: characterization and functional investigation of H + transporters in Stylophora pistillata. BMC Mol Cell Biol 2021; 22:18. [PMID: 33685406 PMCID: PMC7941709 DOI: 10.1186/s12860-021-00353-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Reef-building corals regularly experience changes in intra- and extracellular H+ concentrations ([H+]) due to physiological and environmental processes. Stringent control of [H+] is required to maintain the homeostatic acid-base balance in coral cells and is achieved through the regulation of intracellular pH (pHi). This task is especially challenging for reef-building corals that share an endosymbiotic relationship with photosynthetic dinoflagellates (family Symbiodinaceae), which significantly affect the pHi of coral cells. Despite their importance, the pH regulatory proteins involved in the homeostatic acid-base balance have been scarcely investigated in corals. Here, we report in the coral Stylophora pistillata a full characterization of the genomic structure, domain topology and phylogeny of three major H+ transporter families that are known to play a role in the intracellular pH regulation of animal cells; we investigated their tissue-specific expression patterns and assessed the effect of seawater acidification on their expression levels. RESULTS We identified members of the Na+/H+ exchanger (SLC9), vacuolar-type electrogenic H+-ATP hydrolase (V-ATPase) and voltage-gated proton channel (HvCN) families in the genome and transcriptome of S. pistillata. In addition, we identified a novel member of the HvCN gene family in the cnidarian subclass Hexacorallia that has not been previously described in any species. We also identified key residues that contribute to H+ transporter substrate specificity, protein function and regulation. Last, we demonstrated that some of these proteins have different tissue expression patterns, and most are unaffected by exposure to seawater acidification. CONCLUSIONS In this study, we provide the first characterization of H+ transporters that might contribute to the homeostatic acid-base balance in coral cells. This work will enrich the knowledge of the basic aspects of coral biology and has important implications for our understanding of how corals regulate their intracellular environment.
Collapse
Affiliation(s)
- Laura Capasso
- Centre Scientifique de Monaco, 8 quai Antoine 1er, 98000, Monaco, Monaco.,Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Philippe Ganot
- Centre Scientifique de Monaco, 8 quai Antoine 1er, 98000, Monaco, Monaco
| | | | - Sylvie Tambutté
- Centre Scientifique de Monaco, 8 quai Antoine 1er, 98000, Monaco, Monaco
| | - Didier Zoccola
- Centre Scientifique de Monaco, 8 quai Antoine 1er, 98000, Monaco, Monaco.
| |
Collapse
|
7
|
Paul AJ, Bach LT. Universal response pattern of phytoplankton growth rates to increasing CO 2. THE NEW PHYTOLOGIST 2020; 228:1710-1716. [PMID: 32654139 DOI: 10.1111/nph.16806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Phytoplankton growth rate is a key variable controlling species succession and ecosystem structure throughout the surface ocean. Carbonate chemistry conditions are known to influence phytoplankton growth rates but there is no conceptual framework allowing us to compare growth rate responses across taxa. Here we analyse the literature to show that phytoplankton growth rates follow an optimum curve response pattern whenever the tested species is exposed to a sufficiently large gradient in proton (H+ ) concentrations. Based on previous findings with coccolithophores and diatoms, we argue that this 'universal reaction norm' is shaped by the stimulating influence of increasing inorganic carbon substrate (left side of the optimum) and the inhibiting influence of increase H+ (right side of the optimum). We envisage that exploration of carbonate chemistry-dependent optimum curves as a default experimental approach will boost our mechanistic understanding of phytoplankton responses to ocean acidification, like temperature curves have already boosted our mechanistic understanding to global warming.
Collapse
Affiliation(s)
- Allanah J Paul
- Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Lennart T Bach
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia
| |
Collapse
|
8
|
Wobig L, Wolfenstetter T, Fechner S, Bönigk W, Körschen HG, Jikeli JF, Trötschel C, Feederle R, Kaupp UB, Seifert R, Berger TK. A family of hyperpolarization-activated channels selective for protons. Proc Natl Acad Sci U S A 2020; 117:13783-13791. [PMID: 32467169 PMCID: PMC7306766 DOI: 10.1073/pnas.2001214117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Proton (H+) channels are special: They select protons against other ions that are up to a millionfold more abundant. Only a few proton channels have been identified so far. Here, we identify a family of voltage-gated "pacemaker" channels, HCNL1, that are exquisitely selective for protons. HCNL1 activates during hyperpolarization and conducts protons into the cytosol. Surprisingly, protons permeate through the channel's voltage-sensing domain, whereas the pore domain is nonfunctional. Key to proton permeation is a methionine residue that interrupts the series of regularly spaced arginine residues in the S4 voltage sensor. HCNL1 forms a tetramer and thus contains four proton pores. Unlike classic HCN channels, HCNL1 is not gated by cyclic nucleotides. The channel is present in zebrafish sperm and carries a proton inward current that acidifies the cytosol. Our results suggest that protons rather than cyclic nucleotides serve as cellular messengers in zebrafish sperm. Through small modifications in two key functional domains, HCNL1 evolutionarily adapted to a low-Na+ freshwater environment to conserve sperm's ability to depolarize.
Collapse
Affiliation(s)
- Lea Wobig
- Department of Molecular Sensory Systems, Research Center Caesar, 53175 Bonn, Germany
| | - Thérèse Wolfenstetter
- Department of Molecular Sensory Systems, Research Center Caesar, 53175 Bonn, Germany
| | - Sylvia Fechner
- Department of Molecular Sensory Systems, Research Center Caesar, 53175 Bonn, Germany
| | - Wolfgang Bönigk
- Department of Molecular Sensory Systems, Research Center Caesar, 53175 Bonn, Germany
| | - Heinz G Körschen
- Department of Molecular Sensory Systems, Research Center Caesar, 53175 Bonn, Germany
| | - Jan F Jikeli
- Department of Molecular Sensory Systems, Research Center Caesar, 53175 Bonn, Germany
| | - Christian Trötschel
- Department of Plant Biochemistry, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility and Research Group, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - U Benjamin Kaupp
- Department of Molecular Sensory Systems, Research Center Caesar, 53175 Bonn, Germany;
- Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Reinhard Seifert
- Department of Molecular Sensory Systems, Research Center Caesar, 53175 Bonn, Germany;
| | - Thomas K Berger
- Department of Molecular Sensory Systems, Research Center Caesar, 53175 Bonn, Germany;
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, 35037 Marburg, Germany
| |
Collapse
|
9
|
Vyklicka L, Lishko PV. Dissecting the signaling pathways involved in the function of sperm flagellum. Curr Opin Cell Biol 2020; 63:154-161. [PMID: 32097833 DOI: 10.1016/j.ceb.2020.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/09/2020] [Accepted: 01/26/2020] [Indexed: 01/28/2023]
Abstract
The mammalian flagellum is a specific type of motile cilium required for sperm motility and male fertility. Effective flagellar movement is dependent on axonemal function, which in turn relies on proper ion homeostasis within the flagellar compartment. This ion homeostasis is maintained by the concerted function of ion channels and transporters that initiate signal transduction pathways resulting in motility changes. Advances in electrophysiology and super-resolution microscopy have helped to identify and characterize new regulatory modalities of the mammalian flagellum. Here, we discuss what is currently known about the regulation of flagellar ion channels and transporters that maintain sodium, potassium, calcium, and proton homeostasis. Identification of new regulatory elements and their specific roles in sperm motility is imperative for improving diagnostics of male infertility.
Collapse
Affiliation(s)
- Lenka Vyklicka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Polina V Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
10
|
Bernardino RL, Carrageta DF, Sousa M, Alves MG, Oliveira PF. pH and male fertility: making sense on pH homeodynamics throughout the male reproductive tract. Cell Mol Life Sci 2019; 76:3783-3800. [PMID: 31165202 PMCID: PMC11105638 DOI: 10.1007/s00018-019-03170-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/24/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023]
Abstract
In the male reproductive tract, ionic equilibrium is essential to maintain normal spermatozoa production and, hence, the reproductive potential. Among the several ions, HCO3- and H+ have a central role, mainly due to their role on pH homeostasis. In the male reproductive tract, the major players in pH regulation and homeodynamics are carbonic anhydrases (CAs), HCO3- membrane transporters (solute carrier 4-SLC4 and solute carrier 26-SLC26 family transporters), Na+-H+ exchangers (NHEs), monocarboxylate transporters (MCTs) and voltage-gated proton channels (Hv1). CAs and these membrane transporters are widely distributed throughout the male reproductive tract, where they play essential roles in the ionic balance of tubular fluids. CAs are the enzymes responsible for the production of HCO3- which is then transported by membrane transporters to ensure the maturation, storage, and capacitation of the spermatozoa. The transport of H+ is carried out by NHEs, Hv1, and MCTs and is essential for the electrochemical balance and for the maintenance of the pH within the physiological limits along the male reproductive tract. Alterations in HCO3- production and transport of ions have been associated with some male reproductive dysfunctions. Herein, we present an up-to-date review on the distribution and role of the main intervenient on pH homeodynamics in the fluids throughout the male reproductive tract. In addition, we discuss their relevance for the establishment of the male reproductive potential.
Collapse
Affiliation(s)
- Raquel L Bernardino
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - David F Carrageta
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Marco G Alves
- Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal.
- i3S-Institute for Innovation and Health Research, University of Porto, Porto, Portugal.
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
11
|
Mishra AK, Kumar A, Yadav S, Anand M, Yadav B, Nigam R, Garg SK, Swain DK. Functional insights into voltage gated proton channel (Hv1) in bull spermatozoa. Theriogenology 2019; 136:118-130. [PMID: 31254725 DOI: 10.1016/j.theriogenology.2019.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/09/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022]
Abstract
Acid extrusion and intracellular alkalisation are the key events during sperm capacitation and these are mediated through proton gated channels (Hv1). Role of Hv1 in regulating sperm motility, capacitation and acrosome reaction has been documented in human spermatozoa; but no such data is available in bull spermatozoa; therefore, the present study was undertaken in Hariana bull spermatozoa. Sixty four ejaculates were collected from four Hariana bulls to investigate the functional involvement of Hv1 in regulation of sperm motility, capacitation and acrosome reaction in bull spermatozoa. Immunoblotting revealed the presence of a single band of 31.8 kDa corresponding to Hv1 in Hariana bull spermatozoa and immunoflourescence confirmed the positive immune-reactivity at principal piece of spermatozoa for Hv1. Functional study was carried out using 200 μM 2-Guanidinobenzimidazole (2-Guanidinobenzimidazole,selective Hv1 blocker) and 1 mM zinc chloride (potent Hv1 blocker), and 0.3 μM Anandamide (AEA), an activator of Hv1. Blocking of Hv1 resulted in significant (P < 0.05) reduction in progressive sperm motility (PSM). Activation of Hv1 with AEA also resulted in significant (P < 0.05) reduction in PSM till 1 h and thereafter, the PSM was restored and reduction was almost similar to that in control. However, during activation and inactivation of Hv1, per cent spermatozoa showing hyperactive motility were found to be markedly increased (20-30%) compared to 10-20% in control. 2-Guanidinobenzimidazole, zinc and AEA treated spermatozoa revealed significant (P < 0.05) increase in B-pattern of spermatozoa indicating induction of capacitation. Downstream signalling of Hv1 activation or inactivation seemed to be mediated through cAMP and PKA pathways. Catsper channels were found to be intimately associated with Hv1 function in regulating sperm motility. Blocking as well as activation of Hv1 resulted in significant (P < 0.05) reduction in sperm livability, spermatozoa having intact membrane, intact acrosome, and high mitochondrial transmembrane potential (MTP). Our findings evidently suggest that Hv1 channels are present in bull spermatozoa and these regulate sperm functions like hypermotility, capacitation and acrosome reaction through complex interplay between different pathways involving cAMP, PKC, and Catsper. Further studies are required to find out the possible relationship between Hv1 channels and other channels in regulating spermatozoa functions.
Collapse
Affiliation(s)
- Abhishek Kumar Mishra
- College of Biotechnology, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, 281001, Uttar Pradesh, India
| | - Akshay Kumar
- Department of Veterinary Gynaecology & Obstetrics, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, 281001, Uttar Pradesh, India
| | - Sarvajeet Yadav
- Department of Veterinary Physiology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, 281001, Uttar Pradesh, India
| | - Mukul Anand
- Department of Veterinary Physiology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, 281001, Uttar Pradesh, India
| | - Brijesh Yadav
- Department of Veterinary Physiology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, 281001, Uttar Pradesh, India
| | - Rajesh Nigam
- College of Biotechnology, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, 281001, Uttar Pradesh, India
| | - Satish Kumar Garg
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, 281001, Uttar Pradesh, India
| | - Dilip Kumar Swain
- Department of Veterinary Physiology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, 281001, Uttar Pradesh, India.
| |
Collapse
|
12
|
Thei L, Imm J, Kaisis E, Dallas ML, Kerrigan TL. Microglia in Alzheimer's Disease: A Role for Ion Channels. Front Neurosci 2018; 12:676. [PMID: 30323735 PMCID: PMC6172337 DOI: 10.3389/fnins.2018.00676] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease is the most common form of dementia, it is estimated to affect over 40 million people worldwide. Classically, the disease has been characterized by the neuropathological hallmarks of aggregated extracellular amyloid-β and intracellular paired helical filaments of hyperphosphorylated tau. A wealth of evidence indicates a pivotal role for the innate immune system, such as microglia, and inflammation in the pathology of Alzheimer's disease. The over production and aggregation of Alzheimer's associated proteins results in chronic inflammation and disrupts microglial clearance of these depositions. Despite being non-excitable, microglia express a diverse array of ion channels which shape their physiological functions. In support of this, there is a growing body of evidence pointing to the involvement of microglial ion channels contributing to neurodegenerative diseases such as Alzheimer's disease. In this review, we discuss the evidence for an array of microglia ion channels and their importance in modulating microglial homeostasis and how this process could be disrupted in Alzheimer's disease. One promising avenue for assessing the role that microglia play in the initiation and progression of Alzheimer's disease is through using induced pluripotent stem cell derived microglia. Here, we examine what is already understood in terms of the molecular underpinnings of inflammation in Alzheimer's disease, and the utility that inducible pluripotent stem cell derived microglia may have to advance this knowledge. We outline the variability that occurs between the use of animal and human models with regards to the importance of microglial ion channels in generating a relevant functional model of brain inflammation. Overcoming these hurdles will be pivotal in order to develop new drug targets and progress our understanding of the pathological mechanisms involved in Alzheimer's disease.
Collapse
Affiliation(s)
- Laura Thei
- Reading School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Jennifer Imm
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Eleni Kaisis
- Reading School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Mark L Dallas
- Reading School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Talitha L Kerrigan
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
13
|
Theoretical study on excited-state multiple proton-transfer process of 7-azaindole with ammonia and mixed water-ammonia: Stepwise or concerted? J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Gerdes B, Rixen RM, Kramer K, Forbrig E, Hildebrandt P, Steinem C. Quantification of Hv1-induced proton translocation by a lipid-coupled Oregon Green 488-based assay. Anal Bioanal Chem 2018; 410:6497-6505. [PMID: 30027319 DOI: 10.1007/s00216-018-1248-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/22/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
Passive proton translocation across membranes through proton channels is generally measured with assays that allow a qualitative detection of the H+-transfer. However, if a quantitative and time-resolved analysis is required, new methods have to be developed. Here, we report on the quantification of pH changes induced by the voltage-dependent proton channel Hv1 using the commercially available pH-sensitive fluorophore Oregon Green 488-DHPE (OG488-DHPE). We successfully expressed and isolated Hv1 from Escherichia coli and reconstituted the protein in large unilamellar vesicles. Reconstitution was verified by surface enhanced infrared absorption (SEIRA) spectroscopy and proton activity was measured by a standard 9-amino-6-chloro-2-methoxyacridine assay. The quantitative OG488-DHPE assay demonstrated that the proton translocation rate of reconstituted Hv1 is much smaller than those reported in cellular systems. The OG488-DHPE assay further enabled us to quantify the KD-value of the Hv1-inhibitor 2-guanidinobenzimidazole, which matches well with that found in cellular experiments. Our results clearly demonstrate the applicability of the developed in vitro assay to measure proton translocation in a quantitative fashion; the assay allows to screen for new inhibitors and to determine their characteristic parameters. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Benjamin Gerdes
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Rebecca M Rixen
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Kristina Kramer
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Enrico Forbrig
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Claudia Steinem
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany. .,Max-Planck-Institut für Dynamik und Selbstorganisation, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
15
|
Zhao Q, Zuo W, Zhang S, Zhang Y, Li C, Li SJ. Proton pump inhibitors have pH-dependent effects on the thermostability of the carboxyl-terminal domain of voltage-gated proton channel Hv1. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2018; 47:237-247. [PMID: 28889176 DOI: 10.1007/s00249-017-1253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 08/22/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
The voltage-gated proton channel Hv1 is highly selective for H+ and is activated by membrane depolarization and pH gradient. An increased external and decreased internal pH opens the Hv1 channel. The intracellular C-terminal domain of Hv1 is responsible for channel dimerization, cooperative, and thermosensitive gating. Here, we found that proton pump inhibitors (PPIs) interact with the C-terminal domain of human Hv1. The interaction between PPIs and the C-terminal domain, which is pH-dependent, lowered the thermal and structural stability of the protein at pH 4, but enhanced the thermal and structural stability at pH 8. Furthermore, we investigated in vitro the interaction of PPIs with the C-terminal domain of Hv1 by fluorescence and micro-Raman spectra. Fluorescence quenching measurements revealed that the interaction between the C-terminal domain and PPIs is a mainly hydrophobic interaction. The micro-Raman spectra showed that PPIs did not form stable disulfide bonds with the unique thiol group within this domain (Cys249 residue). The preferential interaction of PPIs with the inactive form of Hv1 stabilizes the high pH inactive state of the C-terminal domain, indicating a mechanism by which PPIs might act explicitly on the stabilization of a closed state of the proton channel.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Biophysics, The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Weiyan Zuo
- Department of Biophysics, The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Shangrong Zhang
- Department of Biophysics, The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Yongqiang Zhang
- Department of Biophysics, The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Chuanyong Li
- Department of Biophysics, The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Shu Jie Li
- Department of Biophysics, The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
16
|
Jin SK, Yang WX. Factors and pathways involved in capacitation: how are they regulated? Oncotarget 2018; 8:3600-3627. [PMID: 27690295 PMCID: PMC5356907 DOI: 10.18632/oncotarget.12274] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/23/2016] [Indexed: 01/07/2023] Open
Abstract
In mammals, fertilization occurs via a comprehensive progression of events. Freshly ejaculated sperm have yet to acquire progressive motility or fertilization ability. They must first undergo a series of biochemical and physiological changes, collectively known as capacitation. Capacitation is a significant prerequisite to fertilization. During the process of capacitation, changes in membrane properties, intracellular ion concentration and the activities of enzymes, together with other protein modifications, induce multiple signaling events and pathways in defined media in vitro or in the female reproductive tract in vivo. These, in turn, stimulate the acrosome reaction and prepare spermatozoa for penetration of the egg zona pellucida prior to fertilization. In the present review, we conclude all mainstream factors and pathways regulate capacitation and highlight their crosstalk. We also summarize the relationship between capacitation and assisted reproductive technology or human disease. In the end, we sum up the open questions and future avenues in this field.
Collapse
Affiliation(s)
- Shi-Kai Jin
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Oostenrijk B, Walsh N, Laksman J, Månsson EP, Grunewald C, Sorensen SL, Gisselbrecht M. The role of charge and proton transfer in fragmentation of hydrogen-bonded nanosystems: the breakup of ammonia clusters upon single photon multi-ionization. Phys Chem Chem Phys 2018; 20:932-940. [PMID: 29230456 DOI: 10.1039/c7cp06688k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The charge and proton dynamics in hydrogen-bonded networks are investigated using ammonia as a model system. The fragmentation dynamics of medium-sized clusters (1-2 nm) upon single photon multi-ionization is studied, by analyzing the momenta of small ionic fragments. The observed fragmentation pattern of the doubly- and triply-charged clusters reveals a spatial anisotropy of emission between fragments (back-to-back). Protonated fragments exhibit a distinct kinematic correlation, indicating a delay between ionization and fragmentation (fission). The different kinematics observed for channels containing protonated and unprotonated species provides possible insights into the prime mechanisms of charge and proton transfer, as well as proton hopping, in such a nanoscale system.
Collapse
Affiliation(s)
- Bart Oostenrijk
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, 22100 Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
18
|
Jeong BS, Dyer RB. Proton Transport Mechanism of M2 Proton Channel Studied by Laser-Induced pH Jump. J Am Chem Soc 2017; 139:6621-6628. [PMID: 28467842 DOI: 10.1021/jacs.7b00617] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The M2 proton transport channel of the influenza virus A is an important model system because it conducts protons with high selectivity and unidirectionally when activated at low pH, despite the relative simplicity of its structure. Although it has been studied extensively, the molecular details of the pH-dependent gating and proton conductance mechanisms are incompletely understood. We report direct observation of the M2 proton channel activation process using a laser-induced pH jump coupled with tryptophan fluorescence as a probe. Biphasic kinetics is observed, with the fast phase corresponding to the His37 protonation, and the slow phase associated with the subsequent conformation change. Unusually fast His37 protonation was observed (2.0 × 1010 M-1 s-1), implying the existence of proton collecting antennae for expedited proton transport. The conformation change (4 × 103 s-1) was about 2 orders of magnitude slower than protonation at endosomal pH, suggesting that a transporter model is likely not feasible.
Collapse
Affiliation(s)
- Ban-Seok Jeong
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - R Brian Dyer
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| |
Collapse
|
19
|
Asuaje A, Smaldini P, Martín P, Enrique N, Orlowski A, Aiello EA, Gonzalez León C, Docena G, Milesi V. The inhibition of voltage-gated H + channel (HVCN1) induces acidification of leukemic Jurkat T cells promoting cell death by apoptosis. Pflugers Arch 2016; 469:251-261. [PMID: 28013412 DOI: 10.1007/s00424-016-1928-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 11/26/2022]
Abstract
Cellular energetic deregulation is widely known to produce an overproduction of acidic species in cancer cells. This acid overload must be counterbalanced with a high rate of H+ extrusion to maintain cell viability. In this sense, many H+ transporters have been reported to be crucial for cell survival and proposed as antineoplastic target. By the way, voltage-gated proton channels (Hv1) mediate highly selective H+ outward currents, capable to compensate acid burden in brief periods of time. This structure is canonically described acting as NADPH oxidase counterbalance in reactive oxygen species production. In this work, we show, for the first time in a oncohematologic cell line, that inhibition of Hv1 channels by Zn2+ and the more selective blocker 2-(6-chloro-1H-benzimidazol-2-yl)guanidine (ClGBI) progressively decreases intracellular pH in resting conditions. This acidification is evident minutes after blockade and progresses under prolonged exposure (2, 17, and 48 h), and we firstly demonstrate that this is followed by cell death through apoptosis (annexin V binding). Altogether, these results contribute strong evidence that this channel might be a new therapeutic target in cancer.
Collapse
Affiliation(s)
- Agustín Asuaje
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - Paola Smaldini
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - Pedro Martín
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina.
| | - Nicolás Enrique
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - Alejandro Orlowski
- Centro de Investigaciones Cardiovasculares (CIC, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Ernesto A Aiello
- Centro de Investigaciones Cardiovasculares (CIC, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Carlos Gonzalez León
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Chile, Pasaje Harrington 287, Playa Ancha, Valparaíso, Chile
| | - Guillermo Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - Verónica Milesi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| |
Collapse
|
20
|
Fernández A, Pupo A, Mena-Ulecia K, Gonzalez C. Pharmacological Modulation of Proton Channel Hv1 in Cancer Therapy: Future Perspectives. Mol Pharmacol 2016; 90:385-402. [PMID: 27260771 DOI: 10.1124/mol.116.103804] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/02/2016] [Indexed: 12/23/2022] Open
Abstract
The pharmacological modulation of the immunosuppressive tumor microenvironment has emerged as a relevant component for cancer therapy. Several approaches aiming to deplete innate and adaptive suppressive populations, to circumvent the impairment in antigen presentation, and to ultimately increase the frequency of activated tumor-specific T cells are currently being explored. In this review, we address the potentiality of targeting the voltage-gated proton channel, Hv1, as a novel strategy to modulate the tumor microenvironment. The function of Hv1 in immune cells such as macrophages, neutrophils, dendritic cells, and T cells has been associated with the maintenance of NADPH oxidase activity and the generation of reactive oxygen species, which are required for the host defense against pathogens. We discuss evidence suggesting that the Hv1 proton channel could also be important for the function of these cells within the tumor microenvironment. Furthermore, as summarized here, tumor cells express Hv1 as a primary mechanism to extrude the increased amount of protons generated metabolically, thus maintaining physiologic values for the intracellular pH. Therefore, because this channel might be relevant for both tumor cells and immune cells supporting tumor growth, the pharmacological inhibition of Hv1 could be an innovative approach for cancer therapy. With that focus, we analyzed the available compounds that inhibit Hv1, highlighted the need to develop better drugs suitable for patients, and commented on the future perspectives of targeting Hv1 in the context of cancer therapy.
Collapse
Affiliation(s)
- Audry Fernández
- Interdisciplinary Center for Neurosciences of Valparaíso, Faculty of Sciences, University of Valparaíso, Chile
| | - Amaury Pupo
- Interdisciplinary Center for Neurosciences of Valparaíso, Faculty of Sciences, University of Valparaíso, Chile
| | - Karel Mena-Ulecia
- Interdisciplinary Center for Neurosciences of Valparaíso, Faculty of Sciences, University of Valparaíso, Chile
| | - Carlos Gonzalez
- Interdisciplinary Center for Neurosciences of Valparaíso, Faculty of Sciences, University of Valparaíso, Chile
| |
Collapse
|
21
|
Miyake T, Rolandi M. Grotthuss mechanisms: from proton transport in proton wires to bioprotonic devices. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:023001. [PMID: 26657711 DOI: 10.1088/0953-8984/28/2/023001] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In 1804, Theodore von Grotthuss proposed a mechanism for proton (H(+)) transport between water molecules that involves the exchange of a covalent bond between H and O with a hydrogen bond. This mechanism also supports the transport of OH(-) as a proton hole and is essential in explaining proton transport in intramembrane proton channels. Inspired by the Grotthuss mechanism and its similarity to electron and hole transport in semiconductors, we have developed semiconductor type devices that are able to control and monitor a current of H(+) as well as OH(-) in hydrated biopolymers. In this topical review, we revisit these devices that include protonic diodes, complementary, transistors, memories and transducers as well as a phenomenological description of their behavior that is analogous to electronic semiconductor devices.
Collapse
Affiliation(s)
- Takeo Miyake
- Department of Electrical Engineering, University of California, Santa Cruz, CA 95064, USA. Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
22
|
Hv1 proton channel opening is preceded by a voltage-independent transition. Biophys J 2015; 107:1564-72. [PMID: 25296308 DOI: 10.1016/j.bpj.2014.08.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 01/31/2023] Open
Abstract
The voltage sensing domain (VSD) of the voltage-gated proton channel Hv1 mediates a H(+)-selective conductance that is coordinately controlled by the membrane potential (V) and the transmembrane pH gradient (ΔpH). Allosteric control of Hv1 channel opening by ΔpH (V-ΔpH coupling) is manifested by a characteristic shift of approximately 40 mV per ΔpH unit in the activation. To further understand the mechanism for V-ΔpH coupling in Hv1, H(+) current kinetics of activation and deactivation in excised membrane patches were analyzed as a function of the membrane potential and the pH in the intracellular side of the membrane (pHI). In this study, it is shown for the first time to our knowledge that the opening of Hv1 is preceded by a voltage-independent transition. A similar process has been proposed to constitute the step involving coupling between the voltage-sensing and pore domains in tetrameric voltage-gated channels. However, for Hv1, the VSD functions as both the voltage sensor and the conduction pathway, suggesting that the voltage independent transition is intrinsic to the voltage-sensing domain. Therefore, this article proposes that the underlying mechanism for the activation of Hv1 involves a process similar to VSD relaxation, a process previously described for voltage-gated channels and voltage-controlled enzymes. Finally, deactivation seemingly occurs as a strictly voltage dependent process, implying that the kinetic event leading to opening of the proton conductance are different than those involved in the closing. Thus, from this work it is proposed that Hv1 activity displays hysteresis.
Collapse
|
23
|
Pupo A, Baez-Nieto D, Martínez A, Latorre R, González C. Proton channel models filling the gap between experimental data and the structural rationale. Channels (Austin) 2015; 8:180-92. [PMID: 24755912 PMCID: PMC4203746 DOI: 10.4161/chan.28665] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Voltage-gated proton channels are integral membrane proteins with the capacity to permeate elementary particles in a voltage and pH dependent manner. These proteins have been found in several species and are involved in various physiological processes. Although their primary topology is known, lack of details regarding their structures in the open conformation has limited analyses toward a deeper understanding of the molecular determinants of their function and regulation. Consequently, the function-structure relationships have been inferred based on homology models. In the present work, we review the existing proton channel models, their assumptions, predictions and the experimental facts that support them. Modeling proton channels is not a trivial task due to the lack of a close homolog template. Hence, there are important differences between published models. This work attempts to critically review existing proton channel models toward the aim of contributing to a better understanding of the structural features of these proteins.
Collapse
|
24
|
Shin H, Song JH. Antipsychotics, chlorpromazine and haloperidol inhibit voltage-gated proton currents in BV2 microglial cells. Eur J Pharmacol 2014; 738:256-62. [DOI: 10.1016/j.ejphar.2014.05.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/15/2014] [Accepted: 05/20/2014] [Indexed: 01/23/2023]
|
25
|
Zhao Q, Zhang Y, Li SJ. Interaction of divalent metal ions with the carboxyl-terminal domain of human voltage-gated proton channel Hv1. Biometals 2014; 27:793-802. [PMID: 24867409 DOI: 10.1007/s10534-014-9751-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/14/2014] [Indexed: 11/25/2022]
Abstract
The voltage-gated proton channel Hv1 functions as a dimer, in which the intracellular C-terminal domain of the protein is responsible for the dimeric architecture and regulates proton permeability. Although it is well known that divalent metal ions have effect on the proton channel activity, the interaction of divalent metal ions with the channel in detail is not well elucidated. Herein, we investigated the interaction of divalent metal ions with the C-terminal domain of human Hv1 by CD spectra and fluorescence spectroscopy. The divalent metal ions binding induced an obvious conformational change at pH 7 and a pH-sensitive reduction of thermostability in the C-terminal domain. The interactions were further estimated by fluorescence spectroscopy experiments. There are at least two binding sites for divalent metal ions binding to the C-terminal domain of Hv1, either of which is close to His(244) or His(266) residue. The binding of Zn(2+) to the two sites both enhanced the fluorescence of the protein at pH 7, whereas the binding of other divalent metal ions to the two sites all resulted fluorescence quenching. The orders of the strength of divalent metal ions binding to the two sites from strong to weak are both Co(2+), Ca(2+), Ni(2+), Mg(2+), and Mn(2+). The strength of Ca(2+), Co(2+), Mg(2+), Mn(2+) and Ni(2+) binding to the site close to His(244) is stronger than that of these divalent metal ions binding to the site close to His(266).
Collapse
Affiliation(s)
- Qing Zhao
- Department of Biophysics, School of Physics Science, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | | | | |
Collapse
|
26
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Catterall WA, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: ion channels. Br J Pharmacol 2013; 170:1607-51. [PMID: 24528239 PMCID: PMC3892289 DOI: 10.1111/bph.12447] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Ion channels are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
- *
Author for correspondence;
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - William A Catterall
- University of Washington, School of Medicine, Department of PharmacologyBox 357280, Seattle, WA 98195-7280, USA
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
27
|
Decleva E, Menegazzi R, Fasolo A, Defendi F, Sebastianutto M, Dri P. Intracellular shunting of O2(-) contributes to charge compensation and preservation of neutrophil respiratory burst in the absence of voltage-gated proton channel activity. Exp Cell Res 2013; 319:1875-1888. [PMID: 23578765 PMCID: PMC3712189 DOI: 10.1016/j.yexcr.2013.03.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 11/19/2022]
Abstract
Proton efflux via voltage-gated proton channels (Hv1) is considered to mediate the charge compensation necessary to preserve NADPH oxidase activity during the respiratory burst. Using the Hv1 inhibitor Zn2+, we found that the PMA-induced respiratory burst of human neutrophils is inhibited when assessed as extracellular production of O2− and H2O2, in accordance with literature studies, but, surprisingly, unaffected when measured as oxygen consumption or total (extracellular plus intracellular) H2O2 production. Furthermore, we show that inhibiting Hv1 with Zn2+ results in an increased production of intracellular ROS. Similar results, i.e. decreased extracellular and increased intracellular ROS production, were obtained using a human granulocyte-like cell line with severely impaired Hv1 expression. Acidic extracellular pH, which dampens proton efflux, also augmented intracellular production of H2O2. Zinc caused an increase in the rate but not in the extent of depolarization and cytosolic acidification indicating that mechanisms other than proton efflux take part in charge compensation. Our results suggest a hitherto unpredicted mechanism of charge compensation whereby, in the absence of proton efflux, part of O2− generated within gp91phox in the plasma membrane is shunted intracellularly down electrochemical gradient to dampen excessive depolarization. This would preserve NADPH oxidase activity under conditions such as the inflammatory exudate in which the acidic pH hinders charge compensation by proton efflux. Neutrophils’ respiratory burst is not inhibited by the H+ channel inhibitor Zn2+. Intracellular production of O2− and H2O2 is increased in the presence of Zn2+. Intracellular H2O2 production is increased in H+ channels knock-down cells. Zn2+ increases the rate but not the extent of depolarization and pHi decrease. Intracellular shunting of O2− contributes to charge compensation in neutrophils.
Collapse
Affiliation(s)
- Eva Decleva
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Renzo Menegazzi
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| | - Alba Fasolo
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Federica Defendi
- Université Joseph Fourier, GREPI/AGIM CNRS FRE 3405, Grenoble, France
| | | | - Pietro Dri
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
28
|
DeCoursey TE. Voltage-gated proton channels: molecular biology, physiology, and pathophysiology of the H(V) family. Physiol Rev 2013; 93:599-652. [PMID: 23589829 PMCID: PMC3677779 DOI: 10.1152/physrev.00011.2012] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Voltage-gated proton channels (H(V)) are unique, in part because the ion they conduct is unique. H(V) channels are perfectly selective for protons and have a very small unitary conductance, both arguably manifestations of the extremely low H(+) concentration in physiological solutions. They open with membrane depolarization, but their voltage dependence is strongly regulated by the pH gradient across the membrane (ΔpH), with the result that in most species they normally conduct only outward current. The H(V) channel protein is strikingly similar to the voltage-sensing domain (VSD, the first four membrane-spanning segments) of voltage-gated K(+) and Na(+) channels. In higher species, H(V) channels exist as dimers in which each protomer has its own conduction pathway, yet gating is cooperative. H(V) channels are phylogenetically diverse, distributed from humans to unicellular marine life, and perhaps even plants. Correspondingly, H(V) functions vary widely as well, from promoting calcification in coccolithophores and triggering bioluminescent flashes in dinoflagellates to facilitating killing bacteria, airway pH regulation, basophil histamine release, sperm maturation, and B lymphocyte responses in humans. Recent evidence that hH(V)1 may exacerbate breast cancer metastasis and cerebral damage from ischemic stroke highlights the rapidly expanding recognition of the clinical importance of hH(V)1.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Dept. of Molecular Biophysics and Physiology, Rush University Medical Center HOS-036, 1750 West Harrison, Chicago, IL 60612, USA.
| |
Collapse
|
29
|
(−)-Epigallocatechin-3-gallate inhibits voltage-gated proton currents in BV2 microglial cells. Eur J Pharmacol 2013. [DOI: 10.1016/j.ejphar.2012.11.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Valencia A, Sapp E, Kimm JS, McClory H, Reeves PB, Alexander J, Ansong KA, Masso N, Frosch MP, Kegel KB, Li X, DiFiglia M. Elevated NADPH oxidase activity contributes to oxidative stress and cell death in Huntington's disease. Hum Mol Genet 2012; 22:1112-31. [PMID: 23223017 DOI: 10.1093/hmg/dds516] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A mutation in the huntingtin (Htt) gene produces mutant Htt and Huntington's disease (HD), a neurodegenerative disorder. HD patients have oxidative damage in the brain, but the causes are unclear. Compared with controls, we found brain levels of NADPH oxidase (NOX) activity, which produces reactive oxygen species (ROS), elevated in human HD postmortem cortex and striatum and highest in striatum of presymptomatic individuals. Synaptosome fractions from cortex and striatum of HD(140Q/140Q) mice had elevated NOX activity at 3 months of age and a further rise at 6 and 12 months compared with synaptosomes of age-matched wild-type (WT) mice. High NOX activity in primary cortical and striatal neurons of HD(140Q/140Q) mice correlated with more ROS and neurite swellings. These features and neuronal cell death were markedly reduced by treatment with NOX inhibitors such as diphenyleneiodonium (DPI), apocynin (APO) and VAS2870. The rise in ROS levels in mitochondria of HD(140Q/140Q) neurons followed the rise in NOX activity and inhibiting only mitochondrial ROS was not neuroprotective. Mutant Htt colocalized at plasma membrane lipid rafts with gp91-phox, a catalytic subunit for the NOX2 isoform. Assembly of NOX2 components at lipid rafts requires activation of Rac1 which was also elevated in HD(140Q/140Q) neurons. HD(140Q/140Q) mice bred to gp91-phox knock-out mice had lower NOX activity in the brain and in primary neurons, and neurons had normal ROS levels and significantly improved survival. These findings suggest that increased NOX2 activity at lipid rafts is an early and major source of oxidative stress and cell death in HD(140Q/140Q) neurons.
Collapse
Affiliation(s)
- Antonio Valencia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Musset B, Decoursey T. Biophysical properties of the voltage gated proton channel H(V)1. ACTA ACUST UNITED AC 2012; 1:605-620. [PMID: 23050239 DOI: 10.1002/wmts.55] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The biophysical properties of the voltage gated proton channel (H(V)1) are the key elements of its physiological function. The voltage gated proton channel is a unique molecule that in contrast to all other ion channels is exclusively selective for protons. Alone among proton channels, it has voltage and time dependent gating like other "classical" ion channels. H(V)1 is furthermore a sensor for the pH in the cell and the surrounding media. Its voltage dependence is strictly coupled to the pH gradient across the membrane. This regulation restricts opening of the channel to specific voltages at any given pH gradient, therefore allowing H(V)1 to perform its physiological task in the tissue it is expressed in. For H(V)1 there is no known blocker. The most potent channel inhibitor is zinc (Zn(2+)) which prevents channel opening. An additional characteristic of H(V)1 is its strong temperature dependence of both gating and conductance. In contrast to single-file water filled pores like the gramicidin channel, H(V)1 exhibits pronounced deuterium effects and temperature effects on conduction, consistent with a different conduction mechanism than other ion channels. These properties may be explained by the recent identification of an aspartate in the pore of H(V)1 that is essential to its proton selectivity.
Collapse
Affiliation(s)
- Boris Musset
- Rush Medical Center, molec. biophysics and physiology, DeCoursey, Thomas; Rush Medical Center
| | | |
Collapse
|
32
|
Szteyn K, Yang W, Schmid E, Lang F, Shumilina E. Lipopolysaccharide-sensitive H+ current in dendritic cells. Am J Physiol Cell Physiol 2012; 303:C204-12. [PMID: 22572846 DOI: 10.1152/ajpcell.00059.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells equipped to transport antigens from the periphery to lymphoid tissues and to present them to T cells. Ligation of Toll-like receptor 4 (TLR4), expressed on the DC surface, by lipopolysaccharides (LPS), elements of the Gram-negative bacteria outer wall, induces DC maturation. Initial steps of maturation include stimulation of antigen endocytosis and enhanced reactive oxygen species (ROS) production with eventual downregulation of endocytic capacity in fully matured DCs. ROS production depends on NADPH oxidase (NOX2), the activity of which requires continuous pH and charge compensation. The present study demonstrates, for the first time, the functional expression of voltage-gated proton (Hv1) channels in mouse bone marrow-derived DCs. In whole cell patch-clamp experiments, we recorded Zn(2+) (50 μM)-sensitive outwardly rectifying currents activated upon depolarization, which were highly selective for H(+), with the reversal potential shift of 38 mV per pH unit. The threshold voltage of activation (V(threshold)) was dependent on the pH gradient and was close to the empirically predicted V(threshold) for the Hv1 currents. LPS (1 μg/ml) had bimodal effects on Hv1 channels: acute LPS treatment increased Hv1 channel activity, whereas 24 h of LPS incubation significantly inhibited Hv1 currents and decreased ROS production. Activation of H(+) currents by acute application of LPS was abolished by PKC inhibitor GFX (10 nM). According to electron current measurements, acute LPS application was associated with increased NOX2 activity.
Collapse
Affiliation(s)
- Kalina Szteyn
- Department of Physiology, University of Tübingen, Germany
| | | | | | | | | |
Collapse
|
33
|
Song JH, Yeh JZ. Dextromethorphan inhibition of voltage-gated proton currents in BV2 microglial cells. Neurosci Lett 2012; 516:94-8. [PMID: 22487729 DOI: 10.1016/j.neulet.2012.03.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/29/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
Abstract
Dextromethorphan, an antitussive drug, has a neuroprotective property as evidenced by its inhibition of microglial production of pro-inflammatory cytokines and reactive oxygen species. The microglial activation requires NADPH oxidase activity, which is sustained by voltage-gated proton channels in microglia as they dissipate an intracellular acid buildup. In the present study, we examined the effect of dextromethorphan on proton currents in microglial BV2 cells. Dextromethorphan reversibly inhibited proton currents with an IC(50) value of 51.7 μM at an intracellular/extracellular pH gradient of 5.5/7.3. Dextromethorphan did not change the reversal potential or the voltage dependence of the gating. Dextrorphan and 3-hydroxymorphinan, major metabolites of dextromethorphan, and dextromethorphan methiodide were ineffective in inhibiting proton currents. The results indicate that dextromethorphan inhibition of proton currents would suppress NADPH oxidase activity and, eventually, microglial activation.
Collapse
Affiliation(s)
- Jin-Ho Song
- Department of Pharmacology, College of Medicine, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, Republic of Korea.
| | | |
Collapse
|
34
|
Abstract
In classical tetrameric voltage-gated ion channels four voltage-sensing domains (VSDs), one from each subunit, control one ion permeation pathway formed by four pore domains. The human Hv1 proton channel has a different architecture, containing a VSD, but lacking a pore domain. Since its location is not known, we searched for the Hv permeation pathway. We find that mutation of the S4 segment's third arginine R211 (R3) compromises proton selectivity, enabling conduction of a metal cation and even of the large organic cation guanidinium, reminiscent of Shaker's omega pore. In the open state, R3 appears to interact with an aspartate (D112) that is situated in the middle of S1 and is unique to Hv channels. The double mutation of both residues further compromises cation selectivity. We propose that membrane depolarization reversibly positions R3 next to D112 in the transmembrane VSD to form the ion selectivity filter in the channel's open conformation.
Collapse
Affiliation(s)
- Thomas K Berger
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, 142 Life Sciences Addition, University of California Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
35
|
Asynchronous Ca2+ current conducted by voltage-gated Ca2+ (CaV)-2.1 and CaV2.2 channels and its implications for asynchronous neurotransmitter release. Proc Natl Acad Sci U S A 2012; 109:E452-60. [PMID: 22308469 DOI: 10.1073/pnas.1121103109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have identified an asynchronously activated Ca(2+) current through voltage-gated Ca(2+) (Ca(V))-2.1 and Ca(V)2.2 channels, which conduct P/Q- and N-type Ca(2+) currents that initiate neurotransmitter release. In nonneuronal cells expressing Ca(V)2.1 or Ca(V)2.2 channels and in hippocampal neurons, prolonged Ca(2+) entry activates a Ca(2+) current, I(Async), which is observed on repolarization and decays slowly with a half-time of 150-300 ms. I(Async) is not observed after L-type Ca(2+) currents of similar size conducted by Ca(V)1.2 channels. I(Async) is Ca(2+)-selective, and it is unaffected by changes in Na(+), K(+), Cl(-), or H(+) or by inhibitors of a broad range of ion channels. During trains of repetitive depolarizations, I(Async) increases in a pulse-wise manner, providing Ca(2+) entry that persists between depolarizations. In single-cultured hippocampal neurons, trains of depolarizations evoke excitatory postsynaptic currents that show facilitation followed by depression accompanied by asynchronous postsynaptic currents that increase steadily during the train in parallel with I(Async). I(Async) is much larger for slowly inactivating Ca(V)2.1 channels containing β(2a)-subunits than for rapidly inactivating channels containing β(1b)-subunits. I(Async) requires global rises in intracellular Ca(2+), because it is blocked when Ca(2+) is chelated by 10 mM EGTA in the patch pipette. Neither mutations that prevent Ca(2+) binding to calmodulin nor mutations that prevent calmodulin regulation of Ca(V)2.1 block I(Async). The rise of I(Async) during trains of stimuli, its decay after repolarization, its dependence on global increases of Ca(2+), and its enhancement by β(2a)-subunits all resemble asynchronous release, suggesting that I(Async) is a Ca(2+) source for asynchronous neurotransmission.
Collapse
|
36
|
Fischer WB, Wang YT, Schindler C, Chen CP. Mechanism of function of viral channel proteins and implications for drug development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:259-321. [PMID: 22364876 PMCID: PMC7149447 DOI: 10.1016/b978-0-12-394305-7.00006-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Viral channel-forming proteins comprise a class of viral proteins which, similar to their host companions, are made to alter electrochemical or substrate gradients across lipid membranes. These proteins are active during all stages of the cellular life cycle of viruses. An increasing number of proteins are identified as channel proteins, but the precise role in the viral life cycle is yet unknown for the majority of them. This review presents an overview about these proteins with an emphasis on those with available structural information. A concept is introduced which aligns the transmembrane domains of viral channel proteins with those of host channels and toxins to give insights into the mechanism of function of the viral proteins from potential sequence identities. A summary of to date investigations on drugs targeting these proteins is given and discussed in respect of their mode of action in vivo.
Collapse
Affiliation(s)
- Wolfgang B. Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| | - Yi-Ting Wang
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| | - Christina Schindler
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| | - Chin-Pei Chen
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
37
|
Song JH, Marszalec W, Kai L, Yeh JZ, Narahashi T. Antidepressants inhibit proton currents and tumor necrosis factor-α production in BV2 microglial cells. Brain Res 2011; 1435:15-23. [PMID: 22177663 DOI: 10.1016/j.brainres.2011.11.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 01/13/2023]
Abstract
Proton channels are gated by voltage and pH gradients, and play an important role in the microglial production of pro-inflammatory cytokines, which are known to be suppressed by antidepressants. In the present study we tested the hypothesis that cytokine inhibition by antidepressants is due to an inhibitory action on proton currents by comparing their effects on tumor necrosis factor-α production with the effects on the proton currents in BV2 murine microglial cells. Imipramine, amitriptyline, desipramine and fluoxetine potently and reversibly inhibited proton currents at micromolar concentrations at an intracellular/extracellular pH gradient of 5.5/7.3. Raising extracellular pH to 8.3 sped up the rate and enhanced the extent of block whereas raising intracellular pH to 6.3 reduced the blocking potency of imipramine. These results support a mechanism where the uncharged drug form penetrates the cell membrane, and the charged form blocks the proton channel from the internal side of membrane. This mode of action was corroborated by an experiment with imipraminium, a permanently charged quaternary derivative, which showed far less block compared to imipramine. The lipopolysaccharide-induced release of tumor necrosis factor-α was inhibited by imipramine at concentrations comparable to those inhibiting the proton current. These results support the hypothesis that tumor necrosis factor-α inhibition by imipramine is related to its inhibitory effects on proton channels.
Collapse
Affiliation(s)
- Jin-Ho Song
- Department of Pharmacology, College of Medicine, Chung-Ang University, 221 Heuksuk-Dong, Dongjak-Gu, Seoul 156-756, Republic of Korea.
| | | | | | | | | |
Collapse
|
38
|
Lishko PV, Kirichok Y, Ren D, Navarro B, Chung JJ, Clapham DE. The control of male fertility by spermatozoan ion channels. Annu Rev Physiol 2011; 74:453-75. [PMID: 22017176 DOI: 10.1146/annurev-physiol-020911-153258] [Citation(s) in RCA: 246] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ion channels control the sperm ability to fertilize the egg by regulating sperm maturation in the female reproductive tract and by triggering key sperm physiological responses required for successful fertilization such as hyperactivated motility, chemotaxis, and the acrosome reaction. CatSper, a pH-regulated, calcium-selective ion channel, and KSper (Slo3) are core regulators of sperm tail calcium entry and sperm hyperactivated motility. Many other channels had been proposed as regulating sperm activity without direct measurements. With the development of the sperm patch-clamp technique, CatSper and KSper have been confirmed as the primary spermatozoan ion channels. In addition, the voltage-gated proton channel Hv1 has been identified in human sperm tail, and the P2X2 ion channel has been identified in the midpiece of mouse sperm. Mutations and deletions in sperm-specific ion channels affect male fertility in both mice and humans without affecting other physiological functions. The uniqueness of sperm ion channels makes them ideal pharmaceutical targets for contraception. In this review we discuss how ion channels regulate sperm physiology.
Collapse
Affiliation(s)
- Polina V Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
39
|
CO2 induced seawater acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvae. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:320-30. [PMID: 21742049 DOI: 10.1016/j.cbpa.2011.06.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 11/21/2022]
Abstract
Extensive use of fossil fuels is leading to increasing CO(2) concentrations in the atmosphere and causes changes in the carbonate chemistry of the oceans which represents a major sink for anthropogenic CO(2). As a result, the oceans' surface pH is expected to decrease by ca. 0.4 units by the year 2100, a major change with potentially negative consequences for some marine species. Because of their carbonate skeleton, sea urchins and their larval stages are regarded as likely to be one of the more sensitive taxa. In order to investigate sensitivity of pre-feeding (2 days post-fertilization) and feeding (4 and 7 days post-fertilization) pluteus larvae, we raised Strongylocentrotus purpuratus embryos in control (pH 8.1 and pCO(2) 41 Pa e.g. 399 μatm) and CO(2) acidified seawater with pH of 7.7 (pCO(2) 134 Pa e.g. 1318 μatm) and investigated growth, calcification and survival. At three time points (day 2, day 4 and day 7 post-fertilization), we measured the expression of 26 representative genes important for metabolism, calcification and ion regulation using RT-qPCR. After one week of development, we observed a significant difference in growth. Maximum differences in size were detected at day 4 (ca. 10% reduction in body length). A comparison of gene expression patterns using PCA and ANOSIM clearly distinguished between the different age groups (two-way ANOSIM: Global R=1) while acidification effects were less pronounced (Global R=0.518). Significant differences in gene expression patterns (ANOSIM R=0.938, SIMPER: 4.3% difference) were also detected at day 4 leading to the hypothesis that differences between CO(2) treatments could reflect patterns of expression seen in control experiments of a younger larva and thus a developmental artifact rather than a direct CO(2) effect. We found an up regulation of metabolic genes (between 10%and 20% in ATP-synthase, citrate synthase, pyruvate kinase and thiolase at day 4) and down regulation of calcification related genes (between 23% and 36% in msp130, SM30B, and SM50 at day 4). Ion regulation was mainly impacted by up regulation of Na(+)/K(+)-ATPase at day 4 (15%) and down regulation of NHE3 at day 4 (45%). We conclude that in studies in which a stressor induces an alteration in the speed of development, it is crucial to employ experimental designs with a high time resolution in order to correct for developmental artifacts. This helps prevent misinterpretation of stressor effects on organism physiology.
Collapse
|
40
|
Kirichok Y, Lishko PV. Rediscovering sperm ion channels with the patch-clamp technique. Mol Hum Reprod 2011; 17:478-99. [PMID: 21642646 DOI: 10.1093/molehr/gar044] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Upon ejaculation, mammalian spermatozoa have to undergo a sequence of physiological transformations within the female reproductive tract that will allow them to reach and fertilize the egg. These include initiation of motility, hyperactivation of motility and perhaps chemotaxis toward the egg, and culminate in the acrosome reaction that permits sperm to penetrate the protective vestments of the egg. These physiological responses are triggered through the activation of sperm ion channels that cause elevations of sperm intracellular pH and Ca(2+) in response to certain cues within the female reproductive tract. Despite their key role in sperm physiology and their absolute requirement for the process of fertilization, sperm ion channels remain poorly understood due to the extreme difficulty in application of the patch-clamp technique to spermatozoa. This review covers the topic of sperm ion channels in the following order: first, we discuss how the intracellular Ca(2+) and pH signaling mediated by sperm ion channels controls sperm behavior during the process of fertilization. Then, we briefly cover the history of the methodology to study sperm ion channels, which culminated in the recent development of a reproducible whole-cell patch-clamp technique for mouse and human cells. We further discuss the main approaches used to patch-clamp mature mouse and human spermatozoa. Finally, we focus on the newly discovered sperm ion channels CatSper, KSper (Slo3) and HSper (H(v)1), identified by the sperm patch-clamp technique. We conclude that the patch-clamp technique has markedly improved and shifted our understanding of the sperm ion channels, in addition to revealing significant species-specific differences in these channels. This method is critical for identification of the molecular mechanisms that control sperm behavior within the female reproductive tract and make fertilization possible.
Collapse
Affiliation(s)
- Yuriy Kirichok
- Department of Physiology, University of California San Francisco UCSF Mail Code 2140, Genentech Hall Room N272F 600 16th Street, San Francisco, CA 94158, USA.
| | | |
Collapse
|
41
|
Taylor AR, Chrachri A, Wheeler G, Goddard H, Brownlee C. A voltage-gated H+ channel underlying pH homeostasis in calcifying coccolithophores. PLoS Biol 2011; 9:e1001085. [PMID: 21713028 PMCID: PMC3119654 DOI: 10.1371/journal.pbio.1001085] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 05/05/2011] [Indexed: 11/19/2022] Open
Abstract
Marine coccolithophorid phytoplankton are major producers of biogenic calcite, playing a significant role in the global carbon cycle. Predicting the impacts of ocean acidification on coccolithophore calcification has received much recent attention and requires improved knowledge of cellular calcification mechanisms. Uniquely amongst calcifying organisms, coccolithophores produce calcified scales (coccoliths) in an intracellular compartment and secrete them to the cell surface, requiring large transcellular ionic fluxes to support calcification. In particular, intracellular calcite precipitation using HCO₃⁻ as the substrate generates equimolar quantities of H+ that must be rapidly removed to prevent cytoplasmic acidification. We have used electrophysiological approaches to identify a plasma membrane voltage-gated H+ conductance in Coccolithus pelagicus ssp braarudii with remarkably similar biophysical and functional properties to those found in metazoans. We show that both C. pelagicus and Emiliania huxleyi possess homologues of metazoan H(v)1 H+ channels, which function as voltage-gated H+ channels when expressed in heterologous systems. Homologues of the coccolithophore H+ channels were also identified in a diversity of eukaryotes, suggesting a wide range of cellular roles for the H(v)1 class of proteins. Using single cell imaging, we demonstrate that the coccolithophore H+ conductance mediates rapid H+ efflux and plays an important role in pH homeostasis in calcifying cells. The results demonstrate a novel cellular role for voltage gated H+ channels and provide mechanistic insight into biomineralisation by establishing a direct link between pH homeostasis and calcification. As the coccolithophore H+ conductance is dependent on the trans-membrane H+ electrochemical gradient, this mechanism will be directly impacted by, and may underlie adaptation to, ocean acidification. The presence of this H+ efflux pathway suggests that there is no obligate use of H+ derived from calcification for intracellular CO₂ generation. Furthermore, the presence of H(v)1 class ion channels in a wide range of extant eukaryote groups indicates they evolved in an early common ancestor.
Collapse
Affiliation(s)
- Alison R. Taylor
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, United Kingdom
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, United States of America
| | - Abdul Chrachri
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, United Kingdom
| | - Glen Wheeler
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, United Kingdom
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, United Kingdom
| | - Helen Goddard
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, United Kingdom
| | - Colin Brownlee
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, United Kingdom
| |
Collapse
|
42
|
Capasso M, DeCoursey TE, Dyer MJS. pH regulation and beyond: unanticipated functions for the voltage-gated proton channel, HVCN1. Trends Cell Biol 2010; 21:20-8. [PMID: 20961760 DOI: 10.1016/j.tcb.2010.09.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/02/2010] [Accepted: 09/13/2010] [Indexed: 12/22/2022]
Abstract
Electrophysiological studies have implicated voltage-gated proton channels in several specific cellular contexts. In neutrophils, they mediate charge compensation that is associated with the oxidative burst of phagocytosis. Molecular characterization of the hydrogen voltage-gated channel 1 (HVCN1) has enabled identification of unanticipated and diverse functions: HVCN1 not only modulates signaling from the B-cell receptor following B-cell activation and histamine release from basophils, but also mediates pH-dependent activation of spermatozoa, as well as acid secretion by tracheal epithelium. The importance of HVCN1 in pH regulation during phagocytosis was established by surprising evidence that indicated its first-responder role. In this review, we discuss recent findings from a functional perspective, and the potential of HVCN1 as a therapeutic target for autoimmune and other diseases.
Collapse
Affiliation(s)
- Melania Capasso
- Centre for Cancer & Inflammation, Institute of Cancer, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom.
| | | | | |
Collapse
|
43
|
Ramsey IS, Mokrab Y, Carvacho I, Sands ZA, Sansom MSP, Clapham DE. An aqueous H+ permeation pathway in the voltage-gated proton channel Hv1. Nat Struct Mol Biol 2010; 17:869-875. [PMID: 20543828 PMCID: PMC4035905 DOI: 10.1038/nsmb.1826] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 04/07/2010] [Indexed: 12/13/2022]
Abstract
Hv1 voltage-gated proton channels mediate rapid and selective transmembrane H(+) flux and are gated by both voltage and pH gradients. Selective H(+) transfer in membrane proteins is commonly achieved by Grotthuss proton 'hopping' in chains of ionizable amino acid side chains and intraprotein water molecules. To identify whether ionizable residues are required for proton permeation in Hv1, we neutralized candidate residues and measured expressed voltage-gated H(+) currents. Unexpectedly, charge neutralization was insufficient to abrogate either the Hv1 conductance or coupling of pH gradient and voltage-dependent activation. Molecular dynamics simulations revealed water molecules in the central crevice of Hv1 model structures but not in homologous voltage-sensor domain (VSD) structures. Our results indicate that Hv1 most likely forms an internal water wire for selective proton transfer and that interactions between water molecules and S4 arginines may underlie coupling between voltage- and pH-gradient sensing.
Collapse
Affiliation(s)
- I Scott Ramsey
- Howard Hughes Medical Institute, Department of Cardiology and Manton Center for Orphan Disease, Children's Hospital Boston, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Younes Mokrab
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Ingrid Carvacho
- Howard Hughes Medical Institute, Department of Cardiology and Manton Center for Orphan Disease, Children's Hospital Boston, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Zara A Sands
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - David E Clapham
- Howard Hughes Medical Institute, Department of Cardiology and Manton Center for Orphan Disease, Children's Hospital Boston, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Lishko PV, Botchkina IL, Fedorenko A, Kirichok Y. Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel. Cell 2010; 140:327-37. [PMID: 20144758 DOI: 10.1016/j.cell.2009.12.053] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/31/2009] [Accepted: 12/29/2009] [Indexed: 01/02/2023]
Abstract
Human spermatozoa are quiescent in the male reproductive system and must undergo activation once introduced into the female reproductive tract. This process is known to require alkalinization of sperm cytoplasm, but the mechanism responsible for transmembrane proton extrusion has remained unknown because of the inability to measure membrane conductance in human sperm. Here, by successfully patch clamping human spermatozoa, we show that proton channel Hv1 is their dominant proton conductance. Hv1 is confined to the principal piece of the sperm flagellum, where it is expressed at unusually high density. Robust flagellar Hv1-dependent proton conductance is activated by membrane depolarization, an alkaline extracellular environment, endocannabinoid anandamide, and removal of extracellular zinc, a potent Hv1 blocker. Hv1 allows only outward transport of protons and is therefore dedicated to inducing intracellular alkalinization and activating spermatozoa. The importance of Hv1 for sperm activation makes it an attractive target for controlling male fertility.
Collapse
Affiliation(s)
- Polina V Lishko
- Department of Physiology, University of California, San Francisco, UCSF Mail Code 2140, Genentech Hall, Room N272F, 600 16(th) Street, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|
45
|
DeCoursey TE. Voltage-gated proton channels find their dream job managing the respiratory burst in phagocytes. Physiology (Bethesda) 2010; 25:27-40. [PMID: 20134026 PMCID: PMC3023998 DOI: 10.1152/physiol.00039.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The voltage-gated proton channel bears surprising resemblance to the voltage-sensing domain (S1-S4) of other voltage-gated ion channels but is a dimer with two conduction pathways. The proton channel seems designed for efficient proton extrusion from cells. In phagocytes, it facilitates the production of reactive oxygen species by NADPH oxidase.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
46
|
Abstract
Oxidative stress has been implicated in the pathogenesis of neurologic and psychiatric diseases. The brain is particularly vulnerable to oxidative damage due to high oxygen consumption, low antioxidant defense, and an abundance of oxidation-sensitive lipids. Production of reactive oxygen species (ROS) by mitochondria is generally thought to be the main cause of oxidative stress. However, a role for ROS-generating NADPH oxidase NOX enzymes has recently emerged. Activation of the phagocyte NADPH oxidase NOX2 has been studied mainly in microglia, where it plays a role in inflammation, but may also contribute to neuronal death in pathologic conditions. However, NOX-dependent ROS production can be due to the expression of other NOX isoforms, which are detected not only in microglia, but also in astrocytes and neurons. The physiologic and pathophysiologic roles of such NOX enzymes are only partially understood. In this review, we summarize the present knowledge about NOX enzymes in the central nervous system and their involvement in neurologic and psychiatric diseases.
Collapse
Affiliation(s)
- Silvia Sorce
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva-4, Switzerland
| | | |
Collapse
|
47
|
Nielsen CH. Biomimetic membranes for sensor and separation applications. Anal Bioanal Chem 2009; 395:697-718. [DOI: 10.1007/s00216-009-2960-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/02/2009] [Accepted: 07/07/2009] [Indexed: 01/04/2023]
|
48
|
O'Connor PM, Lu L, Liang M, Cowley AW. A novel amiloride-sensitive h+ transport pathway mediates enhanced superoxide production in thick ascending limb of salt-sensitive rats, not na+/h+ exchange. Hypertension 2009; 54:248-54. [PMID: 19564541 DOI: 10.1161/hypertensionaha.109.134692] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It has been reported previously that H(+) efflux via the Na(+)/H(+) exchange stimulates NAD(P)H oxidase-dependent superoxide (O(2)(.-)) production in medullary thick ascending limb. We have demonstrated recently that N-methyl-amiloride-sensitive O(2)(.-) production is enhanced in the thick ascending limb of Dahl salt-sensitive (SS) rats, suggesting that H(+) efflux through Na(+)/H(+) exchangers may promote renal oxidative stress and the development of hypertension in these animals. In the current study we demonstrate, using selective and potent inhibitors, that inhibition of Na(+)/H(+) exchange does not mediate the ability of N-methyl-amiloride to inhibit thick ascending limb O(2)(.-) production. To determine the mechanism of action of N-methyl-amiloride, we examined H(+) efflux and O(2)(.-) production in SS and SS.13(BN) thick ascending limbs of prehypertensive, 0.4% NaCl-fed rats. Tissue strips containing the medullary thick ascending limb were isolated from male SS and salt-resistant consomic SS.13(BN) rats, loaded with either dihydroethedium or 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, acetoxymethyl ester, and imaged in a heated tissue bath. In Na(+)-replete media, activation of Na(+)/H(+) exchange using an NH(4)Cl prepulse did not stimulate thick ascending limb O(2)(.-) production. In Na(+)-free media containing BaCl(2) in which Na(+)/H(+) activity was inhibited, an NH(4)Cl prepulse stimulated O(2)(.-) production in medullary thick ascending limb renal tubular segments. This response was enhanced in medullary thick ascending limb of SS rats (slope Deltaethidium/Deltadihydroethedium=0.029+/-0.004) compared with SS.13(BN) rats (slope=0.010+/-0.004; P<0.04) and could be inhibited by N-methyl-amiloride (slope=0.005+/-0.002 and 0.006+/-0.002 for SS and SS.13(BN), respectively). We concluded that only H(+) efflux through a specific, as-yet-unidentified, amiloride-sensitive H(+) channel promotes O(2)(.-) production in the medullary thick ascending limb and that this channel is upregulated in SS rats.
Collapse
Affiliation(s)
- Paul M O'Connor
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53202, USA.
| | | | | | | |
Collapse
|
49
|
Fisher AB. Redox signaling across cell membranes. Antioxid Redox Signal 2009; 11:1349-56. [PMID: 19061438 PMCID: PMC2842114 DOI: 10.1089/ars.2008.2378] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 12/01/2008] [Accepted: 12/06/2008] [Indexed: 12/22/2022]
Abstract
Generation of reactive oxygen species (ROS) by plasma membrane-localized NADPH oxidase (Nox 2) is a major mechanism of cell signaling associated with activation of the enzyme by a variety of agonists. With activation, the integral membrane flavocytochrome of Nox 2 transfers an electron from intracellular NADPH to extracellular O(2), generating superoxide anion (O(2)(*-)). The latter dismutes to H(2)O(2) which can diffuse through aquaporin channels in the plasma membrane to elicit an intracellular signaling response. O(2)(*-) also can initiate intracellular signaling by penetration of the cell membrane through anion channels (Cl(-) channel-3, ClC-3). Endosomes containing Nox2 and ClC-3 (called signaling endosomes) are composed of internalized plasma membrane and generate O(2)(*-) in the endosomal lumen to initiate signaling at intracellular sites. Thus, cellular signaling by Nox2 is dependent on the transmembrane flux of ROS. The role of this pathway has only recently been described and will require additional investigation to appreciate its physiological significance fully.
Collapse
Affiliation(s)
- Aron B Fisher
- University of Pennsylvania, Institute for Environmental Medicine, 1 John Morgan Building, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
50
|
Hv1 proton channels are required for high-level NADPH oxidase-dependent superoxide production during the phagocyte respiratory burst. Proc Natl Acad Sci U S A 2009; 106:7642-7. [PMID: 19372380 DOI: 10.1073/pnas.0902761106] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Granulocytes generate a "respiratory burst" of NADPH oxidase-dependent superoxide anion (O(2)(-*)) production that is required for efficient clearance of bacterial pathogens. Hv1 mediates a voltage-gated H(+) channel activity that is proposed to serve a charge-balancing role in granulocytic phagocytes such as neutrophils and eosinophils. Using mice in which the gene encoding Hv1 is replaced by beta-Geo reporter protein sequence, we show that Hv1 expression is required for measurable voltage-gated H(+) current in unstimulated phagocytes. O(2)(-*) production is substantially reduced in the absence of Hv1, suggesting that Hv1 contributes a majority of the charge compensation required for optimal NADPH oxidase activity. Despite significant reduction in superoxide production, Hv1(-/-) mice are able to clear several types of bacterial infections.
Collapse
|