1
|
Avgan N, Sutherland HG, Lea RA, Haupt LM, Shum DHK, Griffiths LR. Association Study of a Comprehensive Panel of Neuropeptide-Related Polymorphisms Suggest Potential Roles in Verbal Learning and Memory. Genes (Basel) 2023; 15:30. [PMID: 38254919 PMCID: PMC10815468 DOI: 10.3390/genes15010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Neuropeptides are mostly expressed in regions of the brain responsible for learning and memory and are centrally involved in cognitive pathways. The majority of neuropeptide research has been performed in animal models; with acknowledged differences between species, more research into the role of neuropeptides in humans is necessary to understand their contribution to higher cognitive function. In this study, we investigated the influence of genetic polymorphisms in neuropeptide genes on verbal learning and memory. Variants in genes encoding neuropeptides and neuropeptide receptors were tested for association with learning and memory measures using the Hopkins Verbal Learning Test-Revised (HVLT-R) in a healthy cohort of individuals (n = 597). The HVLT-R is a widely used task for verbal learning and memory assessment and provides five sub-scores: recall, delay, learning, retention, and discrimination. To determine the effect of candidate variants on learning and memory performance, genetic association analyses were performed for each HVLT-R sub-score with over 1300 genetic variants from 124 neuropeptide and neuropeptide receptor genes, genotyped on Illumina OmniExpress BeadChip arrays. This targeted analysis revealed numerous suggestive associations between HVLT-R test scores and neuropeptide and neuropeptide receptor gene variants; candidates include the SCG5, IGFR1, GALR1, OXTR, CCK, and VIPR1 genes. Further characterization of these genes and their variants will improve our understanding of the genetic contribution to learning and memory and provide insight into the importance of the neuropeptide network in humans.
Collapse
Affiliation(s)
- Nesli Avgan
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (N.A.); (H.G.S.); (R.A.L.)
| | - Heidi G. Sutherland
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (N.A.); (H.G.S.); (R.A.L.)
| | - Rod A. Lea
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (N.A.); (H.G.S.); (R.A.L.)
| | - Larisa M. Haupt
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia;
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia
- Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia
| | - David H. K. Shum
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Lyn R. Griffiths
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (N.A.); (H.G.S.); (R.A.L.)
| |
Collapse
|
2
|
A New Gal in Town: A Systematic Review of the Role of Galanin and Its Receptors in Experimental Pain. Cells 2022; 11:cells11050839. [PMID: 35269462 PMCID: PMC8909084 DOI: 10.3390/cells11050839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
Galanin is a neuropeptide expressed in a small percentage of sensory neurons of the dorsal root ganglia and the superficial lamina of the dorsal horn of the spinal cord. In this work, we systematically reviewed the literature regarding the role of galanin and its receptors in nociception at the spinal and supraspinal levels, as well as in chronic pain conditions. The literature search was performed in PubMed, Web of Science, Scopus, ScienceDirect, OVID, TRIP, and EMBASE using "Galanin" AND "pain" as keywords. Of the 1379 papers that were retrieved in the initial search, we included a total of 141 papers in this review. Using the ARRIVE guidelines, we verified that 89.1% of the works were of good or moderate quality. Galanin shows a differential role in pain, depending on the pain state, site of action, and concentration. Under normal settings, galanin can modulate nociceptive processing through both a pro- and anti-nociceptive action, in a dose-dependent manner. This peptide also plays a key role in chronic pain conditions and its antinociceptive action at both a spinal and supraspinal level is enhanced, reducing animals' hypersensitivity to both mechanical and thermal stimulation. Our results highlight galanin and its receptors as potential therapeutic targets in pain conditions.
Collapse
|
3
|
|
4
|
Chaudhary A, Singh V, Varadwaj PK, Mani A. Screening natural inhibitors against upregulated G-protein coupled receptors as potential therapeutics of Alzheimer's disease. J Biomol Struct Dyn 2020; 40:673-684. [PMID: 32900274 DOI: 10.1080/07391102.2020.1817784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Computational approaches have been helpful in high throughput screening of drug libraries and designing ligands against receptors. Alzheimer's disease is a complex neurological disorder, which causes dementia. In this disease neurons are damaged due to formation of Amyloid-beta plaques and neurofibrillary tangles, which along with some other factors contributes to disease development and progression. The objective of this study was to predict tertiary structures of five G-protein coulped neurotransmitter receptors; CHRM5, CYSLTR2, DRD5, GALR1 and HTR2C, that are upregulated in Alzheimer's disease, and to screen potential inhibitors for against these receptors. In this study, Comparative modelling, molecular docking, MMGBSA analysis, ADMET screening and molecular dynamics simulation were performed. Tertiary structures of the five GPCRs were predicted and further subjected to molecular docking against natural compounds. Pharmacokinetic studies of natural compounds were also conducted for assessing drug-likeness properties. Molecular dynamics simulations were performed to investigate the structural stability and binding affinities of each complex. Finally, the results suggested that ZINC04098704, ZINC31170017, ZINC05998597, ZINC67911229, and ZINC67910690 had better binding affinity with CHRM5, CYSLTR2, DRD5, GALR1, and HTR2C (5-HT2C) proteins, respectively.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amit Chaudhary
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad Prayagraj (Allahabad), Uttar Pradesh, India
| | - Vishal Singh
- Department of Applied Sciences, Indian Institute of Information Technology, Devghat, Jhalwa Allahabad, Uttar Pradesh, India
| | - Pritish Kumar Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology, Devghat, Jhalwa Allahabad, Uttar Pradesh, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad Prayagraj (Allahabad), Uttar Pradesh, India
| |
Collapse
|
5
|
Activation of galanin receptor 1 inhibits locus coeruleus neurons via GIRK channels. Biochem Biophys Res Commun 2018; 503:79-85. [DOI: 10.1016/j.bbrc.2018.05.181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/26/2018] [Indexed: 01/15/2023]
|
6
|
Gesmundo I, Villanova T, Banfi D, Gamba G, Granata R. Role of Melatonin, Galanin, and RFamide Neuropeptides QRFP26 and QRFP43 in the Neuroendocrine Control of Pancreatic β-Cell Function. Front Endocrinol (Lausanne) 2017; 8:143. [PMID: 28729853 PMCID: PMC5499649 DOI: 10.3389/fendo.2017.00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022] Open
Abstract
Glucose homeostasis is finely regulated by a number of hormones and peptides released mainly from the brain, gastrointestinal tract, and muscle, regulating pancreatic secretion through cellular receptors and their signal transduction cascades. The endocrine function of the pancreas is controlled by islets within the exocrine pancreatic tissue that release hormones like insulin, glucagon, somatostatin, pancreatic polypeptide, and ghrelin. Moreover, both exocrine and endocrine pancreatic functions are regulated by a variety of hormonal and neural mechanisms, such as ghrelin, glucagon-like peptide, glucose-dependent insulinotropic polypeptide, or the inhibitory peptide somatostatin. In this review, we describe the role of neurohormones that have been less characterized compared to others, on the regulation of insulin secretion. In particular, we will focus on melatonin, galanin, and RFamide neuropeptides QRFP26 and QRFP43, which display either insulinotropic or insulinostatic effects. In fact, in addition to other hormones, amino acids, cytokines, and a variety of proteins, brain-derived hormones are now considered as key regulators of glucose homeostasis, representing potential therapeutic targets for the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Iacopo Gesmundo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Tania Villanova
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Dana Banfi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giacomo Gamba
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Riccarda Granata
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
- *Correspondence: Riccarda Granata,
| |
Collapse
|
7
|
Local cholinergic-GABAergic circuitry within the basal forebrain is modulated by galanin. Brain Struct Funct 2016; 222:1385-1400. [PMID: 27496091 DOI: 10.1007/s00429-016-1283-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/26/2016] [Indexed: 02/07/2023]
Abstract
The basal forebrain (BF) is an important regulator of hippocampal and cortical activity. In Alzheimer's disease (AD), there is a significant loss and dysfunction of cholinergic neurons within the BF, and also a hypertrophy of fibers containing the neuropeptide galanin. Understanding how galanin interacts with BF circuitry is critical in determining what role galanin overexpression plays in the progression of AD. Here, we examined the location and function of galanin in the medial septum/diagonal band (MS/DBB) region of the BF. We show that galanin fibers are located throughout the MS/DBB and intermingled with both cholinergic and GABAergic neurons. Whole-cell patch clamp recordings from MS/DBB neurons in acute slices reveal that galanin decreases tetrodotoxin-sensitive spontaneous GABA release and dampens muscarinic receptor-mediated increases in GABA release in the MS/DBB. These effects are not blocked by pre-exposure to β-amyloid peptide (Aβ1-42). Optogenetic activation of cholinergic neurons in the MS/DBB increases GABA release back onto cholinergic neurons, forming a functional circuit within the MS/DBB. Galanin disrupts this cholinergic-GABAergic circuit by blocking the cholinergic-induced increase in GABA release. These data suggest that galanin works in the BF to reduce inhibitory input onto cholinergic neurons and to prevent cholinergic-induced increase in inhibitory tone. This disinhibition of cholinergic neurons could serve as a compensatory mechanism to counteract the loss of cholinergic signaling that occurs during the progression of AD.
Collapse
|
8
|
Alexandris A, Liu AKL, Chang RCC, Pearce RKB, Gentleman SM. Differential expression of galanin in the cholinergic basal forebrain of patients with Lewy body disorders. Acta Neuropathol Commun 2015; 3:77. [PMID: 26621352 PMCID: PMC4666186 DOI: 10.1186/s40478-015-0249-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/30/2015] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Depletion of cholinergic neurons within the nucleus basalis of Meynert (nbM) is thought to contribute to the development of cognitive impairments in both Alzheimer's disease (AD) and Lewy body disorders (LBD). It has been reported that, in late stage AD, a network of fibres that contain the neuropeptide galanin displays significant hypertrophy and 'hyperinnervates' the surviving cholinergic neurons. Galanin is considered as a highly inducible neuroprotective factor and in AD this is assumed to be part of a protective tissue response. The aim of this study was to determine if a similar galanin upregulation is present in the nbM in post-mortem tissue from patients with LBD. Gallatin immunohistochemistry was carried out on anterior nbM sections from 76 LBD cases (27 PD, 15 PD with mild cognitive impairment (MCI), 34 PD with dementia (PDD) and 4 aged-matched controls. Galaninergic innervation of cholinergic neurons was assessed on a semi-quantitative scale. RESULTS The LBD group had significantly higher galaninergic innervation scores (p = 0.016) compared to controls. However, this difference was due to increased innervation density only in a subgroup of LBD cases and this correlated positively with choline acetyltransferase-immunopositive neuron density. CONCLUSION Galanin upregulation within the basal forebrain cholinergic system in LBD, similar to that seen in AD, may represent an intrinsic adaptive response to neurodegeneration that is consistent with its proposed roles in neurogenesis and neuroprotection.
Collapse
|
9
|
Weinshenker D, Holmes PV. Regulation of neurological and neuropsychiatric phenotypes by locus coeruleus-derived galanin. Brain Res 2015; 1641:320-37. [PMID: 26607256 DOI: 10.1016/j.brainres.2015.11.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/27/2015] [Accepted: 11/12/2015] [Indexed: 12/28/2022]
Abstract
Decades of research confirm that noradrenergic locus coeruleus (LC) neurons are essential for arousal, attention, motivation, and stress responses. While most studies on LC transmission focused unsurprisingly on norepinephrine (NE), adrenergic signaling cannot account for all the consequences of LC activation. Galanin coexists with NE in the vast majority of LC neurons, yet the precise function of this neuropeptide has proved to be surprisingly elusive given our solid understanding of the LC system. To elucidate the contribution of galanin to LC physiology, here we briefly summarize the nature of stimuli that drive LC activity from a neuroanatomical perspective. We go on to describe the LC pathways in which galanin most likely exerts its effects on behavior, with a focus on addiction, depression, epilepsy, stress, and Alzheimer׳s disease. We propose a model in which LC-derived galanin has two distinct functions: as a neuromodulator, primarily acting via the galanin 1 receptor (GAL1), and as a trophic factor, primarily acting via galanin receptor 2 (GAL2). Finally, we discuss how the recent advances in neuropeptide detection, optogenetics and chemical genetics, and galanin receptor pharmacology can be harnessed to identify the roles of LC-derived galanin definitively. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
Affiliation(s)
- David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA 30322, USA.
| | - Philip V Holmes
- Neuroscience Program, Biomedical and Health Sciences Institute and Psychology Department, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
10
|
Gan L, England E, Yang JY, Toulme N, Ambati S, Hartzell DL, Meagher RB, Baile CA. A 72-hour high fat diet increases transcript levels of the neuropeptide galanin in the dorsal hippocampus of the rat. BMC Neurosci 2015; 16:51. [PMID: 26260473 PMCID: PMC4531388 DOI: 10.1186/s12868-015-0188-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/28/2015] [Indexed: 01/03/2023] Open
Abstract
Background Recent evidence identifies the hippocampus, a brain structure commonly associated with learning and memory, as key to the regulation of food intake and the development and consequences of obesity. Intake of a high fat diet (HFD) results in altered consumptive behavior, hippocampal damage, and cognitive deficits. While many studies report the effects of HFD after chronic consumption and in the instance of obesity, few examine the events that occur following acute HFD consumption. In this study, male rats were fed either a control diet (10% fat by kcal) or HFD (45% fat by kcal) for 72 h. At the end of the 72-h period, serum and tissues were collected and weighed. Brains were rapidly frozen or formalin-fixed in preparation for qRT-PCR or immunohistochemistry, respectively. Results Acute intake of HFD resulted in higher serum levels of leptin and cholesterol, with no significant changes in final body weight or adipose tissue mass. In the dorsal hippocampus, transcription of the neuroprotective peptide galanin was significantly upregulated along with a trend for an increase in brain-derived neurotrophic factor and histone deacetylase 2 in the rats fed HFD. In the ventral hippocampus, there was a significant increase in histone deacetylase 4 and a decrease in galanin receptor 1 in this group. Results from immunohistochemistry validate strong presence of the galanin peptide in the CA1/CA2 region of the dorsal hippocampus. Conclusions These results provide evidence for a distinct response in specific functional regions of the hippocampus following acute HFD intake.
Collapse
Affiliation(s)
- Ling Gan
- Veterinary Medicine Department, Rongchang Campus, Southwest University, Rongchang, Chongqing, People's Republic of China. .,Animal and Dairy Science, University of Georgia, Athens, GA, USA.
| | - Emily England
- Neuroscience Division Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA.
| | - Jeong-Yeh Yang
- Animal and Dairy Science, University of Georgia, Athens, GA, USA.
| | - Natalie Toulme
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - Suresh Ambati
- Animal and Dairy Science, University of Georgia, Athens, GA, USA.
| | - Diane L Hartzell
- Animal and Dairy Science, University of Georgia, Athens, GA, USA.
| | | | - Clifton A Baile
- Animal and Dairy Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
11
|
Freimann K, Kurrikoff K, Langel Ü. Galanin receptors as a potential target for neurological disease. Expert Opin Ther Targets 2015. [PMID: 26220265 DOI: 10.1517/14728222.2015.1072513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Galanin is a 29/30 amino acid long neuropeptide that is widely expressed in the brains of many mammals. Galanin exerts its biological activities through three different G protein-coupled receptors, GalR1, GalR2 and GalR3. The widespread distribution of galanin and its receptors in the CNS and the various physiological and pharmacological effects of galanin make the galanin receptors attractive drug targets. AREAS COVERED This review provides an overview of the role of galanin and its receptors in the CNS, the involvement of the galaninergic system in various neurological diseases and the development of new galanin receptor-specific ligands. EXPERT OPINION Recent advances and novel approaches in migrating the directions of subtype-selective ligand development and chemical modifications of the peptide backbone highlight the importance of the galanin neurochemical system as a potential target for drug development.
Collapse
Affiliation(s)
- Krista Freimann
- a 1 University of Tartu, Institute of Technology , Tartu, Estonia +372 737 4871 ;
| | - Kaido Kurrikoff
- b 2 University of Tartu, Institute of Technology , Tartu, Estonia
| | - Ülo Langel
- c 3 University of Tartu, Institute of Technology , Tartu, Estonia.,d 4 Stockholm University, Arrhenius Laboratories for Natural Science, Department of Neurochemistry , Stockholm, Sweden
| |
Collapse
|
12
|
Flynn SP, White HS. Regulation of glucose and insulin release following acute and repeated treatment with the synthetic galanin analog NAX-5055. Neuropeptides 2015; 50:35-42. [PMID: 25690510 PMCID: PMC4402648 DOI: 10.1016/j.npep.2015.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 11/19/2014] [Accepted: 01/05/2015] [Indexed: 12/12/2022]
Abstract
The neuropeptide galanin is widely expressed in both the central and peripheral nervous systems. However there is limited understanding of how individual galanin receptor (GalR1, 2, and 3) subtypes mediate the physiological activity of galanin in vivo. To address this issue we utilized NAX-5055, a systemically available, metabolically stable galanin analog. NAX-5055 displays a preference for GalR1 receptors and possesses potent anticonvulsant activity in vivo, suggesting that NAX-5055 engages central galanin receptors. To determine if NAX-5055 also modulates the activity of peripheral galanin receptors, we evaluated the effect of NAX-5055 on blood glucose and insulin levels in mice. Acute and repeated (once daily for four days) systemic administration of NAX-5055 (4 mg/kg) significantly increased blood glucose levels compared to vehicle treated mice. However, a hyperglycemic response was not observed following systemic administration of NAX-805-1, a scrambled analog of NAX-5055, with critical receptor binding residues, Trp(2) and Tyr(9), reversed. These results suggest that chemical modifications independent of the galanin backbone of NAX-5055 are not responsible for the hyperglycemic response. The effect of NAX-5055 on glucose homeostasis was further evaluated with a glucose tolerance test (GTT). Mice administered either acute or repeated (once daily for four days) injections of NAX-5055 (4 mg/kg) displayed impaired glucose handling and reduced insulin response to an acute glucose (1g/kg) challenge. Here we have shown that systemic administration of a centrally active GalR1-preferring galanin analog produces acute hyperglycemia and an inhibition of insulin release in vivo and that these effects are not attenuated with repeated administration. NAX-5055 thus provides a new pharmacological tool to further the understanding of function of both central and peripheral GalR1 receptors in vivo.
Collapse
Affiliation(s)
- Sean P Flynn
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84108, USA; Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84108, USA
| | - H Steve White
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84108, USA; Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84108, USA.
| |
Collapse
|
13
|
Zaben MJ, Gray WP. Neuropeptides and hippocampal neurogenesis. Neuropeptides 2013; 47:431-8. [PMID: 24215800 DOI: 10.1016/j.npep.2013.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 12/12/2022]
Abstract
Hippocampal neurogenesis is important for modulating the behavioural responses to stress and for certain forms of learning and memory. The mechanisms underlying the necessary coupling of neuronal activity to neural stem/progenitor cell (NSPC) function remain poorly understood. Within the dentate subgranular stem cell niche, local interneurons appear to play an important part in this excitation-neurogenesis coupling via GABAergic transmission, which promotes neuronal differentiation and integration. Neuropeptides such as neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and galanin have emerged as important mediators for signalling local and extrinsic interneuronal activity to subgranular zone precursors. Here we review the distribution of these neuropeptides and their receptors in the neurogenic area of the hippocampus and their precise effects on hippocampal neurogenesis. We also discuss neuropeptides' potential involvement in functional aspects of hippocampal neurogenesis particularly their involvement in the modulation of learning and memory and behavior responses.
Collapse
Affiliation(s)
- M J Zaben
- Neuroscience and Mental Health Research Institute, Cardiff University, Institute of Psychological Medicine and Clinical Neurosciences, 3rd Floor, Room 3.33, The Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, United Kingdom.
| | | |
Collapse
|
14
|
Jequier Gygax M, Klein BD, White HS, Kim M, Galanopoulou AS. Efficacy and tolerability of the galanin analog NAX 5055 in the multiple-hit rat model of symptomatic infantile spasms. Epilepsy Res 2013; 108:98-108. [PMID: 24252685 DOI: 10.1016/j.eplepsyres.2013.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/14/2013] [Accepted: 10/18/2013] [Indexed: 01/04/2023]
Abstract
Infantile spasms are seizures manifesting in infantile epileptic encephalopathies that are associated with poor epilepsy and cognitive outcomes. The current therapies are not always effective or are associated with serious side effects. Early cessation of spasms has been proposed to improve long-term outcomes. To identify new therapies for infantile spasms with rapid suppression of spasms, we are using the multiple-hit rat model of infantile spasms, which is a model of refractory infantile spasms. Here, we are testing the efficacy and tolerability of a single dose of the galanin receptor 1 preferring analog, NAX 5055, in the multiple-hit model of spasms. To induce the model, postnatal day 3 (PN3) male Sprague-Dawley rats underwent right intracerebral infusions of doxorubicin and lipopolysaccharide; p-chlorophenylalanine was then injected intraperitoneally (i.p.) at PN5. After the onset of spasms at PN4, 11-14 rats/group were injected i.p. with either NAX 5055 (0.5, 1, 2, or 4mg/kg) or vehicle. Video monitoring for spasms included a 1h pre-injection period, followed by 5h of recording post-injection, and two 2h sessions on PN5. The study was conducted in a randomized, blinded manner. Neurodevelopmental reflexes were assessed daily as well as at 2h after injection. Respiratory function, heart rate, pulse distension, oximetry and blood glucose were measured 4h after injection. The relative expression of GalR1 and GalR2 mRNA over β-actin in the cerebral cortex and hippocampus was determined with real time reverse transcription polymerase chain reaction. There was no acute effect of NAX 5055 on spasm frequency after the single dose of NAX 5055 (n=11-13 rats/group, following exclusions). Neurodevelopmental reflexes, vital signs, blood glucose measured 4h post-injection, and survival were not affected. A reduction in pulse and breath distention of unclear clinical significance was observed with the 7mg/kg NAX 5055 dose. GalR1 mRNA was present in the cerebral cortex and hippocampus of PN4 and adult rats. The hippocampal - but not the cortical - GalR1 mRNA expression was significantly lower in PN4 pups than in adults. GalR1 mRNA was also at least 20 times less abundant in the PN4 cortex than GalR2 mRNA. In conclusion, a single dose of NAX 5055 has no acute efficacy on spasms or toxicity in the multiple hit rat model of medically refractory infantile spasms. Our findings cannot exclude the possibility that repetitive NAX 5055 administration may show efficacy on spasms. The higher expression of GalR2 in the PN4 cortex suggests that GalR2-preferring analogs may be of interest to test for efficacy on spasms.
Collapse
Affiliation(s)
- Marine Jequier Gygax
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA; Unité de Neurologie et Neuroréhabilitation Pédiatrique, Département Médico-Chirurgical de Pédiatrie, CHUV, Lausanne, Switzerland
| | - Brian D Klein
- NeuroAdjuvants, Inc., Salt Lake City, UT, USA; Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - H Steve White
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Mimi Kim
- Department of Statistics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Einstein/Montefiore Comprehensive Epilepsy Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
15
|
Filali H, Vidal E, Bolea R, Márquez M, Marco P, Vargas A, Pumarola M, Martin-Burriel I, Badiola JJ. Gene and protein patterns of potential prion-related markers in the central nervous system of clinical and preclinical infected sheep. Vet Res 2013; 44:14. [PMID: 23497022 PMCID: PMC3608070 DOI: 10.1186/1297-9716-44-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/05/2013] [Indexed: 12/15/2022] Open
Abstract
The molecular pathogenic mechanisms of prion diseases are far from clear. Genomic analyses have revealed genetic biomarkers potentially involved in prion neuropathology in naturally scrapie-infected sheep, a good animal model of infectious prionopathies. However, these biomarkers must be validated in independent studies at different stages of the disease. The gene and protein expression profiles and protein distribution of six potential genetic biomarkers (i.e., CAPN6, COL1A2, COL3A1, GALA1, MT2A and MTNR1B) are presented here for both the early and terminal stages of scrapie in five different brain regions. Gene transcription changes were confirmed in the medulla oblongata, and the expression profiles were generally similar in other central nervous system regions. The changes were more substantial in clinical animals compared to preclinical animals. The expression of the CAPN6 protein increased in the spinal cord and cerebellum of the clinical and preclinical brains. The distribution of the GALA1 was identified in glial cells from the cerebellum of scrapie-infected animals, GALA1 protein expression was increased in clinical animals in the majority of regions, and the increase of MT2A was in agreement with previous reports. The downregulation of MTNR1B was especially marked in the Purkinje cells. Finally, although collagen genes were downregulated the protein immunostaining did not reveal significant changes between the scrapie-infected and control animals. In conclusion, this study of gene transcription and protein expression and distribution confirm CAPN6, GALA1, MTNR1B and MT2A as potential targets for further prion disease research.
Collapse
Affiliation(s)
- Hicham Filali
- Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gold AB, Wileyto EP, Lori A, Conti D, Cubells JF, Lerman C. Pharmacogenetic association of the galanin receptor (GALR1) SNP rs2717162 with smoking cessation. Neuropsychopharmacology 2012; 37:1683-8. [PMID: 22373943 PMCID: PMC3358736 DOI: 10.1038/npp.2012.13] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Galanin modulates dopaminergic neurotransmission in the mesolimbic dopamine system, thereby influencing the rewarding effects of nicotine. Variants in the galanin receptor 1 (GALR1) gene have been associated with retrospective craving severity and heaviness of smoking in prior research. We investigated pharmacogenetic associations of the previously studied GALR1 polymorphism, rs2717162, in 1217 smokers of European ancestry who participated in one of three pharmacogenetic smoking cessation clinical trials and were treated with nicotine patch (n=623), nicotine nasal spray (n=189), bupropion (n=213), or placebo (n=192). The primary endpoint was abstinence (7-day point prevalence, biochemically confirmed) at the end of treatment. Cravings to smoke were assessed on the target quit day (TQD). The longitudinal regression model revealed a significant genotype by treatment interaction (P=0.03). There was a reduced odds of quitting success with the presence of at least one minor (C) allele in the bupropion-treated group (OR=0.43; 95% CI=0.22-0.77; P=0.005) but equivalent quit rates by genotype in the nicotine-replacement therapy groups. This genotype by treatment interaction was reproduced in a Cox regression model of time to relapse (P=0.04). In the bupropion trial, smokers carrying the C allele also reported more severe TQD cravings. Further research to identify functional variants in GALR1 and to replicate pharmacogenetic associations is warranted.
Collapse
Affiliation(s)
- Allison B Gold
- Center for Interdisciplinary Research on Nicotine Addiction, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - E Paul Wileyto
- Center for Interdisciplinary Research on Nicotine Addiction, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Adriana Lori
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - David Conti
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joseph F Cubells
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Caryn Lerman
- Center for Interdisciplinary Research on Nicotine Addiction, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA,Center for Interdisciplinary Research on Nicotine Addiction, Department of Psychiatry, University of Pennsylvania, 3535 Market Street, Suite 4100, Philadelphia, PA 19104, USA, Tel: +1 215 746 7141, Fax: +1 215 746 7140, E-mail:
| |
Collapse
|
17
|
Shi HS, Yin X, Song L, Guo QJ, Luo XH. Neuropeptide Trefoil factor 3 improves learning and retention of novel object recognition memory in mice. Behav Brain Res 2012; 227:265-9. [DOI: 10.1016/j.bbr.2011.10.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 10/31/2011] [Indexed: 12/17/2022]
|
18
|
Costa A, Bini P, Hamze-Sinno M, Moglia A, Franciotta D, Sinforiani E, Ravaglia S, Bole-Feysot C, Hökfelt T, Déchelotte P, Fetissov SO. Galanin and α-MSH autoantibodies in cerebrospinal fluid of patients with Alzheimer's disease. J Neuroimmunol 2011; 240-241:114-20. [PMID: 22078238 DOI: 10.1016/j.jneuroim.2011.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 09/13/2011] [Accepted: 10/12/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND Neuropeptides galanin and α-melanocyte-stimulating hormone (α-MSH) are involved in the regulation of memory and appetite. Increased galanin and decreased α-MSH levels were reported in postmortem brains of patients with Alzheimer's disease (AD) but the underlying mechanisms are uncertain. Here we studied if autoantibodies (autoAbs) reacting with galanin and α-MSH are altered in AD. METHODS Levels of free and total IgG autoAbs reacting with galanin and α-MSH were measured in sera and cerebrospinal fluid (CSF) of 18 subjects with AD and in 15 age-matched non-demented controls. Values were correlated with Mini-Mental State Examination (MMSE) score, body mass index (BMI) and CSF levels of AD biomarkers. RESULTS CSF levels of total but not free IgG autoAbs against galanin were increased in AD, resulting in increased percentage of galanin autoAbs present as immune complexes. CSF levels of galanin total autoAbs and α-MSH free autoAbs correlated negatively with the severity of cognitive impairment as measured by MMSE. Both total and free autoAbs against galanin and α-MSH in CSF correlated negatively with age in AD patients but not in controls. CSF levels of galanin autoAbs and free α-MSH AutoAbs negatively correlated with CSF levels of t-Tau, p-Tau and ratios of t-Tau/Aβ42 or p-Tau/Aβ42 in AD patients but not in controls. CONCLUSIONS AutoAbs reacting with galanin and α-MSH are present in CSF and are associated with clinical characteristics of AD patients. The functional significance and therapeutic potential of these autoAbs should be further clarified.
Collapse
Affiliation(s)
- Alfredo Costa
- National Institute of Neurology IRCCS C Mondino, University of Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sagi VN, Liu T, Lu X, Bartfai T, Roberts E. Synthesis and biological evaluation of novel pyrimidine derivatives as sub-micromolar affinity ligands of GalR2. Bioorg Med Chem Lett 2011; 21:7210-5. [PMID: 22018787 DOI: 10.1016/j.bmcl.2011.09.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 01/03/2023]
Abstract
GalR1 and GalR2 represent unique pharmacological targets for treatment of seizures and epilepsy. A novel series of 2,4,6-triaminopyrimidine derivatives were synthesized and found to have sub-micromolar affinity for GalR2. Optimization of a series of 2,4,6-triaminopyrimidines led to the discovery of several analogs with IC50 values ranging from 0.3 to 1 μM.
Collapse
Affiliation(s)
- Vasudeva Naidu Sagi
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, United States
| | | | | | | | | |
Collapse
|
20
|
Le Maître TW, Xia S, Le Maitre E, Dun XP, Lu J, Theodorsson E, Ogren SO, Hökfelt T, Xu ZQD. Galanin receptor 2 overexpressing mice display an antidepressive-like phenotype: possible involvement of the subiculum. Neuroscience 2011; 190:270-88. [PMID: 21672612 DOI: 10.1016/j.neuroscience.2011.05.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 04/21/2011] [Accepted: 05/04/2011] [Indexed: 01/13/2023]
Abstract
The behavioral phenotype of a transgenic mouse overexpressing a galanin receptor 2 (GalR2)-enhanced, green fluorescent protein (EGFP)-construct under the platelet-derived growth factor-B promoter, and of controls, was assessed in various behavioral tests, such as the Porsolt forced swim test, as well as the open field, elevated plus maze and passive avoidance tests. In addition, the distribution of GalR2-EGFP expressing cell bodies and processes was studied in the brain of these mice using histochemical methods. Three age groups of the transgenic mice demonstrated decreased levels of immobility in the forced swim test, indicative of antidepressive-like behavior and/or increased stress resistance. Anxiety-like behaviors, measured in two different tests, did not differ between the GalR2-overexpressing and the wild-type mice, nor did motor activity levels, emotional learning or memory behaviors. High levels of GalR2 mRNA and protein expression were observed in the presubiculum, subiculum, cingulate cortex, retrosplenial granular and agranular cortices, subregions of prefrontal cortex, and the olfactory bulb, regions which are directly or indirectly implicated in depression-like behavior. These results may contribute to the understanding of the pathophysiology of major depressive disorder and the role of GalR2 in the regulation of mood, and suggest a potential therapeutic effect by targeting the GalR2 for treatment of depressive disorders.
Collapse
Affiliation(s)
- T Wardi Le Maître
- Department of Neuroscience, Karolinska Institutet, Retzius Väg 8, S-17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gene expression profiling and association with prion-related lesions in the medulla oblongata of symptomatic natural scrapie animals. PLoS One 2011; 6:e19909. [PMID: 21629698 PMCID: PMC3101219 DOI: 10.1371/journal.pone.0019909] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/06/2011] [Indexed: 02/04/2023] Open
Abstract
The pathogenesis of natural scrapie and other prion diseases remains unclear. Examining transcriptome variations in infected versus control animals may highlight new genes potentially involved in some of the molecular mechanisms of prion-induced pathology. The aim of this work was to identify disease-associated alterations in the gene expression profiles of the caudal medulla oblongata (MO) in sheep presenting the symptomatic phase of natural scrapie. The gene expression patterns in the MO from 7 sheep that had been naturally infected with scrapie were compared with 6 controls using a Central Veterinary Institute (CVI) custom designed 4×44K microarray. The microarray consisted of a probe set on the previously sequenced ovine tissue library by CVI and was supplemented with all of the Ovis aries transcripts that are currently publicly available. Over 350 probe sets displayed greater than 2-fold changes in expression. We identified 148 genes from these probes, many of which encode proteins that are involved in the immune response, ion transport, cell adhesion, and transcription. Our results confirm previously published gene expression changes that were observed in murine models with induced scrapie. Moreover, we have identified new genes that exhibit differential expression in scrapie and could be involved in prion neuropathology. Finally, we have investigated the relationship between gene expression profiles and the appearance of the main scrapie-related lesions, including prion protein deposition, gliosis and spongiosis. In this context, the potential impacts of these gene expression changes in the MO on scrapie development are discussed.
Collapse
|
22
|
Abbosh C, Lawkowski A, Zaben M, Gray W. GalR2/3 mediates proliferative and trophic effects of galanin on postnatal hippocampal precursors. J Neurochem 2011; 117:425-36. [PMID: 21281311 DOI: 10.1111/j.1471-4159.2011.07204.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Understanding how neural activity is functionally linked to the stem cell niche, is assuming ever increasing importance as hippocampal neurogenesis is shown to be important for modulating the behavioural responses to stress and for certain forms of learning and memory. Neuropeptides such as neuropeptide Y and vasoactive intestinal peptide have emerged as important mediators for signalling local interneuron activity to subgranular zone precursors, however, little is known regarding the effects of neuropeptides that are extrinsic modulators of hippocampal information processing. Here, we show that the galanin GalR2/3 agonist Gal2-11 is both trophic and proliferative for postnatal subgranular precursors and proliferating neuroblasts at 10 nM and is purely trophic at doses as low as 100 pM. We found no effect mediated via GalR1. As galanin is co-released from noradrenergic and serotonergic projection neurons to the dentate gyrus, these findings support a direct effect of galanin on hippocampal neurogenesis, which may partly mediate its antidepressant effect via GalR2/3 receptors.
Collapse
Affiliation(s)
- Christopher Abbosh
- Division of Clinical Neurosciences, University of Southampton, Southampton, UK
| | | | | | | |
Collapse
|
23
|
Robertson CR, Flynn SP, White HS, Bulaj G. Anticonvulsant neuropeptides as drug leads for neurological diseases. Nat Prod Rep 2011; 28:741-62. [PMID: 21340067 DOI: 10.1039/c0np00048e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Anticonvulsant neuropeptides are best known for their ability to suppress seizures and modulate pain pathways. Galanin, neuropeptide Y, somatostatin, neurotensin, dynorphin, among others, have been validated as potential first-in-class anti-epileptic or/and analgesic compounds in animal models of epilepsy and pain, but their therapeutic potential extends to other neurological indications, including neurodegenerative and psychatric disorders. Disease-modifying properties of neuropeptides make them even more attractive templates for developing new-generation neurotherapeutics. Arguably, efforts to transform this class of neuropeptides into drugs have been limited compared to those for other bioactive peptides. Key challenges in developing neuropeptide-based anticonvulsants are: to engineer optimal receptor-subtype selectivity, to improve metabolic stability and to enhance their bioavailability, including penetration across the blood–brain barrier (BBB). Here, we summarize advances toward developing systemically active and CNS-penetrant neuropeptide analogs. Two main objectives of this review are: (1) to provide an overview of structural and pharmacological properties for selected anticonvulsant neuropeptides and their analogs and (2) to encourage broader efforts to convert these endogenous natural products into drug leads for pain, epilepsy and other neurological diseases.
Collapse
Affiliation(s)
- Charles R Robertson
- College of Pharmacy, Department of Medicinal Chemistry, 421 Wakara Way, STE. 360 Salt Lake City, UT 84108, USA
| | | | | | | |
Collapse
|
24
|
Endele S, Nelkenbrecher C, Bördlein A, Schlickum S, Winterpacht A. C4ORF48, a gene from the Wolf-Hirschhorn syndrome critical region, encodes a putative neuropeptide and is expressed during neocortex and cerebellar development. Neurogenetics 2011; 12:155-63. [PMID: 21287218 DOI: 10.1007/s10048-011-0275-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 01/14/2011] [Indexed: 12/27/2022]
Abstract
In order to identify novel genes involved in mental retardation/intellectual disability, we focused on a microdeletion reported in a patient with a mild form of Wolf-Hirschhorn syndrome. This patient presented with attention-deficit hyperactivity disorder, some learning and fine motor deficits as well as facial abnormalities. The deleted region included three genes. Here, we report the first characterization of one of these genes, C4ORF48. C4ORF48 encodes a short (139 aa) evolutionarily conserved protein with a predicted signal peptide and two potential dibasic convertase cleavage sites. In mice, we demonstrated expression of the corresponding protein exclusively in brain tissue using an anti-mouse C4Orf48 polyclonal antibody. Detailed RNA in situ hybridization experiments revealed expression of C4Orf48 in different zones during cortical and cerebellar development, as well as in almost all cortical and subcortical regions of the adult mouse brain. Based on the present data, we propose that C4Orf48 probably encodes a novel neuropeptide, which, if hemizygously deleted, may be involved in the observed intellectual and fine motor disabilities and thus in the overall neurological aspects of Wolf-Hirschhorn syndrome.
Collapse
Affiliation(s)
- Sabine Endele
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
25
|
GalR2-positive allosteric modulator exhibits anticonvulsant effects in animal models. Proc Natl Acad Sci U S A 2010; 107:15229-34. [PMID: 20660766 DOI: 10.1073/pnas.1008986107] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Galanin receptors type 1 (GalR1) and/or type 2 (GalR2) represent unique pharmacological targets for treatment of seizures and epilepsy. Previous studies have shown that the endogenous peptide ligand galanin exerts powerful anticonvulsant effect through activation of these two G protein-coupled receptors, which are highly expressed in the temporal lobe of rodent brain. Here we report the characterization of a putative GalR2-positive allosteric modulator CYM2503. CYM2503 potentiated the galanin-stimulated IP1 accumulation in HEK293 cells stably expressing GalR2 receptor, whereas it exhibited no detectable affinity for the (125)I galanin-binding site of GalR2 receptor, an effect consistent with that of a positive allosteric modulator. In the rat Li-pilocarpine status epilepticus model, CYM2503, injected intraperitoneally, increased the latency to first electrographic seizure and the latency to first stage 3 behavioral seizure, decreased the latency to the establishment of status epilepticus, and dramatically decreased the mortality. In a Li-pilocarpine seizure model in mice, CYM2503 increased the latency to first electrographic seizure and decreased the total time in seizure. CYM2503 also attenuated electroshock-induced seizures in mice. Thus, CYM2503 provides a starting point for the development of anticonvulsant therapy using the galanin R2 receptor as target.
Collapse
|
26
|
Baraka A, ElGhotny S. Study of the effect of inhibiting galanin in Alzheimer's disease induced in rats. Eur J Pharmacol 2010; 641:123-7. [PMID: 20639139 DOI: 10.1016/j.ejphar.2010.05.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 05/06/2010] [Accepted: 05/28/2010] [Indexed: 02/06/2023]
Abstract
It is recently reported that galanin plays a role in memory decline that is the primary behavioral symptom of Alzheimer's disease. The aim of the present study was to study the impact of administration of two antidiabetic drugs that might inhibit galanin, namely glibenclamide and pioglitazone, on the behavioral, and neurochemical changes in Alzheimer's disease--induced in rats by intracerebroventricular (i.c.v.) injection of beta amyloid (Abeta). The present study was conducted on 60 male Wistar rats that were divided into 6 groups: group I (control group) which received i.c.v. scrambled peptide, group II (i.c.v.-Abeta group) which received i.c.v.-Abeta, groups III and IV that received, respectively, glibenclamide and pioglitazone daily orally for 3 weeks following scrambled peptide administration as well as groups V and VI that received, respectively, glibenclamide and pioglitazone daily orally for 3 weeks following Abeta administration. i.c.v.-Abeta resulted in significant behavioral alterations suggesting Alzheimer's disease, where there was significant impairment in spatial cognition, evaluated by Morris water maze task, and in learning and memory performance, assessed using passive-avoidance learning task. i.c.v.-Abeta also resulted in significant increase in hippocampal hyperphosphorylated tau protein as well as galanin. Administration of studied antidiabetic drugs, glibenclamide and pioglitazone, resulted in significant improvement in spatial cognition and in learning and memory performance, as well as significant decrease in hippocampal hyperphosphorylated tau protein and hippocampal galanin. Our findings suggest that a pharmacologic approach to inhibit galanin in the brain, either by glibenclamide or pioglitazone might dramatically improve symptoms in Alzheimer's disease.
Collapse
Affiliation(s)
- Azza Baraka
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
27
|
Ogren SO, Kuteeva E, Elvander-Tottie E, Hökfelt T. Neuropeptides in learning and memory processes with focus on galanin. Eur J Pharmacol 2009; 626:9-17. [PMID: 19837050 DOI: 10.1016/j.ejphar.2009.09.070] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 08/27/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
Abstract
Neuropeptides represent by far the most common signalling molecules in the central nervous system. They are involved in a wide range of physiological functions and can act as neurotransmitters, neuromodulators or hormones in the central nervous system and in the periphery. Accumulating evidence during the past 40 years has implicated a number of neuropeptides in various cognitive functions including learning and memory. A major focus has been on the possibility that neuropeptides, by coexisting with classical neurotransmitters, can modulate classical transmitter function of importance for cognition. It has become increasingly clear that most transmitter systems in the brain can release a cocktail of signalling molecules including classical transmitters and several neuropeptides. However, the neuropeptides seem to come into action mainly under conditions of severe stress or aversive events, which have linked their action also to regulation of affective components of behaviour. This paper summarises some of the results of three neuropeptides, which can impact on hippocampal cognition by intrinsic (dynorphins, nociceptin) or extrinsic (galanin) modulation. The results obtained with these neuropeptides in rodent studies indicate that they are important for various aspects of hippocampal learning and memory as well as hippocampal plasticity. Recent studies in humans have also shown that dysregulation of these neuropeptides may be of importance for both neurodegenerative and neuropsychiatric disorders associated with cognitive impairments. It is concluded that compounds acting on neuropeptide receptor subtypes will represent novel targets for a number of disorders, which involve cognitive deficiencies.
Collapse
Affiliation(s)
- Sven Ove Ogren
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
28
|
Picciotto MR, Brabant C, Einstein EB, Kamens HM, Neugebauer NM. Effects of galanin on monoaminergic systems and HPA axis: Potential mechanisms underlying the effects of galanin on addiction- and stress-related behaviors. Brain Res 2009; 1314:206-18. [PMID: 19699187 DOI: 10.1016/j.brainres.2009.08.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/06/2009] [Accepted: 08/09/2009] [Indexed: 12/20/2022]
Abstract
Like a number of neuropeptides, galanin can alter neural activity in brain areas that are important for both stress-related behaviors and responses to drugs of abuse. Accordingly, drugs that target galanin receptors can alter behavioral responses to drugs of abuse and can modulate stress-related behaviors. Stress and drug-related behaviors are interrelated: stress can promote drug-seeking, and drug exposure and withdrawal can increase activity in brain circuits involved in the stress response. We review here what is known about the ability of galanin and galanin receptors to alter neuronal activity, and we discuss potential mechanisms that may underlie the effects of galanin on behaviors involved in responses to stress and addictive drugs. Understanding the mechanisms underlying galanin's effects on neuronal function in brain regions related to stress and addiction may be useful in developing novel therapeutics for the treatment of stress- and addiction-related disorders.
Collapse
Affiliation(s)
- Marina R Picciotto
- Division of Molecular Psychiatry, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | | | | |
Collapse
|
29
|
Runesson J, Saar I, Lundström L, Järv J, Langel U. A novel GalR2-specific peptide agonist. Neuropeptides 2009; 43:187-92. [PMID: 19467704 DOI: 10.1016/j.npep.2009.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/16/2009] [Accepted: 04/17/2009] [Indexed: 01/08/2023]
Abstract
The galanin peptide family and its three receptors have with compelling evidence been implicated in several high-order physiological disorders. The co-localization with other neuromodulators and the distinct up-regulation during and after pathological disturbances has drawn attention to this neuropeptide family. In the current study we present data on receptor binding and functional response for a novel galanin receptor type 2 (GalR2) selective chimeric peptide, M1145 [(RG)(2)-N-galanin(2-13)-VL-(P)(3)-(AL)(2)-A-amide]. The M1145 peptide shows more than 90-fold higher affinity for GalR2 over GalR1 and a 76-fold higher affinity over GalR3. Furthermore, the peptide yields an agonistic effect in vitro, seen as an increase in inositol phosphate (IP) accumulation, both in the absence or the presence of galanin. The peptide design with a N-terminal extension of galanin(2-13), prevails new insights in the assembly of novel subtype specific ligands for the galanin receptor family and opens new possibilities to apply the galanin system as a putative drug target.
Collapse
Affiliation(s)
- Johan Runesson
- Department of Neurochemistry, Stockholm University, Svante Arrheniusv. 21A, SE-10691 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
30
|
Mitsukawa K, Lu X, Bartfai T. Bidirectional regulation of stress responses by galanin in mice: involvement of galanin receptor subtype 1. Neuroscience 2009; 160:837-46. [PMID: 19272414 DOI: 10.1016/j.neuroscience.2009.02.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/24/2009] [Accepted: 02/27/2009] [Indexed: 02/08/2023]
Abstract
The neuropeptide galanin has been shown to play a role in psychiatric disorders as well as in other biological processes including regulation of pain threshold through interactions with three G-protein coupled receptors, galanin receptor subtypes 1-3 (GalR1-3). While most of the pharmacological studies on galanin in stress-related disorders have been done with rats, the continuous development of genetically engineered mice involving galanin or its receptor subtype(s) validates the importance of mouse pharmacological studies. The present study on mice examined the homeostatic, endocrinological and neuroanatomical effects of the galanin, injected intracerebroventricularly (i.c.v.), in regulation of stress responses after restraint stress. Furthermore, the roles of GalR1 on these effects were studied using GalR1 knockout (KO) mice. The core body temperature and the locomotor activity were monitored with radio telemetry devices. Galanin (i.c.v.) decreased locomotor activity and exerted a bidirectional effect on the restraint stress-induced hyperthermia; a high dose of galanin significantly attenuated the stress-induced hyperthermic response, while a low dose of galanin moderately enhanced this response. The bidirectional effect of galanin was correlated with changes in stress hormone levels (adrenocorticotropic hormone and corticosterone). To neuroanatomically localize the effects of galanin on stress response, cFos immunoreactivity was assessed in galanin receptor rich areas; paraventricular nucleus (PVN) of the hypothalamus and the locus coeruleus (LC), respectively. A high dose of galanin significantly induced cFos activity in the LC but not in the PVN. In GalR1KO mice, a high dose of galanin failed to induce any of the above effects, suggesting the pivotal role of GalR1 in decreased locomotor activity and stress-resistant effects caused by galanin i.c.v. injection studied here.
Collapse
Affiliation(s)
- K Mitsukawa
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
31
|
Mufson EJ, Counts SE, Perez SE, Ginsberg SD. Cholinergic system during the progression of Alzheimer's disease: therapeutic implications. Expert Rev Neurother 2009; 8:1703-18. [PMID: 18986241 DOI: 10.1586/14737175.8.11.1703] [Citation(s) in RCA: 428] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is characterized by a progressive phenotypic downregulation of markers within cholinergic basal forebrain (CBF) neurons, frank CBF cell loss and reduced cortical choline acetyltransferase activity associated with cognitive decline. Delaying CBF neurodegeneration or minimizing its consequences is the mechanism of action for most currently available drug treatments for cognitive dysfunction in AD. Growing evidence suggests that imbalances in the expression of NGF, its precursor proNGF and the high (TrkA) and low (p75(NTR)) affinity NGF receptors are crucial factors underlying CBF dysfunction in AD. Drugs that maintain a homeostatic balance between TrkA and p75(NTR) may slow the onset of AD. A NGF gene therapy trial reduced cognitive decline and stimulated cholinergic fiber growth in humans with mild AD. Drugs treating the multiple pathologies and clinical symptoms in AD (e.g., M1 cholinoceptor and/or galaninergic drugs) should be considered for a more comprehensive treatment approach for cholinergic dysfunction.
Collapse
Affiliation(s)
- Elliott J Mufson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
32
|
Lu X, Bartfai T. Analyzing the validity of GalR1 and GalR2 antibodies using knockout mice. Naunyn Schmiedebergs Arch Pharmacol 2009; 379:417-20. [PMID: 19159918 DOI: 10.1007/s00210-009-0394-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 01/05/2009] [Indexed: 01/20/2023]
Abstract
G-protein-coupled receptors (GPCRs) comprise the largest family of cell surface receptors and are the major drug targets for the treatment of various human diseases. The lack of sensitive and selective antibodies capable of recognizing endogenous GPCRs, however, hampers the progress of research on this class of receptors. GalR1 through GalR3, GPCRs for the neuropeptide galanin, are potential drug targets for seizure, Alzheimer's disease, depression and anxiety, as well as pain and metabolic syndrome; therefore, determining the cellular and subcellular localization of galanin receptors is of high interest. Several Antibodies raised against galanin receptors are currently available from commercial or academic sources. We have tested several antibodies to GalR1 and GalR2 on tissues from respective knockout mice. Unexpectedly, the immunoreactivity patterns are the same in wild-type and in knockout mice, suggesting that current GalR1 and GalR2 antibodies, under standard immunodetection conditions, might not be suitable for mapping the receptors. These findings argue for taking precaution when using antibodies to galanin receptors.
Collapse
Affiliation(s)
- Xiaoying Lu
- The Harold L. Dorris Neurological Research Institute, Molecular and Integrative Neurosciences Department, The Scripps Research Institute, SR-307, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|