1
|
Dimas A, Goussia A, Papoudou-Bai A, Politi A, Paschopoulos M, Navrozoglou I, Makrigiannakis A, Vrekoussis T. The expression of corticotropin-releasing hormone family peptides in premalignant and malignant vulvar lesions. Clin Transl Oncol 2024; 26:260-268. [PMID: 37382757 PMCID: PMC10761541 DOI: 10.1007/s12094-023-03249-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVES To examine the relation of corticotropin-releasing hormone (CRH) family peptides with inflammatory processes and oncogenesis, emphasizing in vulvar inflammatory, premalignant and malignant lesions, as well as to investigate the possibility of lesion cells immunoescaping, utilizing FAS/FAS-L complex. METHODS Immunohistochemical expression of CRH, urocortin (UCN), FasL and their receptors CRHR1, CRHR2 and Fas was studied in vulvar tissue sections obtained from patients with histologically confirmed diagnosis of lichen, vulvar intraepithelial neoplasia (VIN) and vulvar squamous cell carcinoma (VSCC). The patient cohort was selected from a tertiary teaching Hospital in Greece, between 2005 and 2015. For each of the disease categories, immunohistochemical staining was evaluated and the results were statistically compared. RESULTS A progressive increase of the cytoplasmic immunohistochemical expression of CRH and UCN, from precancerous lesions to VSCC was observed. A similar increase was detected for Fas and FasL expression. Nuclear localization of UCN was demonstrated in both premalignant and VSCC lesions, with staining being significantly intensified in carcinomas, particularly in the less differentiated tumor areas or in the areas at invasive tumor front. CONCLUSIONS Stress response system and CRH family peptides seem to have a role in inflammation maintenance and progression of vulvar premalignant lesions to malignancy. It seems that stress peptides may locally modulate the stroma through Fas/FasL upregulation, possibly contributing to vulvar cancer development.
Collapse
Affiliation(s)
| | - Anna Goussia
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
- Department of Pathology, University Hospital of Ioannina, 45110, Ioannina, Greece
- Department of Pathology, German Oncology Center, Limassol, Cyprus
| | - Alexandra Papoudou-Bai
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
- Department of Pathology, University Hospital of Ioannina, 45110, Ioannina, Greece
| | - Anastasia Politi
- Department of Dermatology, Venereology, Andreas Syggros Hospital, National and Kapodistrian University of Athens, 16121, Athens, Greece
| | - Minas Paschopoulos
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Iordanis Navrozoglou
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Antonis Makrigiannakis
- Department of Obstetrics and Gynecology, School of Health Science, University of Crete, 71500, Iraklio, Greece
| | - Thomas Vrekoussis
- Department of Obstetrics and Gynecology, School of Health Science, University of Crete, 71500, Iraklio, Greece
| |
Collapse
|
2
|
Sato N, Motoi F, Tajiki H, Kawaguchi K, Ohtsuka H, Takadate T, Nakagawa K, Takagi K, Suzuki T, Katayose Y, Fukudo S, Unno M. Expression of Corticotropin-Releasing Hormone and Its Receptors May Be Associated With Survival Rate in Pancreatic Cancer. GASTRO HEP ADVANCES 2022; 2:147-155. [PMID: 39130148 PMCID: PMC11308248 DOI: 10.1016/j.gastha.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/09/2022] [Indexed: 08/13/2024]
Abstract
Background and Aims Corticotropin-releasing hormone (CRH) is a major regulator of the stress response to internal and external factors. CRH and its receptors (CRHR1 and CRHR2) are expressed in the central nervous system and some cancer cells, suggesting the importance of CRH signaling in pancreatic cancers. However, the clinicopathological significance of CRH remains unknown because the immunolocalization of CRH, CRHR1, and CRHR2 has not been examined in pancreatic carcinoma tissues. We clarified the correlation of the expression of CRH and its receptors with overall survival in pancreatic cancer. Methods This study evaluated 96 patients with pancreatic cancer who underwent microscopic complete resection (R0) but not neoadjuvant chemotherapy from 1988 to 2007 at Tohoku University Hospital, Japan. CRH, CRHR1, and CRHR2 immunoreactivity were detected in the pancreatic carcinoma cells. Overall survival curves were generated according to the Kaplan-Meier method. Results CRHR1 immunoreactivity was significantly associated with an increased risk of poorer prognosis in all patients (P = .038) and the adjuvant therapy group (P = .022). Overall survival was worse in the CRHR1-positive group than in the CRHR1-negative group among the 62 patients treated with gemcitabine hydrochloride (P = .046) and the 22 patients treated with other drugs (P = .047). CRHR1 expression was correlated with survival in univariate analysis but not in multivariate analysis. Conclusion This study is the first to immunolocalize CRH, CRHR1, and CRHR2 in pancreatic carcinoma tissues and to examine the biological prognosis. This study revealed that survival in patients with pancreatic cancer was significantly associated with expression of CRHR1 by assessing biological progression according to CRH and the expression of its receptors. However, CRHR1 expression was correlated with survival in univariate analysis but not in multivariate analysis.
Collapse
Affiliation(s)
- Naoko Sato
- School of Nursing, Fukushima Medical University, Fukushima, Japan
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fuyuhiko Motoi
- Department of Surgery I, Yamagata University Graduate School of Medical Science, Yamagata, Japan
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hana Tajiki
- Department of Nursing, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan
| | - Kei Kawaguchi
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideo Ohtsuka
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tatuyuki Takadate
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Nakagawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Katayose
- Division of Hepato-Biliary and Pancreatic Surgery, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Shin Fukudo
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Balogh B, Vecsernyés M, Veres-Székely A, Berta G, Stayer-Harci A, Tarjányi O, Sétáló G. Urocortin stimulates ERK1/2 phosphorylation and proliferation but reduces ATP production of MCF7 breast cancer cells. Mol Cell Endocrinol 2022; 547:111610. [PMID: 35219718 DOI: 10.1016/j.mce.2022.111610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/15/2021] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
Urocortins are members of the stress-related corticotropin-releasing factor family. Small amounts of them are present in the circulation and they are produced locally in various tissues of higher vertebrates. Aside from regulating circulation, or food uptake they also influence, via auto- and paracrine mechanisms, cell proliferation. In the present study we investigated in MCF7 human breast cancer cells the effect of urocortin onto mitogenic signaling via ERK1/2. Our results revealed that already 10 nM urocortin could stimulate the phosphorylation of these kinases and cell proliferation of MCF7 cells while ATP production was reduced when kept in the presence of the peptide up to two days. We examined the expression and contribution of the specific receptors of urocortin to the activation of ERK1/2 and to cell proliferation, the intracellular distribution of phosphorylated ERK1/2, and the involvement of additional proteins like PKA, PKB/Akt, MEK, p53, Rb and E2F-1 behind the observed phenomena.
Collapse
Affiliation(s)
- Bálint Balogh
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Pécs, H-7643, Pécs, Szigeti út 12, Hungary.
| | - Mónika Vecsernyés
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Pécs, H-7643, Pécs, Szigeti út 12, Hungary; Signal Transduction Research Group, János Szentágothai Research Centre, Pécs, H-7624, Pécs, Ifjúság útja 20, Hungary.
| | - Apor Veres-Székely
- 1st Department of Pediatrics, Semmelweis University, Budapest, H-1083, Budapest, 53-54. Bókay Street, Hungary; ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary.
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Pécs, H-7643, Pécs, Szigeti út 12, Hungary; Signal Transduction Research Group, János Szentágothai Research Centre, Pécs, H-7624, Pécs, Ifjúság útja 20, Hungary.
| | - Alexandra Stayer-Harci
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Pécs, H-7643, Pécs, Szigeti út 12, Hungary; Signal Transduction Research Group, János Szentágothai Research Centre, Pécs, H-7624, Pécs, Ifjúság útja 20, Hungary.
| | - Oktávia Tarjányi
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Pécs, H-7643, Pécs, Szigeti út 12, Hungary; Signal Transduction Research Group, János Szentágothai Research Centre, Pécs, H-7624, Pécs, Ifjúság útja 20, Hungary.
| | - György Sétáló
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs, Medical School, Pécs, H-7643, Pécs, Szigeti út 12, Hungary; Signal Transduction Research Group, János Szentágothai Research Centre, Pécs, H-7624, Pécs, Ifjúság útja 20, Hungary.
| |
Collapse
|
4
|
Panagopoulou M, Cheretaki A, Karaglani M, Balgkouranidou I, Biziota E, Amarantidis K, Xenidis N, Kakolyris S, Baritaki S, Chatzaki E. Methylation Status of Corticotropin-Releasing Factor (CRF) Receptor Genes in Colorectal Cancer. J Clin Med 2021; 10:2680. [PMID: 34207031 PMCID: PMC8234503 DOI: 10.3390/jcm10122680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
The corticotropin-releasing factor (CRF) system has been strongly associated with gastrointestinal pathophysiology, including colorectal cancer (CRC). We previously showed that altered expression of CRF receptors (CRFRs) in the colon critically affects CRC progression and aggressiveness through regulation of colonic inflammation. Here, we aimed to assess the potential of CRFR methylation levels as putative biomarkers in CRC. In silico methylation analysis of CRF receptor 1 (CRFR1) and CRF receptor 2 (CRFR2) was performed using methylome data derived by CRC and Crohn's disease (CD) tissues and CRC-derived circulating cell-free DNAs (ccfDNAs). In total, 32 and 33 differentially methylated sites of CpGs (DMCs) emerged in CRFR1 and CRFR2, respectively, between healthy and diseased tissues. The methylation patterns were verified in patient-derived ccfDNA samples by qMSP and associated with clinicopathological characteristics. An automated machine learning (AutoML) technology was applied to ccfDNA samples for classification analysis. In silico analysis revealed increased methylation of both CRFRs in CRC tissue and ccfDNA-derived datasets. CRFR1 hypermethylation was also noticed in gene body DMCs of CD patients. CRFR1 hypermethylation was further validated in CRC adjuvant-derived ccfDNA samples, whereas CRFR1 hypomethylation, observed in metastasis-derived ccfDNAs, was correlated to disease aggressiveness and adverse prognostic characteristics. AutoML analysis based on CRFRs methylation status revealed a three-feature high-performing biosignature for CRC diagnosis with an estimated AUC of 0.929. Monitoring of CRFRs methylation-based signature in CRC tissues and ccfDNAs may be of high diagnostic and prognostic significance in CRC.
Collapse
Affiliation(s)
- Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (A.C.); (M.K.); (I.B.)
| | - Antonia Cheretaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (A.C.); (M.K.); (I.B.)
| | - Makrina Karaglani
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (A.C.); (M.K.); (I.B.)
| | - Ioanna Balgkouranidou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (A.C.); (M.K.); (I.B.)
- Department of Medical Oncology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (E.B.); (K.A.); (N.X.); (S.K.)
| | - Eirini Biziota
- Department of Medical Oncology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (E.B.); (K.A.); (N.X.); (S.K.)
| | - Kyriakos Amarantidis
- Department of Medical Oncology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (E.B.); (K.A.); (N.X.); (S.K.)
| | - Nikolaos Xenidis
- Department of Medical Oncology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (E.B.); (K.A.); (N.X.); (S.K.)
| | - Stylianos Kakolyris
- Department of Medical Oncology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (E.B.); (K.A.); (N.X.); (S.K.)
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, GR-71003 Heraklion, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (A.C.); (M.K.); (I.B.)
- Hellenic Mediterranean University Research Centre, Institute of Agri-Food and Life Sciences, GR-71410 Heraklion, Greece
| |
Collapse
|
5
|
Koureta M, Karaglani M, Panagopoulou M, Balgkouranidou I, Papadaki-Anastasopoulou A, Zarouchlioti C, Dekavallas S, Kolios G, Lambropoulou M, Baritaki S, Chatzaki E. Corticotropin Releasing Factor Receptors in breast cancer: Expression and activity in hormone-dependent growth in vitro. Peptides 2020; 129:170316. [PMID: 32333998 DOI: 10.1016/j.peptides.2020.170316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Accepted: 04/13/2020] [Indexed: 01/04/2023]
Abstract
Corticotropin Releasing Factor (CRF) neuropeptides coordinate the stress response via two distinct membrane receptors (CRF-Rs). We have previously shown expression of both CRF-Rs in human breast cancer tissues. In the present study, we examined in vitro using the MCF-7 cell line model, the regulation of CRF-Rs expression and their signaling in hormone-dependent breast cancer growth. Our findings show that similarly to breast cancer biopsies, the predominant receptor type expressed in the cell line is CRF-R2α. The transcription of CRF-R1 and CRF-R2 is up and down-regulated respectively by exposure to estradiol (E2); however this effect seems not to be exerted at the level of promoter gene methylation, although in human breast cancer specimens, CRF-R1 methylation was found to be positively associated with the presence of steroid hormone receptors. Finally, we showed that specific activation of CRF-R2 increased the migration of MCF-7 cells and potentiated an estrogen-inducing effect. Our data support an involvement of CRF-R signaling in breast cancer pathophysiology via a regulatory steroid-hormone interplay.
Collapse
Affiliation(s)
- Maria Koureta
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Makrina Karaglani
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Ioanna Balgkouranidou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | | | - Christina Zarouchlioti
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Spyridon Dekavallas
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - George Kolios
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Maria Lambropoulou
- Department of Histology-Embryology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Stavroula Baritaki
- Division of Surgery, School of Medicine, University of Crete, Heraklion, 71500 Crete, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, 68100, Greece.
| |
Collapse
|
6
|
Faraj Tabrizi P, Mohebbi Tafrechi A, Peters I, Atschekzei F, Kuczyk MA, Serth J, Tezval H. Cancer-Specific Loss of Urocortin 3 in Human Renal Cancer. Adv Ther 2020; 37:288-299. [PMID: 31721113 DOI: 10.1007/s12325-019-01141-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The corticotropin-releasing hormone (CRH) system, its receptors corticotropin-releasing hormone receptor 1 (CRHR1) and 2 (CRHR2), and its corresponding binding protein corticotropin-releasing hormone-binding protein (CRHBP) as well as the urocortin proteins-structural homologues to CRH, which are included in this peptide family-have become interesting oncological targets recently. Carcinogenesis of various human tumors has been reported with an altered presence of members of this system. The aim of the present study was to examine the role of urocortin 3 (UCN3) in renal cell carcinoma (RCC). METHODS Therefore, tumoral tissues of 106 patients with RCC and available corresponding normal tissues were analyzed using qPCR for quantitative mRNA expression analysis. Tissue localization and protein signals of UCN3 in normal and tumoral renal specimens were evaluated using western blot and immunohistochemistry. In addition, correlation studies of UCN3 mRNA expression with clinicopathological parameters of patients with RCC and different histological subtypes were evaluated. RESULTS UCN3 mRNA was significantly downregulated in nearly all tumoral tissues (p = 7.92 × 10-13). The same effect was observed at protein level using immunohistochemistry. Level of UCN3 mRNA expression was not directly correlated with clinicopathological parameters. CONCLUSION We report for the first time the significant downregulation of UCN3 in RCC. These results demonstrate a possible involvement of the CRH system and its significance in carcinogenesis of RCC.
Collapse
|
7
|
Pothoulakis C, Torre-Rojas M, Duran-Padilla MA, Gevorkian J, Zoras O, Chrysos E, Chalkiadakis G, Baritaki S. CRHR2/Ucn2 signaling is a novel regulator of miR-7/YY1/Fas circuitry contributing to reversal of colorectal cancer cell resistance to Fas-mediated apoptosis. Int J Cancer 2018; 142:334-346. [PMID: 28929494 PMCID: PMC5918308 DOI: 10.1002/ijc.31064] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/16/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
Abstract
Colorectal cancer (CRC) responds poorly to immuno-mediated cytotoxicity. Underexpression of corticotropin-releasing-hormone-receptor-2 (CRHR2) in CRC, promotes tumor survival, growth and Epithelial to Mesenchymal Transition (EMT), in vitro and in vivo. We explored the role of CRHR2 downregulation in CRC cell resistance to Fas/FasL-mediated apoptosis and the underlying molecular mechanism. CRC cell sensitivity to CH11-induced apoptosis was compared between Urocortin-2 (Ucn2)-stimulated parental and CRHR2-overexpressing CRC cell lines and targets of CRHR2/Ucn2 signaling were identified through in vitro and ex vivo analyses. Induced CRHR2/Ucn2 signaling in SW620 and DLD1 cells increased specifically their sensitivity to CH11-mediated apoptosis, via Fas mRNA and protein upregulation. CRC compared to control tissues had reduced Fas expression that was associated with lost CRHR2 mRNA, poor tumor differentiation and high risk for distant metastasis. YY1 silencing increased Fas promoter activity in SW620 and re-sensitized them to CH11-apoptosis, thus suggesting YY1 as a putative transcriptional repressor of Fas in CRC. An inverse correlation between Fas and YY1 expression was confirmed in CRC tissue arrays, while elevated YY1 mRNA was clinically relevant with advanced CRC grade and higher risk for distant metastasis. CRHR2/Ucn2 signaling downregulated specifically YY1 expression through miR-7 elevation, while miR-7 modulation in miR-7high SW620-CRHR2+ and miR-7low HCT116 cells, had opposite effects on YY1 and Fas expressions and cell sensitivity to CH11-killing. CRHR2/Ucn2 signaling is a negative regulator of CRC cell resistance to Fas/FasL-apoptosis via targeting the miR-7/YY1/Fas circuitry. CRHR2 restoration might prove effective in managing CRC response to immune-mediated apoptotic stimuli.
Collapse
Affiliation(s)
- Charalabos Pothoulakis
- IBD Center, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Monica Torre-Rojas
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
| | - Marco A. Duran-Padilla
- Servicio de Patologia, Hospital General de Mexico ‘Eduardo Liceaga’, Facultad de Medicina de la UNAM, Mexico City, Mexico
| | - Jonathan Gevorkian
- IBD Center, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Odysseas Zoras
- Division of Surgical Oncology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Emmanuel Chrysos
- Division of Surgical Oncology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - George Chalkiadakis
- Division of Surgical Oncology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Stavroula Baritaki
- IBD Center, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Surgical Oncology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
8
|
Pichler R, Fritz J, Tulchiner G, Klinglmair G, Soleiman A, Horninger W, Klocker H, Heidegger I. Increased accuracy of a novel mRNA-based urine test for bladder cancer surveillance. BJU Int 2017; 121:29-37. [PMID: 28941000 DOI: 10.1111/bju.14019] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To evaluate the diagnostic accuracy of the Xpert Bladder Cancer (BC) Monitor, compared with cystoscopy and cytology in the oncological follow-up of non-muscle-invasive bladder cancer (NMIBC). MATERIAL AND METHODS A total of 140 patients with a history of NMIBC undergoing routine surveillance at our institution were enrolled prospectively in this study (ISRCTN study registry number 37210907). Urine cytology was evaluated according to the Paris classification system. In addition, urinary specimens were analysed using the Xpert BC Monitor, which measures five target mRNAs (ABL1, CRH, IGF2, UPK1B, ANXA10) using real-time PCR. Descriptive analysis, diagnostic accuracy including sensitivity, specificity, positive (PPV) and negative predictive value (NPV), receiver-operating characteristic curve, and area under the curve (AUC) were calculated. RESULTS The overall sensitivity (0.84) and NPV (0.93) of the Xpert BC Monitor were significantly superior to those of bladder washing cytology (0.33 and 0.76; P < 0.001). Subgroup analyses confirmed the high sensitivity of the Xpert BC Monitor even in low-grade (0.77) and pTa (0.82) disease compared with barbotage cytology (low-grade: 0.13; pTa: 0.21). The overall specificity of the Xpert BC Monitor and barbotage cytology was similar (0.91 vs 0.94; P = 0.41). Combining the Xpert BC Monitor with barbotage cytology (AUC = 0.85) did not enhance diagnostic performance compared with the performance of the Xpert BC Monitor alone (AUC = 0.87). CONCLUSION In this study, we report for the first time that the Xpert BC Monitor, a new mRNA-based urine test, outperforms cytology with regard to sensitivity and NPV, even in low-grade and pTa tumours, with no reduction of specificity.
Collapse
Affiliation(s)
- Renate Pichler
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | - Josef Fritz
- Department of Medical Statistics, Informatics and Health Economics, Medical University Innsbruck, Innsbruck, Austria
| | - Gennadi Tulchiner
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | - Gerald Klinglmair
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | - Afschin Soleiman
- Clinical Pathology and Cytodiagnostics, Tyrolean State Hospitals Ltd, Innsbruck, Austria
| | | | - Helmut Klocker
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria.,Urological Laboratory and Division of Experimental Urology, Innsbruck, Austria
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Ducarouge B, Pelissier-Rota M, Powell R, Buisson A, Bonaz B, Jacquier-Sarlin M. Involvement of CRF2 signaling in enterocyte differentiation. World J Gastroenterol 2017; 23:5127-5145. [PMID: 28811708 PMCID: PMC5537180 DOI: 10.3748/wjg.v23.i28.5127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/06/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the role of corticotropin releasing factor receptor (CRF2) in epithelial permeability and enterocyte cell differentiation.
METHODS For this purpose, we used rat Sprague Dawley and various colon carcinoma cell lines (SW620, HCT8R, HT-29 and Caco-2 cell lines). Expression of CRF2 protein was analyzed by fluorescent immunolabeling in normal rat colon and then by western blot in dissociated colonic epithelial cells and in the lysates of colon carcinoma cell lines or during the early differentiation of HT-29 cells (ten first days). To assess the impact of CRF2 signaling on colonic cell differentiation, HT-29 and Caco-2 cells were exposed to Urocortin 3 recombinant proteins (Ucn3, 100 nmol/L). In some experiments, cells were pre-exposed to the astressin 2b (A2b) a CRF2 antagonist in order to inhibit the action of Ucn3. Intestinal cell differentiation was first analyzed by functional assays: the trans-cellular permeability and the para-cellular permeability were determined by Dextran-FITC intake and measure of the transepithelial electrical resistance respectively. Morphological modifications associated to epithelial dysfunction were analyzed by confocal microscopy after fluorescent labeling of actin (phaloidin-TRITC) and intercellular adhesion proteins such as E-cadherin, p120ctn, occludin and ZO-1. The establishment of mature adherens junctions (AJ) was monitored by following the distribution of AJ proteins in lipid raft fractions, after separation of cell lysates on sucrose gradients. Finally, the mRNA and the protein expression levels of characteristic markers of intestinal epithelial cell (IEC) differentiation such as the transcriptional factor krüppel-like factor 4 (KLF4) or the dipeptidyl peptidase IV (DPPIV) were performed by RT-PCR and western blot respectively. The specific activities of DPPIV and alkaline phosphatase (AP) enzymes were determined by a colorimetric method.
RESULTS CRF2 protein is preferentially expressed in undifferentiated epithelial cells from the crypts of colon and in human colon carcinoma cell lines. Furthermore, CRF2 expression is down regulated according to the kinetic of HT-29 cell differentiation. By performing functional assays, we found that Ucn3-induced CRF2 signaling alters both para- and trans-cellular permeability of differentiated HT-29 and Caco-2 cells. These effects are partly mediated by Ucn3-induced morphological changes associated with the disruption of mature AJ in HT-29 cells and tight junctions (TJ) in Caco-2 cells. Ucn3-mediated activation of CRF2 decreases mRNA and protein expression levels of KLF4 a transcription factor involved in IEC differentiation. This signaling is correlated to a down-regulation of key IEC markers such as DPPIV and AP, at both transcriptional and post-transcriptional levels.
CONCLUSION Our findings suggest that CRF2 signaling could modulate IEC differentiation. These mechanisms could be relevant to the stress induced epithelial alterations found in inflammatory bowel diseases.
Collapse
|
10
|
Sotiriou I, Chalkiadaki K, Nikolaidis C, Sidiropoulou K, Chatzaki E. Pharmacotherapy in smoking cessation: Corticotropin Releasing Factor receptors as emerging intervention targets. Neuropeptides 2017; 63:49-57. [PMID: 28222901 DOI: 10.1016/j.npep.2017.02.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 11/29/2022]
Abstract
Smoking represents perhaps the single most important health risk factor and a global contributor to mortality that can unquestionably be prevented. Smoking is responsible for many diseases, including various types of cancer, chronic obstructive pulmonary disease, coronary heart disease, peripheral vascular disease and peptic ulcer, while it adversely affects fetal formation and development. Since smoking habit duration is a critical factor for mortality, the goal of treatment should be its timely cessation and relapse prevention. Drug intervention therapy is an important ally in smoking cessation. Significant positive steps have been achieved in the last few years in the development of supportive compounds. In the present review, we analyze reports studying the role of Corticotropin Releasing Factor (CRF), the principle neuroendocrine mediator of the stress response and its two receptors (CRF1 and CRF2) in the withdrawal phase as well as in the abstinence from nicotine use. Although still in pre-clinical evaluation, therapeutic implications of these data were investigated in order to highlight potential pharmaceutical interventions.
Collapse
Affiliation(s)
- Ioannis Sotiriou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | | | - Christos Nikolaidis
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | | | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis 68100, Greece.
| |
Collapse
|
11
|
Donisan T, Bojincă VC, Dobrin MA, Bălănescu DV, Predețeanu D, Bojincă M, Berghea F, Opriș D, Groșeanu L, Borangiu A, Constantinescu CL, Ionescu R, Bălănescu AR. The relationship between disease activity, quality of life, and personality types in rheumatoid arthritis and ankylosing spondylitis patients. Clin Rheumatol 2017; 36:1511-1519. [PMID: 28451872 DOI: 10.1007/s10067-017-3654-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/07/2017] [Accepted: 04/20/2017] [Indexed: 01/26/2023]
Abstract
We hypothesized that clinical outcomes might be influenced by personality type (A, B, C, D) in rheumatoid arthritis (RA) and ankylosing spondylitis (AS). One hundred ninety-four patients (104 with RA, 90 with AS) participated in a questionnaire study. We evaluated health-related quality of life (HRQoL) using the Medical Outcome Study Short-Form 36 (SF-36), personality type A/B with the Jenkins Activity Survey, type C with the State-Trait Anger Expression Inventory Anger-in Scale, type D with the Type D Personality Scale, and disease activity with Disease Activity Score with 28 joints for RA and Bath Ankylosing Spondylitis Disease Activity Index for AS. We used Pearson's correlation coefficient, independent samples t tests, and multivariate analyses of variance. In the RA group, type D personality was significantly correlated with 7/12 SF-36 components. AS patients with type D personality had deficits in all SF-36 subscales. Type D was related with higher disease activity in RA and AS. Both RA and AS type C patients had more active disease forms and negatively affected HRQoL subscales. In the RA group, type A personality did not correlate with HRQoL, but it positively influenced pain visual analog scale scores. In AS patients, type A personality was linked with higher HRQoL and with less active disease. Type C and type D personality types were correlated with decreased HRQoL and higher disease activity in RA and AS patients. Type A personality was associated with less active disease and higher HRQoL in AS patients and with less pain in RA patients.
Collapse
Affiliation(s)
- T Donisan
- Department of Internal Medicine and Rheumatology "Sf. Maria" Hospital, 37-39 Ion Mihalache Bd, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Str, Bucharest, Romania
| | - V C Bojincă
- Department of Internal Medicine and Rheumatology "Sf. Maria" Hospital, 37-39 Ion Mihalache Bd, Bucharest, Romania. .,"Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Str, Bucharest, Romania.
| | - M A Dobrin
- Department of Internal Medicine and Rheumatology "Sf. Maria" Hospital, 37-39 Ion Mihalache Bd, Bucharest, Romania
| | - D V Bălănescu
- "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Str, Bucharest, Romania
| | - D Predețeanu
- Department of Internal Medicine and Rheumatology "Sf. Maria" Hospital, 37-39 Ion Mihalache Bd, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Str, Bucharest, Romania
| | - M Bojincă
- "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Str, Bucharest, Romania.,Department of Internal Medicine and Rheumatology "Dr. I. Cantacuzino" Hospital, 5-7 Ion Movilă Str, Bucharest, Romania
| | - F Berghea
- Department of Internal Medicine and Rheumatology "Sf. Maria" Hospital, 37-39 Ion Mihalache Bd, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Str, Bucharest, Romania
| | - D Opriș
- Department of Internal Medicine and Rheumatology "Sf. Maria" Hospital, 37-39 Ion Mihalache Bd, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Str, Bucharest, Romania
| | - L Groșeanu
- Department of Internal Medicine and Rheumatology "Sf. Maria" Hospital, 37-39 Ion Mihalache Bd, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Str, Bucharest, Romania
| | - A Borangiu
- Department of Internal Medicine and Rheumatology "Sf. Maria" Hospital, 37-39 Ion Mihalache Bd, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Str, Bucharest, Romania
| | - C L Constantinescu
- Department of Internal Medicine and Rheumatology "Sf. Maria" Hospital, 37-39 Ion Mihalache Bd, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Str, Bucharest, Romania
| | - R Ionescu
- Department of Internal Medicine and Rheumatology "Sf. Maria" Hospital, 37-39 Ion Mihalache Bd, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Str, Bucharest, Romania
| | - A R Bălănescu
- Department of Internal Medicine and Rheumatology "Sf. Maria" Hospital, 37-39 Ion Mihalache Bd, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Str, Bucharest, Romania
| |
Collapse
|
12
|
Pelissier-Rota M, Chartier NT, Bonaz B, Jacquier-Sarlin MR. A crosstalk between muscarinic and CRF2 receptors regulates cellular adhesion properties of human colon cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1246-1259. [PMID: 28432022 DOI: 10.1016/j.bbamcr.2017.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 04/04/2017] [Accepted: 04/14/2017] [Indexed: 12/24/2022]
Abstract
Patients with inflammatory bowel disease often suffer from chronic and relapsing intestinal inflammation that favor the development of colitis associated cancer. An alteration of the epithelial intestinal barrier function observed in IBD is supposed to be a consequence of stress. It has been proposed that corticotrophin-releasing factor receptor (CRF2), one of the two receptors of CRF, the principal neuromediator of stress, acts on cholinergic nerves to induce stress-mediated epithelial barrier dysfunction. Non-neuronal acetylcholine (Ach) and muscarinic receptors (mAchR) also contribute to alterations of epithelial cell functions. In this study, we investigated the mechanisms through which stress and Ach modulate epithelial cell adhesive properties. We show that Ach-induced activation of mAchR in HT-29 cells results in cell dissociation together with changes in cell-matrix contacts, which correlates with the acquisition of invasive potential consistent with a matrix metalloproteinase (MMP) mode of invasion. These processes result from mAchR subsequent stimulation of the cascade of src/Erk and FAK activation. Ach-induced secretion of laminin 332 leads to α3β1 integrin activation and RhoA-dependent reorganization of the actin cytoskeleton. We show that Ach-mediated effects on cell adhesion are blocked by astressin 2b, a CRF2 antagonist, suggesting that Ach action depends partly on CRF2 signaling. This is reinforced by the fact that Ach-mediated activation of mAchR stimulates both the synthesis and the release of CRF2 ligands in HT-29 cells (effects blocked by atropine). In summary, our data provides evidence for a novel intracellular circuit involving mAchR acting on CRF2-signaling that could mediate colonic mucosal barrier dysfunction and exacerbate mucosal inflammation.
Collapse
Affiliation(s)
- M Pelissier-Rota
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France; INSERM U1216, F-38000 Grenoble, France
| | - N T Chartier
- Biotechnology Center, Technical University Dresden, 01307 Dresden, Germany
| | - B Bonaz
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France; INSERM U1216, F-38000 Grenoble, France; CHU, Grenoble, F-38000 Grenoble, France
| | - M R Jacquier-Sarlin
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France; INSERM U1216, F-38000 Grenoble, France.
| |
Collapse
|
13
|
Tezval H, Dubrowinskaja N, Peters I, Reese C, Serth K, Atschekzei F, Hennenlotter J, Stenzl A, Kuczyk MA, Serth J. Tumor Specific Epigenetic Silencing of Corticotropin Releasing Hormone -Binding Protein in Renal Cell Carcinoma: Association of Hypermethylation and Metastasis. PLoS One 2016; 11:e0163873. [PMID: 27695045 PMCID: PMC5047469 DOI: 10.1371/journal.pone.0163873] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 09/15/2016] [Indexed: 02/03/2023] Open
Abstract
The relevance of Corticotropin Releasing Hormone (CRH)-system in human malignancies is a question of growing interest. Here we investigated hypermethylation and epigenetic silencing of the CRH-Binding Protein (CRHBP) gene in clear cell renal cell cancer (ccRCC). Relative methylation of the CRHBP CpG island (CGI) was determined in 17 tumor cell lines as well as 86 ccRCC samples and 66 paired normal tissues using pyrosequencing and quantitative methylation specific PCR of bisulfite converted DNA. Results were statistically compared with relative mRNA expression levels of CRHBP and clinicopathological parameters of patients. Re-expression of CRHBP following 5-aza-2´-deoxycytidine treatment was investigated by quantitative mRNA expression analysis. Real-time impedance analysis was applied for analysis of invasiveness of renal tumor cells following si-RNA knockdown of CRHBP expression or ectopic expression of CRHBP. We found the CRHBP CGI to be frequently methylated in tumor cell lines of renal, prostatic, and bladder cancer. Comparison of methylation in normal and paired renal cancer tissue specimens revealed hypermethylation of the CRHBP CGI in tumors (p<1*10−12). DNA methylation and decreased mRNA expression were correlated (R = 0.83, p<1*10−12). Tumor cell lines showed 5-aza-2´-deoxycytidine dependent reduction of methylation and re-expression of CRHBP was associated with altered cellular invasiveness of renal cancer cells in real-time impedance invasion assays. Hypermethylation and inverse relationship with mRNA expression were validated in silico using the TCGA network data. We describe for the first time tumor specific epigenetic silencing of CRHBP and statistical association with aggressive tumors thus suggesting the CRH system to contribute to the development of kidney cancer.
Collapse
Affiliation(s)
- Hossein Tezval
- Department of Urology and Urological Oncology, Hannover Medical School, Hannover, Germany
| | - Natalia Dubrowinskaja
- Department of Urology and Urological Oncology, Hannover Medical School, Hannover, Germany
| | - Inga Peters
- Department of Urology and Urological Oncology, Hannover Medical School, Hannover, Germany
| | - Christel Reese
- Department of Urology and Urological Oncology, Hannover Medical School, Hannover, Germany
| | - Katrin Serth
- Department of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Faranaz Atschekzei
- Department of Urology and Urological Oncology, Hannover Medical School, Hannover, Germany
| | - Jörg Hennenlotter
- Department of Urology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Arnulf Stenzl
- Department of Urology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Markus A. Kuczyk
- Department of Urology and Urological Oncology, Hannover Medical School, Hannover, Germany
| | - Jürgen Serth
- Department of Urology and Urological Oncology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
14
|
Wierzbicka JM, Żmijewski MA, Antoniewicz J, Sobjanek M, Slominski AT. Differentiation of Keratinocytes Modulates Skin HPA Analog. J Cell Physiol 2016; 232:154-66. [PMID: 27061711 DOI: 10.1002/jcp.25400] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 04/04/2016] [Indexed: 12/16/2022]
Abstract
It is well established, that epidermal keratinocytes express functional equivalent of hypothalamus-pituitary-adrenal axis (HPA) in order to respond to changing environment and maintain internal homeostasis. We are presenting data indicating that differentiation of primary neonatal human keratinocytes (HPEKp), induced by prolonged incubation or calcium is accompanied by significant changes in the expression of the elements of skin analog of HPA (sHPA). Expression of CRF, UCN1-3, POMC, ACTH, CRFR1, CRFR2, MC1R, MC2R, and GR (coded by NR3C1 gene) were observed on gene/protein levels along differentiation of keratinocytes in culture with similar pattern seen by immunohistochemistry on full thickness skin biopsies. Expression of CRF was more pronounced in less differentiated keratinocytes, which corresponded to the detection of CRF immunoreactivity preferentially in the stratum basale. POMC expression was enhanced in more differentiated keratinocytes, which corresponded to detection of ACTH immunoreactivity, predominantly in the stratum spinosum and stratum granulosum. Expression of urocortins was also affected by induction of HPEKp differentiation. Immunohistochemical studies showed high prevalence of CRFR1 in well differentiated keratinocytes, while smaller keratinocytes showed predominantly CRFR2 immunoreactivity. MC2R mRNA levels were elevated from days 4 to 8 of in vitro incubation, while MC2R immunoreactivity was the highest in the upper layers of epidermis. Similar changes in mRNA/protein levels of sHPA elements were observed in HPEKp keratinocytes treated with calcium. Summarizing, preferential expression of CRF and POMC (ACTH) by populations of keratinocytes on different stage of differentiation resembles organization of central HPA axis suggesting their distinct role in physiology and pathology of the epidermis. J. Cell. Physiol. 232: 154-166, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | - Jakub Antoniewicz
- Department of Histology, Medical University of Gdańsk, Gdańsk, Poland
| | - Michal Sobjanek
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama Birmingham, Birmingham, Alabama.,VA Medical Center, Birmingham, Alabama
| |
Collapse
|
15
|
Immunolocalization of corticotropin-releasing hormone (CRH) and its receptors (CRHR1 and CRHR2) in human endometrial carcinoma: CRHR1 as a potent prognostic factor. Int J Gynecol Cancer 2015; 24:1549-57. [PMID: 25254562 PMCID: PMC4215916 DOI: 10.1097/igc.0000000000000269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Supplemental digital content is available in the text. Objective Corticotropin-releasing hormone (CRH), a major regulator of the stress response, regulates various biological functions through its interaction with CRH receptors 1 (CRHR1) and 2 (CRHR2). CRH, CRHR1, and CRHR2 have recently been reported in several types of carcinoma, but the significance of these proteins has remained largely unknown in human endometrial carcinoma. Materials and Methods A total of 87 endometrial carcinoma specimens were obtained from Japanese female patients who underwent surgical treatment, fixed in 10% formalin, and embedded in paraffin wax. Immunohistochemistry for CRH, CRHR1, and CRHR2 was performed, and clinical data were obtained from the medical records. Results Immunopositivity of CRH, CRHR1, and CRHR2 in the specimens was 26%, 15%, and 10%, respectively. Univariate analysis revealed that immunohistochemical CRH status was positively associated with CRHR1 and CRHR2 status and that CRHR1 status was significantly associated with the risk of recurrence and poorer clinical outcome, whereas CRHR2 status was marginally associated with better prognosis for overall survival. Multivariate analysis demonstrated CRHR1 status as an independent prognostic factor for both disease-free and overall survival. Conclusions These results suggest that intratumoral CRH-CRHR1 signaling plays an important role in the progression of endometrial carcinoma and that CRHR1 is a potent prognostic factor in patients with this disease.
Collapse
|
16
|
Stehouwer JS, Birnbaum MS, Voll RJ, Owens MJ, Plott SJ, Bourke CH, Wassef MA, Kilts CD, Goodman MM. Synthesis, F-18 radiolabeling, and microPET evaluation of 3-(2,4-dichlorophenyl)-N-alkyl-N-fluoroalkyl-2,5-dimethylpyrazolo[1,5-a]pyrimidin-7-amines as ligands of the corticotropin-releasing factor type-1 (CRF1) receptor. Bioorg Med Chem 2015; 23:4286-4302. [PMID: 26145817 DOI: 10.1016/j.bmc.2015.06.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/04/2015] [Accepted: 06/12/2015] [Indexed: 12/28/2022]
Abstract
A series of 3-(2,4-dichlorophenyl)-N-alkyl-N-fluoroalkyl-2,5-dimethylpyrazolo[1,5-a]pyrimidin-7-amines were synthesized and evaluated as potential positron emission tomography (PET) tracers for the corticotropin-releasing factor type-1 (CRF1) receptor. Compounds 27, 28, 29, and 30 all displayed high binding affinity (⩽1.2 nM) to the CRF1 receptor when assessed by in vitro competition binding assays at 23 °C, whereas a decrease in affinity (⩾10-fold) was observed with compound 26. The logP7.4 values of [(18)F]26-[(18)F]29 were in the range of ∼2.2-2.8 and microPET evaluation of [(18)F]26-[(18)F]29 in an anesthetized male cynomolgus monkey demonstrated brain penetrance, but specific binding was not sufficient enough to differentiate regions of high CRF1 receptor density from regions of low CRF1 receptor density. Radioactivity uptake in the skull, and sphenoid bone and/or sphenoid sinus during studies with [(18)F]28, [(18)F]28-d8, and [(18)F]29 was attributed to a combination of [(18)F]fluoride generated by metabolic defluorination of the radiotracer and binding of intact radiotracer to CRF1 receptors expressed on mast cells in the bone marrow. Uptake of [(18)F]26 and [(18)F]27 in the skull and sphenoid region was rapid but then steadily washed out which suggests that this behavior was the result of binding to CRF1 receptors expressed on mast cells in the bone marrow with no contribution from [(18)F]fluoride.
Collapse
Affiliation(s)
- Jeffrey S Stehouwer
- Center for Systems Imaging, Department of Radiology and Imaging Sciences, Emory University, WWHC 209, 1841 Clifton Rd NE, Atlanta, GA 30329, USA.
| | - Matthew S Birnbaum
- Center for Systems Imaging, Department of Radiology and Imaging Sciences, Emory University, WWHC 209, 1841 Clifton Rd NE, Atlanta, GA 30329, USA
| | - Ronald J Voll
- Center for Systems Imaging, Department of Radiology and Imaging Sciences, Emory University, WWHC 209, 1841 Clifton Rd NE, Atlanta, GA 30329, USA
| | - Michael J Owens
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Susan J Plott
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Chase H Bourke
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Michael A Wassef
- Center for Systems Imaging, Department of Radiology and Imaging Sciences, Emory University, WWHC 209, 1841 Clifton Rd NE, Atlanta, GA 30329, USA
| | - Clinton D Kilts
- Department of Psychiatry and Behavioral Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mark M Goodman
- Center for Systems Imaging, Department of Radiology and Imaging Sciences, Emory University, WWHC 209, 1841 Clifton Rd NE, Atlanta, GA 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| |
Collapse
|
17
|
Chouridou E, Lambropoulou M, Koureta M, Balgouranidou I, Nena E, Simopoulou M, Papadopoulos N, Kortsaris A, Chatzaki E. A complete corticotropin releasing factor system localized in human fetal lung. Hormones (Athens) 2014; 13:229-43. [PMID: 24776623 DOI: 10.1007/bf03401337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE The Corticotropin Releasing Factor (CRF) system (neuropeptides CRF, Ucn I, II, III and binding sites CRFR1, CRFR2, CRF-BP) is responsible for stress regulation and the homeostasis of an organism. Herein we study the CRF system in human normal and pathological fetal lungs. DESIGN Lung tissues from 46 archival human fetuses were divided into Group A (normal), Group B (chromosomal abnormalities) and Group C (congenital disorders). Presence of elements of the CRF system was evaluated using immunohistochemistry and was correlated to pathology, lung developmental stage and clinicopathological characteristics. RESULTS Immunoreactivity for all antigens was found in both epithelial and mesenchymal lung cells of the bronchi and alveoli. Ucn I and CRFR1 were more frequently present in Group A. Ucns were more frequently localized at the pseudoglandular stage. There was a positive correlation between the presence of the CRF neuropeptides and between CRFR1 and CRF. Two fetuses with lung malformations showed low or no detectable presence of the CRF system. CONCLUSIONS We report the presence of a complete CRF system in human fetal lungs correlating its developmental stage and several pathologies. Our results are in agreement with findings in experimental animal models, implicating the CRF system in fetal lung development, its action being more significant in the early stages.
Collapse
Affiliation(s)
- Efterpi Chouridou
- Laboratory of Pharmacology, Faculty of Medicine; Democritus University of Thrace, Alexandroupolis; Greece
| | - Maria Lambropoulou
- Laboratory of Histology-Embryology, Faculty of Medicine; Democritus University of Thrace, Alexandroupolis; Greece
| | - Maria Koureta
- Laboratory of Pharmacology, Faculty of Medicine; Democritus University of Thrace, Alexandroupolis; Greece
| | - Ioanna Balgouranidou
- Laboratory of Pharmacology, Faculty of Medicine; Democritus University of Thrace, Alexandroupolis; Greece
| | - Evangelia Nena
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine; Democritus University of Thrace, Alexandroupolis; Greece
| | - Maria Simopoulou
- Laboratory of Physiology, Faculty of Medicine, Kapodistriako University of Athens; Greece
| | - Nikolaos Papadopoulos
- Laboratory of Histology-Embryology, Faculty of Medicine; Democritus University of Thrace, Alexandroupolis; Greece
| | - Alexandros Kortsaris
- Laboratory of Biochemistry, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis; Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Faculty of Medicine; Democritus University of Thrace, Alexandroupolis; Greece
| |
Collapse
|
18
|
Slominski AT, Zmijewski MA, Zbytek B, Tobin DJ, Theoharides TC, Rivier J. Key role of CRF in the skin stress response system. Endocr Rev 2013; 34:827-84. [PMID: 23939821 PMCID: PMC3857130 DOI: 10.1210/er.2012-1092] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 08/02/2013] [Indexed: 02/08/2023]
Abstract
The discovery of corticotropin-releasing factor (CRF) or CRH defining the upper regulatory arm of the hypothalamic-pituitary-adrenal (HPA) axis, along with the identification of the corresponding receptors (CRFRs 1 and 2), represents a milestone in our understanding of central mechanisms regulating body and local homeostasis. We focused on the CRF-led signaling systems in the skin and offer a model for regulation of peripheral homeostasis based on the interaction of CRF and the structurally related urocortins with corresponding receptors and the resulting direct or indirect phenotypic effects that include regulation of epidermal barrier function, skin immune, pigmentary, adnexal, and dermal functions necessary to maintain local and systemic homeostasis. The regulatory modes of action include the classical CRF-led cutaneous equivalent of the central HPA axis, the expression and function of CRF and related peptides, and the stimulation of pro-opiomelanocortin peptides or cytokines. The key regulatory role is assigned to the CRFR-1α receptor, with other isoforms having modulatory effects. CRF can be released from sensory nerves and immune cells in response to emotional and environmental stressors. The expression sequence of peptides includes urocortin/CRF→pro-opiomelanocortin→ACTH, MSH, and β-endorphin. Expression of these peptides and of CRFR-1α is environmentally regulated, and their dysfunction can lead to skin and systemic diseases. Environmentally stressed skin can activate both the central and local HPA axis through either sensory nerves or humoral factors to turn on homeostatic responses counteracting cutaneous and systemic environmental damage. CRF and CRFR-1 may constitute novel targets through the use of specific agonists or antagonists, especially for therapy of skin diseases that worsen with stress, such as atopic dermatitis and psoriasis.
Collapse
Affiliation(s)
- Andrzej T Slominski
- MD, PhD, Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center; 930 Madison Avenue, Suite 500, Memphis, Tennessee 38163.
| | | | | | | | | | | |
Collapse
|
19
|
Tezval H, Atschekzei F, Peters I, Waalkes S, Hennenlotter J, Stenzl A, Becker JU, Merseburger AS, Kuczyk MA, Serth J. Reduced mRNA expression level of corticotropin-releasing hormone-binding protein is associated with aggressive human kidney cancer. BMC Cancer 2013; 13:199. [PMID: 23607589 PMCID: PMC3653809 DOI: 10.1186/1471-2407-13-199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 04/18/2013] [Indexed: 11/25/2022] Open
Abstract
Background Significance of Urocortin (Ucn or UcnI), Ucn2, Ucn3 and their receptors, Corticotropin Releasing Factor Receptor 1 and 2 (CRFR1 and CRFR2), and the binding protein, Corticotropin-Releasing Hormone-Binding Protein (CRHBP) in oncology is growing rapidly. The objective of our study was to assess the expression of the CRHBP mRNA and protein in renal cancer. Methods Tumoral tissues of 78 patients with clear cell renal cell cancer and their corresponding normal tissues were analyzed using quantitative mRNA expression analysis for detection of mRNA expression level. Protein expression and tissue localization of CRHBP protein in renal specimens was evaluated using western blotting, immunohistochemistry and double immunofluorescence, respectively. Results We found an approx. 33 fold decrease of average CRHBP mRNA level in tumoral tissues compared to paired normal tissues (p<0.001). Diminished CRHBP mRNA expression was positively correlated with advanced, metastasized and higher stage of disease (p<0.001, p=0.026, p=0.028 respectively). CRHBP protein was detected in glomeruli and proximal tubules of normal kidney while none or weak immunopositivity was found in cc-RCC (p<0.001). Conclusions The expression analysis of CRHBP shows that cc-RCC is characterized by a significant loss of CRHBP mRNA expression that furthermore is associated with a more aggressive state of tumors. Depletion of CRHBP proteins also indicate that the protein as part of the UCN system may be involved in renal carcinogenesis.
Collapse
Affiliation(s)
- Hossein Tezval
- Department of Urology and Urological Oncology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Devetzis V, Zarogoulidis P, Kakolyris S, Vargemezis V, Chatzaki E. The corticotropin releasing factor system in the kidney: perspectives for novel therapeutic intervention in nephrology. Med Res Rev 2012; 33:847-72. [PMID: 22622997 DOI: 10.1002/med.21268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The adaptation to endogenous and exogenous stress stimuli is crucial for survival but also for the onset of various diseases in humans. Corticotropin releasing factor (CRF) system is the major regulator of stress response and homeostasis. The members of this family of peptides extend their actions also outside CNS to the periphery where they may affect various body systems independently, acting via vagal and/or autocrine/paracrine pathways. In search for peripheral targets, kidney has rarely been studied separately, regarding expression and action of CRF and CRF-related peptides. We reviewed the existing literature concerning expression and action of the CRF system in normal and pathological renal tissue and explored possible clinical implications in nephrology. CRF system components are expressed in the kidney of experimental animals and in humans. The intrarenal distribution is reported to be equally extensive, suggesting a physiological or pathophysiological role in renal function and in the occurrence of renal disease. Urocortins have given multiple interesting observations in experimental models of renal disease and clinical studies, showing robust effects in renal regulation mechanisms. We summarize the relevant data and put them in context, proposing applications with clinical significance in the field of hypertension, diabetic nephropathy, chronic kidney disease, cardiorenal syndrome, and peritoneal dialysis.
Collapse
Affiliation(s)
- Vassilis Devetzis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | | | | |
Collapse
|
21
|
Jin L, Zhang Q, Guo R, Wang L, Wang J, Wan R, Zhang R, Xu Y, Li S. Different effects of corticotropin-releasing factor and urocortin 2 on apoptosis of prostate cancer cells in vitro. J Mol Endocrinol 2011; 47:219-27. [PMID: 21765100 DOI: 10.1530/jme-11-0048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Urocortin (Ucn), a corticotropin-releasing factor (CRF)-related neuropeptide binding both CRF type 1 receptor (CRFR1) and CRFR2, has recently been found in prostate cancer. However, no report has yet been known to elucidate the roles of Ucn in prostate cancer via the two receptors. In this study, the expression of both CRFR1 and CRFR2 in the mouse prostate cancer cell line RM-1 were detected and cellular apoptosis was monitored in the presence of CRF or Ucn2, the CRFR1- and CRFR2-selective agonist respectively. CRF promoted apoptosis while Ucn2 exerted the opposite effect. CRF reduced Bcl-2 expression, induced Bax expression, and hyperpolarized the mitochondrial membrane potential to activate caspase-9. On the contrary, Ucn2 increased Bcl-2 expression and decreased Bax expression, in which phosphorylation of Akt and cyclic AMP response element-binding (CREB) was involved. Pretreatment with phosphatidylinositide 3-kinase/Akt inhibitor (LY-294002) prior to Ucn2 led to downregulation of CREB phosphorylation and hence reduced Bcl-2 expression. These effects of CRF and Ucn2 were abolished by antalarmin (Anta) and antisauvagine-30, the CRFR1- and CRFR2-selective antagonist respectively. In LNCaP cell line, similar effects on cell apoptosis by CRF and Ucn2 were observed. In summary, our results demonstrated CRFR1 and CRFR2 expression in prostate cancer and indicated the opposite apoptotic roles of the two different CRFRs. These data may contribute to uncovering the pathophysiological function of endogenous Ucn in prostate tumorigenesis and progression.
Collapse
Affiliation(s)
- Lai Jin
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kaprara A, Pazaitou-Panayiotou K, Chemonidou MC, Constantinidis TC, Lambropoulou M, Koffa M, Kiziridou A, Kakolyris S, Kortsaris A, Chatzaki E. Distinct distribution of corticotropin releasing factor receptors in human breast cancer. Neuropeptides 2010; 44:355-61. [PMID: 20630588 DOI: 10.1016/j.npep.2010.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/15/2010] [Accepted: 06/17/2010] [Indexed: 11/17/2022]
Abstract
The hypothalamic neuropeptide corticotropin releasing factor (CRF) has been found in several types of human cancer, where its biological role is not clarified. In experimental models of breast cancer CRF has been shown to exert anti-proliferative and other actions. Aim of the present study was to describe the expression of the two types of CRF receptors CRF(1) and CRF(2) in human breast tumors. Receptor expression was studied in breast biopsies from patients diagnosed for primary breast adenocarcinoma, obtained from the tumor and the adjacent benign tissue. Gene expression levels were evaluated by real-time PCR following reverse transcription of total RNA extracts. CRF(1) transcripts were found in 23.1% of benign and in 23.1% of malignant biopsies. CRF(2(a)) was found in 22.2% of benign and 36.0% of malignant biopsies. Transcript levels of both receptors did not differ significantly between cancer and benign biopsies from the same tumor. No correlation was found between CRF receptor expression and patient histo/clinicopathological characteristics. Histological mapping using immunohistochemistry revealed positive CRF(1) immunostaining in the cancerous implants and breast ducts, whereas CRF(2) immunoreactivity was localized mainly in the perineural invasions. In conclusion, both CRF receptors were found in breast cancer and the respective benign adjacent tissue. The two CRF receptor proteins presented distinct distribution and subcellular localization, pointing into differing biological roles. CRF receptors could serve as targets of endogenous ligands expressed in the tumor microenvironment, regulating cancer growth.
Collapse
Affiliation(s)
- A Kaprara
- Anticancer Hospital 'Theagenio', Simeonidi 2, 54639 Thessaloniki, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Arranz A, Venihaki M, Mol B, Androulidaki A, Dermitzaki E, Rassouli O, Ripoll J, Stathopoulos EN, Gomariz RP, Margioris AN, Tsatsanis C. The impact of stress on tumor growth: peripheral CRF mediates tumor-promoting effects of stress. Mol Cancer 2010; 9:261. [PMID: 20875132 PMCID: PMC2956730 DOI: 10.1186/1476-4598-9-261] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 09/27/2010] [Indexed: 11/20/2022] Open
Abstract
Introduction Stress has been shown to be a tumor promoting factor. Both clinical and laboratory studies have shown that chronic stress is associated with tumor growth in several types of cancer. Corticotropin Releasing Factor (CRF) is the major hypothalamic mediator of stress, but is also expressed in peripheral tissues. Earlier studies have shown that peripheral CRF affects breast cancer cell proliferation and motility. The aim of the present study was to assess the significance of peripheral CRF on tumor growth as a mediator of the response to stress in vivo. Methods For this purpose we used the 4T1 breast cancer cell line in cell culture and in vivo. Cells were treated with CRF in culture and gene specific arrays were performed to identify genes directly affected by CRF and involved in breast cancer cell growth. To assess the impact of peripheral CRF as a stress mediator in tumor growth, Balb/c mice were orthotopically injected with 4T1 cells in the mammary fat pad to induce breast tumors. Mice were subjected to repetitive immobilization stress as a model of chronic stress. To inhibit the action of CRF, the CRF antagonist antalarmin was injected intraperitoneally. Breast tissue samples were histologically analyzed and assessed for neoangiogenesis. Results Array analysis revealed among other genes that CRF induced the expression of SMAD2 and β-catenin, genes involved in breast cancer cell proliferation and cytoskeletal changes associated with metastasis. Cell transfection and luciferase assays confirmed the role of CRF in WNT- β-catenin signaling. CRF induced 4T1 cell proliferation and augmented the TGF-β action on proliferation confirming its impact on TGFβ/SMAD2 signaling. In addition, CRF promoted actin reorganization and cell migration, suggesting a direct tumor-promoting action. Chronic stress augmented tumor growth in 4T1 breast tumor bearing mice and peripheral administration of the CRF antagonist antalarmin suppressed this effect. Moreover, antalarmin suppressed neoangiogenesis in 4T1 tumors in vivo. Conclusion This is the first report demonstrating that peripheral CRF, at least in part, mediates the tumor-promoting effects of stress and implicates CRF in SMAD2 and β-catenin expression.
Collapse
Affiliation(s)
- Alicia Arranz
- Department of Clinical Chemistry, School Of Medicine, University of Crete, 71003 Heraklion, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|