1
|
Lv M, Luo L, Chen X. The landscape of prognostic and immunological role of myosin light chain 9 (MYL9) in human tumors. IMMUNITY INFLAMMATION AND DISEASE 2021; 10:241-254. [PMID: 34729929 PMCID: PMC8767521 DOI: 10.1002/iid3.557] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Recent studies have shown that myosin light chain 9 (MYL9) plays a vital role in immune infiltration, tumor invasion, and metastasis; however, the prognostic and immunological role of MYL9 has not been reported. The purpose of this study was to explore the potential prognostic and immunological roles of MYL9 in human cancers by public datasets mainly including the cancer genome atlas (TCGA) and Gene expression omnibus. METHODS The expression pattern and prognostic value of MYL9 were analyzed across multiple public datasets in different cancer. The correlations between MYL9 expression and immune infiltration among multiple cancers were analyzed by using the TIMER2.0. The MYL9-related gene enrichment analysis was implemented by mainly using KEGG and GO datasets. RESULTS MYL9 was lowly expressed in most cancers, such as breast cancer, lung adenocarcinoma and squamous cell carcinoma, and stomach adenocarcinoma; but it was highly expressed in several cancers, such as cholangiocarcinoma, head and neck squamous cell carcinoma, and liver hepatocellular carcinoma. Furthermore, MYL9 expression was distinctively associated with prognosis in adrenocortical carcinoma, colon adenocarcinoma, brain glioma, lung cancer, ovarian cancer, gastric cancer, breast cancer, blood cancer, and prostate cancer patients. The expressions of MYL9 were significantly associated with the infiltration of cancer-associated fibroblasts, B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, dendritic cell in different tumors as well as immune markers. In addition, we found that the functional mechanisms of MYL9 involved muscle contraction and focal adhesion. CONCLUSION MYL9 can serve as a prognostic signature in pan-cancer and is associated with immune infiltration. This pan-cancer study is the first to show a relatively comprehensive understanding of the prognostic and immunological roles of MYL9 across different cancers.
Collapse
Affiliation(s)
- Minghe Lv
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lumeng Luo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xue Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
2
|
He JH, Chen JG, Zhang B, Chen J, You KL, Hu JM, Xu JW, Chen L. Elevated MYO10 Predicts Poor Prognosis and its Deletion Hampers Proliferation and Migration Potentials of Cells Through Rewiring PI3K/Akt Signaling in Cervical Cancer. Technol Cancer Res Treat 2020; 19:1533033820936773. [PMID: 32618228 PMCID: PMC7336823 DOI: 10.1177/1533033820936773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MYO10, recognized as an important regulator of cytoskeleton remodeling, has been
reported to be associated with tumorigenesis. However, its functional
implication in cervical cancer and potential mechanism still remain to be
undetermined currently. MYO10 level in cervical cancer tissues was analyzed by
using data retrieved from The Cancer Genome Atlas and ONCOMINE databases.
Messenger RNA and protein expression levels were determined by quantitative
real-time polymerase chain reaction and Western blotting. Small-interfering RNA
and overexpressing plasmid were used for MYO10 silencing and overexpression, and
cell proliferation was analyzed by CCK-8. Transwell assays were performed to
investigate the ability of cell migration and invasion. MYO10 was upregulated in
cervical cancer tissues and cells when compared to normal controls, and survival
analysis showed patients with high MYO10 expression had worse overall survival.
Moreover, knockdown/overexpression of MYO10 significantly inhibited/enhanced the
proliferation, invasion, and migration capabilities of cervical cells
transfected with siRNAs/overexpressing plasmid. Additionally, MYO10 silencing
inhibited PI3K/Akt signaling pathway by decreasing the phosphorylation status of
PI3K and AKT. Data from the present study indicated that MYO10 were
overexpressed in patients with cervical cancer and positively linked with poor
prognosis. Experimental results suggested that MYO10 induced a significant
encouraging effect in cervical cancer cell proliferation, invasion, and
migration, linked with involvement of PI3K/Akt signaling. Collectively, these
results emphasize a novel role for MYO10 overexpression in cervical cancer and
provide a potent therapeutic strategy against cervical cancer.
Collapse
Affiliation(s)
- Jian-Hui He
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jian-Guo Chen
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Bin Zhang
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jing Chen
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ke-Li You
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jie-Mei Hu
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jia-Wen Xu
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Le Chen
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Rahimi A, Sedighi R, Emadi-Baygi M, Honardoost MA, Mowla SJ, Khanahmad H, Nikpour P. Bioinformatics prediction and experimental validation of a novel microRNA: hsa-miR-B43 within human CDH4 gene with a potential metastasis-related function in breast cancer. J Cell Biochem 2019; 121:1307-1316. [PMID: 31489987 DOI: 10.1002/jcb.29367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/18/2019] [Indexed: 11/06/2022]
Abstract
As a class of short noncoding RNAs, microRNAs (miRNAs) play a key role in the modulation of gene expression. Although, the regulatory roles of currently identified miRNAs in various cancer types including breast cancer have been well documented, there are many as yet undiscovered miRNAs. The aim of the current study was to bioinformatically reanalyze a list of 189 potentially new miRNAs introduced in a previously published paper (PMID: 21346806) and experimentally explore the existence and function of a candidate one: hsa-miR-B43 in breast cancer cells. The sequences of 189 potential miRNAs were re-checked in the miRbase database. Genomic location and conservation of them were assessed with the University of California Santa Cruz (UCSC) genome browser. SSC profiler, RNAfold, miRNAFold, MiPred, and FOMmiR bioinformatics tools were furthermore utilized to explore potential hairpin structures and differentiate real miRNA precursors from pseudo ones. hsa-miR-B43 was finally selected as one of the best candidates for laboratory verification. The expression and function of hsa-miR-B43 were examined by real-time polymerase chain reaction, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and wound-healing assays. DIANA-microT, RNAhybrid and Enrichr tools were used to predict the miRNA target genes and for further enrichment analysis. We could detect the exogenous and endogenous expression of hsa-miR-B43, as a real novel miRNA, in cancer cell lines. Gene Ontology enrichment, pathway analysis and wound-healing assay results furthermore confirmed that a metastasis-related function may be assigned to hsa-miR-B43. Our results introduced hsa-miR-B43, as a novel functional miRNA, which might play a role in the metastatic process. Further studies will be necessary to completely survey the existence and function of hsa-miR-B43 in other cancer types.
Collapse
Affiliation(s)
- Azadeh Rahimi
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rina Sedighi
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Modjtaba Emadi-Baygi
- Department of Genetics, Faculty of Basic Sciences, Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Mohammad-Amin Honardoost
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed-Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan, Iran
| |
Collapse
|
4
|
Exosomes from CD99-deprived Ewing sarcoma cells reverse tumor malignancy by inhibiting cell migration and promoting neural differentiation. Cell Death Dis 2019; 10:471. [PMID: 31209202 PMCID: PMC6572819 DOI: 10.1038/s41419-019-1675-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/18/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Ewing sarcoma (EWS) is an aggressive mesenchymal tumor with unmet clinical need and significant social impacts on children, adolescents, and young adults. CD99, a hallmark surface molecule of EWS, participates in crucial biological processes including cell migration, differentiation, and death. EWS cells can release CD99 through exosomes (EXOs), specialized extracellular vesicles with major cell communication roles. Here we show that, as a consequence of CD99 silencing, EWS cells deliver exosomes with oncosuppressive functions that significantly reduce tumor aggressiveness. These CD99-lacking microvesicles modulate gene expression of the EWS-recipient cells, reduce proliferation and migration, in turn inducing a more-differentiated less-malignant phenotype. The most relevant effects were detected on the activator protein-1 signaling pathway whose regulation was found to be dependent on the specific cargo loaded in vesicles after CD99 shutdown. Investigation of the miRNA content of CD99-deprived EXOs identified miR-199a-3p as a key driver able to reverse EWS malignancy in experimental models as well as in clinical specimens. All together, our data provide evidence that the abrogation of CD99 in EWS tumor cells leads to produce and release EXOs capable to transfer their antineoplastic effects into the nearby tumor cells, suggesting a novel atypical role for these microvesicles in reversion of malignancy rather than in priming the soil for progression and metastatic seeding. This conceptually innovative approach might offer a new therapeutic opportunity to treat a tumor still refractory to most treatments.
Collapse
|
5
|
Inoue K, Gan G, Ciarleglio M, Zhang Y, Tian X, Pedigo CE, Cavanaugh C, Tate J, Wang Y, Cross E, Groener M, Chai N, Wang Z, Justice A, Zhang Z, Parikh CR, Wilson FP, Ishibe S. Podocyte histone deacetylase activity regulates murine and human glomerular diseases. J Clin Invest 2019; 129:1295-1313. [PMID: 30776024 DOI: 10.1172/jci124030] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
We identified 2 genes, histone deacetylase 1 (HDAC1) and HDAC2, contributing to the pathogenesis of proteinuric kidney diseases, the leading cause of end-stage kidney disease. mRNA expression profiling from proteinuric mouse glomeruli was linked to Connectivity Map databases, identifying HDAC1 and HDAC2 with the differentially expressed gene set reversible by HDAC inhibitors. In numerous progressive glomerular disease models, treatment with valproic acid (a class I HDAC inhibitor) or SAHA (a pan-HDAC inhibitor) mitigated the degree of proteinuria and glomerulosclerosis, leading to a striking increase in survival. Podocyte HDAC1 and HDAC2 activities were increased in mice podocytopathy models, and podocyte-associated Hdac1 and Hdac2 genetic ablation improved proteinuria and glomerulosclerosis. Podocyte early growth response 1 (EGR1) was increased in proteinuric patients and mice in an HDAC1- and HDAC2-dependent manner. Loss of EGR1 in mice reduced proteinuria and glomerulosclerosis. Longitudinal analysis of the multicenter Veterans Aging Cohort Study demonstrated a 30% reduction in mean annual loss of estimated glomerular filtration rate, and this effect was more pronounced in proteinuric patients receiving valproic acid. These results strongly suggest that inhibition of HDAC1 and HDAC2 activities may suppress the progression of human proteinuric kidney diseases through the regulation of EGR1.
Collapse
Affiliation(s)
| | - Geliang Gan
- Yale School of Public Health, Department of Biostatistics, Yale Center for Analytical Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Maria Ciarleglio
- Yale School of Public Health, Department of Biostatistics, Yale Center for Analytical Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yan Zhang
- State Key Laboratory of Organ Failure Research, Nanfang Hospital.,Department of Cardiology, Nanfang Hospital, and.,Center for Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | | | | | - Corey Cavanaugh
- Department of Internal Medicine, and.,Program of Applied Translational Research, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Janet Tate
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Ying Wang
- Department of Internal Medicine, and
| | | | | | | | - Zhen Wang
- Department of Internal Medicine, and
| | - Amy Justice
- Department of Internal Medicine, and.,VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Zhenhai Zhang
- State Key Laboratory of Organ Failure Research, Nanfang Hospital.,Department of Cardiology, Nanfang Hospital, and.,Center for Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Chirag R Parikh
- Department of Internal Medicine, Division of Nephrology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Francis P Wilson
- Department of Internal Medicine, and.,Program of Applied Translational Research, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
6
|
Expression and prognostic significance of MYL9 in esophageal squamous cell carcinoma. PLoS One 2017; 12:e0175280. [PMID: 28388691 PMCID: PMC5384754 DOI: 10.1371/journal.pone.0175280] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 03/23/2017] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Myosin light chain 9 (MYL9) is necessary for cytoskeletal dynamics and experimental metastasis, but its expression in esophageal squamous cell carcinoma (ESCC) has not been addressed. We investigated the expression pattern and clinical significance of MYL9 in patients with ESCC. METHODS We examined MYL9 expression using quantitative real-time PCR and western blotting in NE1 immortalized esophageal epithelial cells, ESCC cell lines, and paired ESCC tissues. MYL9 protein in 136 primary ESCC tissues and other types of solid tumor was detected using immunohistochemistry. The association between MYL9 expression and clinical parameters and survival was evaluated by statistical analysis. RESULTS MYL9 was significantly upregulated in the ESCC cell lines as compared with NE1 cells. In the paired ESCC samples, MYL9 mRNA and protein expression was not significantly different between lesion tissues and the matched adjacent noncancerous tissues. In ESCC tissue, both intratumoral and peritumoral stroma were positive for MYL9. In the 136 ESCC samples, high MYL9 expression in the tumor cells significantly correlated with histological differentiation (p = 0.028), recurrence (p = 0.01), and vital status (p < 0.01). Patients with high MYL9 expression in the tumor cells had poorer overall survival (OS) and recurrence-free survival. Multivariate analysis revealed that high MYL9 expression in tumor cells was an independent and significant risk factor affecting OS after curative treatment (hazard ratio = 2.254, 95% confidence interval = 1.347-3.771, p = 0.002). CONCLUSIONS MYL9 expression might be a promising prognostic marker and therapeutic target in ESCC.
Collapse
|
7
|
Broecker F, Hardt C, Herwig R, Timmermann B, Kerick M, Wunderlich A, Schweiger MR, Borsig L, Heikenwalder M, Lehrach H, Moelling K. Transcriptional signature induced by a metastasis-promoting c-Src mutant in a human breast cell line. FEBS J 2016; 283:1669-88. [PMID: 26919036 DOI: 10.1111/febs.13694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/20/2016] [Accepted: 02/23/2016] [Indexed: 01/06/2023]
Abstract
UNLABELLED Deletions at the C-terminus of the proto-oncogene protein c-Src kinase are found in the viral oncogene protein v-Src as well as in some advanced human colon cancers. They are associated with increased kinase activity and cellular invasiveness. Here, we analyzed the mRNA expression signature of a constitutively active C-terminal mutant of c-Src, c-Src(mt), in comparison with its wild-type protein, c-Src(wt), in the human non-transformed breast epithelial cell line MCF-10A. We demonstrated previously that the mutant altered migratory and metastatic properties. Genome-wide transcriptome analysis revealed that c-Src(mt) de-regulated the expression levels of approximately 430 mRNAs whose gene products are mainly involved in the cellular processes of migration and adhesion, apoptosis and protein synthesis. 82.9% of these genes have previously been linked to cellular migration, while the others play roles in RNA transport and splicing processes, for instance. Consistent with the transcriptome data, cells expressing c-Src(mt), but not those expressing c-Src(wt), showed the capacity to metastasize into the lungs of mice in vivo. The mRNA expression profile of c-Src(mt)-expressing cells shows significant overlap with that of various primary human tumor samples, possibly reflecting elevated Src activity in some cancerous cells. Expression of c-Src(mt) led to elevated migratory potential. We used this model system to analyze the transcriptional changes associated with an invasive cellular phenotype. These genes and pathways de-regulated by c-Src(mt) may provide suitable biomarkers or targets of therapeutic approaches for metastatic cells. DATABASE This project was submitted to the National Center for Biotechnology Information BioProject under ID PRJNA288540. The Illumina RNA-Seq reads are available in the National Center for Biotechnology Information Sequence Read Archive under study ID SRP060008 with accession numbers SRS977414 for MCF-10A cells, SRS977717 for mock cells, SRS978053 for c-Src(wt) cells and SRS978046 for c-Src(mt) cells.
Collapse
Affiliation(s)
- Felix Broecker
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,University of Zurich, Switzerland
| | | | - Ralf Herwig
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Martin Kerick
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | - Lubor Borsig
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Mathias Heikenwalder
- Institute of Virology, Technische Universität München, Germany.,Institute of Virology, Helmholtz Zentrum Munich, Germany.,Department Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans Lehrach
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Dahlem Centre for Genome Research and Medical Systems Biology, Berlin, Germany.,Alacris Theranostics GmbH, Berlin, Germany
| | - Karin Moelling
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,University of Zurich, Switzerland
| |
Collapse
|
8
|
Abstract
Myosin-X (Myo10) is a motor protein best known for its role in filopodia formation. New research implicates Myo10 in a number of disease states including cancer metastasis and pathogen infection. This review focuses on these developments with emphasis on the emerging roles of Myo10 in formation of cancer cell protrusions and metastasis. A number of aggressive cancers show high levels of Myo10 expression and knockdown of Myo10 has been shown to dramatically limit cancer cell motility in 2D and 3D systems. Myo10 knockdown also limits spread of intracellular pathogens marburgvirus and Shigella flexneri. Consideration is given to how these properties might arise and potential paths of future research.
Collapse
Affiliation(s)
- David S Courson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Richard E Cheney
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
9
|
Li R, Dong X, Ma C, Liu L. Computational identification of surrogate genes for prostate cancer phases using machine learning and molecular network analysis. Theor Biol Med Model 2014; 11:37. [PMID: 25151146 PMCID: PMC4159107 DOI: 10.1186/1742-4682-11-37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/20/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prostate cancer is one of the most common malignant diseases and is characterized by heterogeneity in the clinical course. To date, there are no efficient morphologic features or genomic biomarkers that can characterize the phenotypes of the cancer, especially with regard to metastasis--the most adverse outcome. Searching for effective surrogate genes out of large quantities of gene expression data is a key to cancer phenotyping and/or understanding molecular mechanisms underlying prostate cancer development. RESULTS Using the maximum relevance minimum redundancy (mRMR) method on microarray data from normal tissues, primary tumors and metastatic tumors, we identifed four genes that can optimally classify samples of different prostate cancer phases. Moreover, we constructed a molecular interaction network with existing bioinformatic resources and co-identifed eight genes on the shortest-paths among the mRMR-identified genes, which are potential co-acting factors of prostate cancer. Functional analyses show that molecular functions involved in cell communication, hormone-receptor mediated signaling, and transcription regulation play important roles in the development of prostate cancer. CONCLUSION We conclude that the surrogate genes we have selected compose an effective classifier of prostate cancer phases, which corresponds to a minimum characterization of cancer phenotypes on the molecular level. Along with their molecular interaction partners, it is fairly to assume that these genes may have important roles in prostate cancer development; particularly, the un-reported genes may bring new insights for the understanding of the molecular mechanisms. Thus our results may serve as a candidate gene set for further functional studies.
Collapse
Affiliation(s)
| | | | | | - Lei Liu
- Shanghai Center for Bioinformatics Technology (SCBIT), Shanghai 201203, China.
| |
Collapse
|
10
|
Elevated expression of myosin X in tumours contributes to breast cancer aggressiveness and metastasis. Br J Cancer 2014; 111:539-50. [PMID: 24921915 PMCID: PMC4119973 DOI: 10.1038/bjc.2014.298] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/01/2014] [Accepted: 05/09/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Myosin X (MYO10) was recently reported to promote tumour invasion by transporting integrins to filopodial tips in breast cancer. However, the role of MYO10 in tumours remains poorly defined. Here, we report that MYO10 is required in invadopodia to mediate invasive growth and extracellular matrix degradation, which depends on the binding of MYO10's pleckstrin homology domain to PtdIns(3,4,5)P3. METHODS The expression of MYO10 and its associations with clinicopathological and biological factors were examined in breast cancer cells and breast cancer specimens (n=120). Cell migration and invasion were investigated after the silencing of MYO10. The ability of cells to form invadopodia was studied using a fluorescein isothiocyanate-conjugated gelatin degradation assay. A mouse model was established to study tumour invasive growth and metastasis in vivo. RESULTS Elevated MYO10 levels were correlated with oestrogen receptor status, progesterone receptor status, poor differentiation, and lymph node metastasis. Silencing MYO10 reduced cell migration and invasion. Invadopodia were responsible for MYO10's role in promoting invasion. Furthermore, decreased invasive growth and lung metastasis were observed in the MYO10-silenced nude mouse model. CONCLUSIONS Our findings suggest that elevated MYO10 expression increases the aggressiveness of breast cancer; this effect is dependent on the involvement of MYO10 in invadopodial formation.
Collapse
|
11
|
Arjonen A, Kaukonen R, Mattila E, Rouhi P, Högnäs G, Sihto H, Miller BW, Morton JP, Bucher E, Taimen P, Virtakoivu R, Cao Y, Sansom OJ, Joensuu H, Ivaska J. Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis. J Clin Invest 2014; 124:1069-82. [PMID: 24487586 PMCID: PMC3934176 DOI: 10.1172/jci67280] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/14/2013] [Indexed: 02/04/2023] Open
Abstract
Mutations of the tumor suppressor TP53 are present in many forms of human cancer and are associated with increased tumor cell invasion and metastasis. Several mechanisms have been identified for promoting dissemination of cancer cells with TP53 mutations, including increased targeting of integrins to the plasma membrane. Here, we demonstrate a role for the filopodia-inducing motor protein Myosin-X (Myo10) in mutant p53-driven cancer invasion. Analysis of gene expression profiles from 2 breast cancer data sets revealed that MYO10 was highly expressed in aggressive cancer subtypes. Myo10 was required for breast cancer cell invasion and dissemination in multiple cancer cell lines and murine models of cancer metastasis. Evaluation of a Myo10 mutant without the integrin-binding domain revealed that the ability of Myo10 to transport β₁ integrins to the filopodia tip is required for invasion. Introduction of mutant p53 promoted Myo10 expression in cancer cells and pancreatic ductal adenocarcinoma in mice, whereas suppression of endogenous mutant p53 attenuated Myo10 levels and cell invasion. In clinical breast carcinomas, Myo10 was predominantly expressed at the invasive edges and correlated with the presence of TP53 mutations and poor prognosis. These data indicate that Myo10 upregulation in mutant p53-driven cancers is necessary for invasion and that plasma-membrane protrusions, such as filopodia, may serve as specialized metastatic engines.
Collapse
Affiliation(s)
- Antti Arjonen
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Riina Kaukonen
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Elina Mattila
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Pegah Rouhi
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Gunilla Högnäs
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Harri Sihto
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Bryan W. Miller
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Jennifer P. Morton
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Elmar Bucher
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Pekka Taimen
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Reetta Virtakoivu
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Yihai Cao
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Owen J. Sansom
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Heikki Joensuu
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Johanna Ivaska
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| |
Collapse
|
12
|
Starostová M, Cermák V, Dvořáková M, Karafiát V, Kosla J, Dvořák M. The oncoprotein v-Myb activates transcription of Gremlin 2 during in vitro differentiation of the chicken neural crest to melanoblasts. Gene 2014; 540:122-9. [PMID: 24576577 DOI: 10.1016/j.gene.2014.02.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 01/09/2023]
Abstract
The neural crest (NC) is a transient dynamic structure of ectodermal origin, found in early vertebrate embryos. The multipotential NC cells migrate along well defined routes, differentiate to various cell types including melanocytes and participate in the formation of various permanent tissues. As there is only limited information about the molecular mechanisms controlling early events in melanocyte specification and development, we exploited the AMV v-Myb transcriptional regulator, which directs differentiation of in vitro chicken NC cells to the melanocyte lineage. This activity is strictly dependent on v-Myb specifically binding to the Myb recognition DNA element (MRE). The two tamoxifen-inducible v-Myb alleles were constructed one which recognizes the MRE and one which does not. These were activated in ex ovo NC cells, and the expression profiles of resulting cells were analyzed using Affymetrix microarrays and RT-PCR. These approaches revealed up-regulation of the BMP antagonist Gremlin 2 mRNA, and down-regulation of mRNAs encoding several epithelial genes including KRT19 as very early events following the activation of melanocyte differentiation by v-Myb. The enforced v-Myb expression in neural tubes of chicken embryos resulted in detectable presence of Gremlin 2 mRNA. However, expression of Gremlin 2 in NC cells did not promote formation of melanocytes suggesting that Gremlin 2 is not the master regulator of melanocytic differentiation.
Collapse
Affiliation(s)
- Michaela Starostová
- Institute of Molecular Genetics AS CR, v.v.i., Department of Molecular Virology, Vídeňská 1083, Praha 4 142 20, Czech Republic.
| | - Vladimír Cermák
- Institute of Molecular Genetics AS CR, v.v.i., Department of Molecular Virology, Vídeňská 1083, Praha 4 142 20, Czech Republic.
| | - Marta Dvořáková
- Institute of Molecular Genetics AS CR, v.v.i., Department of Molecular Virology, Vídeňská 1083, Praha 4 142 20, Czech Republic.
| | - Vít Karafiát
- Institute of Molecular Genetics AS CR, v.v.i., Department of Molecular Virology, Vídeňská 1083, Praha 4 142 20, Czech Republic.
| | - Jan Kosla
- Institute of Molecular Genetics AS CR, v.v.i., Department of Molecular Virology, Vídeňská 1083, Praha 4 142 20, Czech Republic.
| | - Michal Dvořák
- Institute of Molecular Genetics AS CR, v.v.i., Department of Molecular Virology, Vídeňská 1083, Praha 4 142 20, Czech Republic.
| |
Collapse
|
13
|
Mundt F, Johansson HJ, Forshed J, Arslan S, Metintas M, Dobra K, Lehtiö J, Hjerpe A. Proteome screening of pleural effusions identifies galectin 1 as a diagnostic biomarker and highlights several prognostic biomarkers for malignant mesothelioma. Mol Cell Proteomics 2013; 13:701-15. [PMID: 24361865 PMCID: PMC3945903 DOI: 10.1074/mcp.m113.030775] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Malignant mesothelioma is an aggressive asbestos-induced cancer, and affected patients have a median survival of approximately one year after diagnosis. It is often difficult to reach a conclusive diagnosis, and ancillary measurements of soluble biomarkers could increase diagnostic accuracy. Unfortunately, few soluble mesothelioma biomarkers are suitable for clinical application. Here we screened the effusion proteomes of mesothelioma and lung adenocarcinoma patients to identify novel soluble mesothelioma biomarkers. We performed quantitative mass-spectrometry-based proteomics using isobaric tags for quantification and used narrow-range immobilized pH gradient/high-resolution isoelectric focusing (pH 4–4.25) prior to analysis by means of nano liquid chromatography coupled to MS/MS. More than 1,300 proteins were identified in pleural effusions from patients with malignant mesothelioma (n = 6), lung adenocarcinoma (n = 6), or benign mesotheliosis (n = 7). Data are available via ProteomeXchange with identifier PXD000531. The identified proteins included a set of known mesothelioma markers and proteins that regulate hallmarks of cancer such as invasion, angiogenesis, and immune evasion, plus several new candidate proteins. Seven candidates (aldo-keto reductase 1B10, apolipoprotein C-I, galectin 1, myosin-VIIb, superoxide dismutase 2, tenascin C, and thrombospondin 1) were validated by enzyme-linked immunosorbent assays in a larger group of patients with mesothelioma (n = 37) or metastatic carcinomas (n = 25) and in effusions from patients with benign, reactive conditions (n = 16). Galectin 1 was identified as overexpressed in effusions from lung adenocarcinoma relative to mesothelioma and was validated as an excellent predictor for metastatic carcinomas against malignant mesothelioma. Galectin 1, aldo-keto reductase 1B10, and apolipoprotein C-I were all identified as potential prognostic biomarkers for malignant mesothelioma. This analysis of the effusion proteome furthers our understanding of malignant mesothelioma, identified galectin 1 as a potential diagnostic biomarker, and highlighted several possible prognostic biomarkers of this disease.
Collapse
Affiliation(s)
- Filip Mundt
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden SE-141 86
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kosla J, Dvorakova M, Dvorak M, Cermak V. Effective myofibroblast dedifferentiation by concomitant inhibition of TGF-β signaling and perturbation of MAPK signaling. Eur J Cell Biol 2013; 92:363-73. [DOI: 10.1016/j.ejcb.2013.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/30/2013] [Accepted: 10/30/2013] [Indexed: 02/05/2023] Open
|
15
|
Zhang C, Luo X, Liu L, Guo S, Zhao W, Mu A, Liu Z, Wang N, Zhou H, Zhang T. Myocardin-related transcription factor A is up-regulated by 17β-estradiol and promotes migration of MCF-7 breast cancer cells via transactivation of MYL9 and CYR61. Acta Biochim Biophys Sin (Shanghai) 2013; 45:921-7. [PMID: 24084383 DOI: 10.1093/abbs/gmt104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Many lines of evidence have suggested that estrogen plays important roles not only in the initiation and proliferation of breast cancer, but also in cancer metastasis. However, the mechanistic basis of the latter events is poorly understood. In addition, recent studies have suggested that myocardin-related transcription factor A (MRTF-A) might be related to cancer metastasis. However, as reports are contradictory, certain of its roles still remain confusing. In the present study, we showed that excessive 17β-estradiol could promote the migration of MCF-7 breast cancer cells and up-regulate the expression of MRTF-A, myosin regulatory light chain 9 (MYL9), and cysteine-rich angiogenic inducer 61 (CYR61). Overexpression of MRTF-A significantly promoted the migration of MCF-7 cells through its transactivation effects on MYL9 and CYR61 genes, while RNA interference-mediated knockdown of MRTF-A strongly inhibited transcription and expression of the target genes and reduced the migration ability of MCF-7 cells. These results provided novel evidence supporting the metastasis-promoting functions of MRTF-A, and implied that MRTF-A might be a switch for the estrogen pathway to change its proliferation-promoting roles into migration-stimulating roles in breast cancer.
Collapse
Affiliation(s)
- Chunling Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Luo XG, Zhang CL, Zhao WW, Liu ZP, Liu L, Mu A, Guo S, Wang N, Zhou H, Zhang TC. Histone methyltransferase SMYD3 promotes MRTF-A-mediated transactivation of MYL9 and migration of MCF-7 breast cancer cells. Cancer Lett 2013; 344:129-137. [PMID: 24189459 DOI: 10.1016/j.canlet.2013.10.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/20/2013] [Accepted: 10/24/2013] [Indexed: 01/06/2023]
Abstract
Myocardin-related transcription factor-A (MRTF-A) is a Rho signal-responsive transcriptional coactivator of serum response factor (SRF). Recent studies indicated that MRTF-A might be an important regulator of mammary gland and be involved in cancer metastasis. However, the roles of histone modification in the MRTF-A-dependent signal pathway and tumor migration are still not very clear. Here, we report that histone methylation is required for the MRTF-A-mediated upregulation of myosin regulatory light chain 9 (MYL9), an important cytoskeletal component which is implicated in cell migration. Furthermore, we demonstrate that SET and MYND domain containing protein 3 (SMYD3), a hitone methyltransferase (HMT) associated with carcinogenesis, might be the one which is responsible for the histone methylation occurred in the MRTF-A-mediated- transactivation of MYL9 and migration of breast cancer cells. Overexpression of SMYD3 promotes MRTF-A-mediated upregulation of MYL9 and migration of MCF-7 breast cancer cells, while contrary results were observed when the endogenous MRTF-A and SMYD3 were suppressed with specific siRNAs. In addition, the mutation analysis suggested that this cooperative transactivation is mainly mediated via the proximal binding element of MRTF-A in the promoter of MYL9, and the HMT activity of SMYD3 is required as well. Our findings reveal a new mechanism by which MRTF-A and SMYD3 functions in transcriptional regulation and cell migration, and provide a better understanding for metastasis of breast cancer.
Collapse
Affiliation(s)
- Xue-Gang Luo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China.
| | - Chun-Ling Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| | - Wen-Wen Zhao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| | - Zhi-Peng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| | - Lei Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| | - Ai Mu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| | - Shu Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| | - Nan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| | - Hao Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| | - Tong-Cun Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China; School of Medicine, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
17
|
Kovářová D, Plachý J, Kosla J, Trejbalová K, Čermák V, Hejnar J. Downregulation of HOPX Controls Metastatic Behavior in Sarcoma Cells and Identifies Genes Associated with Metastasis. Mol Cancer Res 2013; 11:1235-47. [DOI: 10.1158/1541-7786.mcr-12-0687] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Kosla J, Paňková D, Plachý J, Tolde O, Bicanová K, Dvořák M, Rösel D, Brábek J. Metastasis of aggressive amoeboid sarcoma cells is dependent on Rho/ROCK/MLC signaling. Cell Commun Signal 2013; 11:51. [PMID: 23899007 PMCID: PMC3735423 DOI: 10.1186/1478-811x-11-51] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/23/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although there is extensive evidence for the amoeboid invasiveness of cancer cells in vitro, much less is known about the role of amoeboid invasiveness in metastasis and the importance of Rho/ROCK/MLC signaling in this process. RESULTS We analyzed the dependence of amoeboid invasiveness of rat and chicken sarcoma cells and the metastatic activity of chicken cells on individual elements of the Rho/ROCK/MLC pathway. In both animal models, inhibition of Rho, ROCK or MLC resulted in greatly decreased cell invasiveness in vitro, while inhibition of extracellular proteases using a broad spectrum inhibitor did not have a significant effect. The inhibition of both Rho activity and MLC phosphorylation by dominant negative mutants led to a decreased capability of chicken sarcoma cells to metastasize. Moreover, the overexpression of RhoA in non-metastatic chicken cells resulted in the rescue of both invasiveness and metastatic capability. Rho and ROCK, unlike MLC, appeared to be directly involved in the maintenance of the amoeboid phenotype, as their inhibition resulted in the amoeboid-mesenchymal transition in analyzed cell lines. CONCLUSION Taken together, these results suggest that protease-independent invasion controlled by elements of the Rho/ROCK/MLC pathway can be frequently exploited by metastatic sarcoma cells.
Collapse
Affiliation(s)
- Jan Kosla
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Viničná 7, 12843 Prague 2, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kosla J, Dvorak M, Cermak V. Molecular analysis of the TGF-beta controlled gene expression program in chicken embryo dermal myofibroblasts. Gene 2012; 513:90-100. [PMID: 23127594 DOI: 10.1016/j.gene.2012.10.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/17/2012] [Accepted: 10/25/2012] [Indexed: 12/11/2022]
Abstract
The myofibroblast is a mesenchymal cell characterized by synthesis of the extracellular matrix, plus contractile and secretory activities. Myofibroblasts participate in physiological tissue repair, but can also cause devastating fibrosis. They are present in the tumor stroma of carcinomas and contribute to tumor growth and spreading. As myofibroblasts derive from various cell types and appear in a variety of tissues, there is marked variability in their phenotype. As regulatory mechanisms of wound healing are likely conserved among vertebrates, detailed knowledge of these mechanisms in more distant species will help to distinguish general from specific phenomena. To provide this as yet missing comparison, we analyzed the impact of the chemical inhibition of TGF-beta signaling on gene expression in chicken embryo dermal myofibroblasts. We revealed genes previously reported in mammalian systems (e.g. SPON2, ASPN, COMP, LUM, HAS2, IL6, CXCL12, VEGFA) as well as novel TGF-beta dependent genes, among them PGF, VEGFC, PTN, FAM180A, FIBIN, ZIC1, ADCY2, RET, HHIP and DNER. Inhibition of TGF-beta signaling also induced multiple genes, including NPR3, AGTR2, MTUS1, SOD3 and NOV. We also analyzed the effects of long term inhibition, and found that it is not able to induce myofibroblast dedifferentiation.
Collapse
Affiliation(s)
- Jan Kosla
- Laboratory of Molecular Virology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, CZ-14220 Prague 4, Czech Republic.
| | | | | |
Collapse
|
20
|
Tarcic G, Avraham R, Pines G, Amit I, Shay T, Lu Y, Zwang Y, Katz M, Ben-Chetrit N, Jacob-Hirsch J, Virgilio L, Rechavi G, Mavrothalassitis G, Mills GB, Domany E, Yarden Y. EGR1 and the ERK-ERF axis drive mammary cell migration in response to EGF. FASEB J 2011; 26:1582-92. [PMID: 22198386 DOI: 10.1096/fj.11-194654] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The signaling pathways that commit cells to migration are incompletely understood. We employed human mammary cells and two stimuli: epidermal growth factor (EGF), which induced cellular migration, and serum factors, which stimulated cell growth. In addition to strong activation of ERK by EGF, and AKT by serum, early transcription remarkably differed: while EGF induced early growth response-1 (EGR1), and this was required for migration, serum induced c-Fos and FosB to enhance proliferation. We demonstrate that induction of EGR1 involves ERK-mediated down-regulation of microRNA-191 and phosphorylation of the ETS2 repressor factor (ERF) repressor, which subsequently leaves the nucleus. Unexpectedly, knockdown of ERF inhibited migration, which implies migratory roles for exported ERF molecules. On the other hand, chromatin immunoprecipitation identified a subset of direct EGR1 targets, including EGR1 autostimulation and SERPINB2, whose transcription is essential for EGF-induced cell migration. In summary, EGR1 and the EGF-ERK-ERF axis emerge from our study as major drivers of growth factor-induced mammary cell migration.
Collapse
Affiliation(s)
- Gabi Tarcic
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Functional characterization of SAMD9, a protein deficient in normophosphatemic familial tumoral calcinosis. J Invest Dermatol 2010; 131:662-9. [PMID: 21160498 DOI: 10.1038/jid.2010.387] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dystrophic cutaneous calcinosis is associated with disorders as common as autoimmune diseases and cancer. To get insight into the pathogenesis of this poorly understood process, we studied the function of SAMD9, a protein of unknown function, recently shown to be deficient in a hereditary form of dystrophic calcification in the skin, known as normophosphatemic familial tumoral calcinosis (NFTC). Consistent with the fact that in NFTC severe inflammatory manifestations always precede cutaneous calcinosis, we found out that SAMD9 is tightly regulated by interferon-γ (IFN-γ). In addition, the SAMD9 promoter was also found to respond strongly to IFN-γ in a luciferase reporter assay. Of interest, we identified a critical 30-bp fragment upstream to the SAMD9 transcription initiation site responsible for driving most of the gene expression. Bioinformatic analysis suggested that SAMD9 function involves interaction with additional protein(s). Using the Ras recruitment system assay and confirmatory immunoprecipitation, we demonstrated that SAMD9 interacts with RGL2. To study the biological importance of this interaction, we assessed the effect of RNA interference-mediated downregulation of this pair of proteins in various cell lines. We found out that downregulation of any of the two protein partners caused increased expression of EGR1, a transcription factor with a known role in the regulation of tissue calcification, inflammation, and cell migration. Supporting the physiological relevance of these data, EGR1 levels were also upregulated in a fibroblast cell line derived from an NFTC patient. In conclusion, our data indicate that SAMD9, an IFN-γ-responsive protein, interacts with RGL2 to diminish the expression of EGR1, a protein of direct relevance to the pathogenesis of ectopic calcification and inflammation.
Collapse
|