1
|
Timmins-Schiffman E, Maas AE, Khanna R, Blanco-Bercial L, Huang E, Nunn BL. Removal of Exogenous Stimuli Reveals a Canalization of Circadian Physiology in a Vertically Migrating Copepod. J Proteome Res 2024. [PMID: 38690632 DOI: 10.1021/acs.jproteome.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Diel rhythms are observed across taxa and are important for maintaining synchrony between the environment and organismal physiology. A striking example of this is the diel vertical migration undertaken by zooplankton, some of which, such as the 5 mm-long copepod Pleuromamma xiphias (P. xiphias), migrate hundreds of meters daily between the surface ocean and deeper waters. Some of the molecular pathways that underlie the expressed phenotype at different stages of this migration are entrained by environmental variables (e.g., day length and food availability), while others are regulated by internal clocks. We identified a series of proteomic biomarkers that vary across ocean DVM and applied them to copepods incubated in 24 h of darkness to assess circadian control. The dark-incubated copepods shared some proteomic similarities to the ocean-caught copepods (i.e., increased abundance of carbohydrate metabolism proteins at night). Shipboard-incubated copepods demonstrated a clearer distinction between night and day proteomic profiles, and more proteins were differentially abundant than in the in situ copepods, even in the absence of the photoperiod and other environmental cues. This pattern suggests that there is a canalization of rhythmic diel physiology in P. xiphias that reflects likely circadian clock control over diverse molecular pathways.
Collapse
Affiliation(s)
- Emma Timmins-Schiffman
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Amy E Maas
- Bermuda Institute of Ocean Sciences, Arizona State University, St. George's 98C3+8F, Bermuda
| | - Rayhan Khanna
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
- Cornell University, Ithaca, New York 14850, United States
| | - Leocadio Blanco-Bercial
- Bermuda Institute of Ocean Sciences, Arizona State University, St. George's 98C3+8F, Bermuda
| | - Eric Huang
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
- Just-Evotec Biologics, Seattle, Washington 98109, United States
| | - Brook L Nunn
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Li Y, Tong R, Li Z, Zhang X, Pan L, Li Y, Zhang N. Toxicological mechanism of ammonia-N on haematopoiesis and apoptosis of haemocytes in Litopenaeus vannamei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163039. [PMID: 36966842 DOI: 10.1016/j.scitotenv.2023.163039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/26/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Ammonia, as an important pollutant, contributed to the reduction of immunity, disruption of physiology in animals. RNA interference (RNAi) was performed to understand the function of astakine (AST) in haematopoiesis and apoptosis in Litopenaeus vannamei under ammonia-N exposure. Shrimps were exposed to 20 mg/L ammonia-N from 0 to 48 h with injection of 20 μg AST dsRNA. Further, shrimps were exposed to 0, 2, 10 and 20 mg/L ammonia-N also from 0 to 48 h. The results showed that the total haemocytes count (THC) decreased under ammonia-N stress and the knockdown of AST resulted in a further decrease of THC, suggesting that 1) the proliferation was decreased through the reduction of AST and Hedgehog, the differentiation was interfered by Wnt4, Wnt5 and Notch, and the migration was inhibited by the decrease of VEGF; 2) oxidative stress was induced under ammonia-N stress, leading to the increase of DNA damage with the up-regulated gene expression of death receptor, mitochondrial and endoplasmic reticulum stress pathways; 3) the changes of THC resulted from the decrease of proliferation, differentiation and migration of haematopoiesis cells and the increase of apoptosis of haemocytes. This study helps to deepen our understanding of risk management in shrimp aquaculture.
Collapse
Affiliation(s)
- Yufen Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Zeyuan Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
3
|
Hunt R, Cable J, Ellison A. Daily patterns in parasite processes: diel variation in fish louse transcriptomes. Int J Parasitol 2022; 52:509-518. [PMID: 35533730 DOI: 10.1016/j.ijpara.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/05/2022]
Abstract
Parasites, similar to all other organisms, time themselves to environmental cues using a molecular clock to generate and maintain rhythms. Chronotherapeutic (timed treatment) techniques based on such rhythms offer great potential for improving control of chronic, problematic parasites. Fish lice are a key disease threat in aquaculture, with current control insufficient. Assessing the rhythmicity of fish lice transcriptomes offers not only insight into the viability of chronotherapy, but the opportunity to identify new drug targets. Here, for the first known time in any crustacean parasite, diel changes in gene transcription are examined, revealing that approximately half of the Argulus foliaceus annotated transcriptome displays significant daily rhythmicity. We identified rhythmically transcribed putative clock genes including core clock/cycle and period/timeless pairs, alongside rhythms in feeding-associated genes and processes involving immune response, as well as fish louse drug targets. A substantial number of gene pathways showed peak transcription in hours immediately preceding onset of light, potentially in anticipation of peak host anti-parasite responses or in preparation for increased feeding activity. Genes related to immune haemocyte activity and chitin development were more highly transcribed 4 h post light onset, although inflammatory gene transcription was highest during dark periods. Our study provides an important resource for application of chronotherapy in fish lice; timed application could increase efficacy and/or reduce dose requirement, improving the current landscape of drug resistance and fish health while reducing the economic cost of infection.
Collapse
Affiliation(s)
- R Hunt
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - J Cable
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - A Ellison
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, United Kingdom.
| |
Collapse
|
4
|
Yang Y, Qiao X, Song X, Zhang D, Yu S, Dong M, Liu X, Wang L, Song L. CgATP synthase β subunit involved in the regulation of haemocytes proliferation as a CgAstakine receptor in Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2022; 123:85-93. [PMID: 35245670 DOI: 10.1016/j.fsi.2022.02.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Astakine is considered as an endogenous cytokine-like factor of prokineticin homologue in invertebrate. Recently, an astakine homologue (CgAstakine) has been identified and characterized in oyster Crassostrea gigas. In the present study, a CgATP synthase β subunit was identified as the receptor of CgAstakine in C. gigas. There was an ATP-synt_ab_N domain and an AAA domain in the CgATP synthase β subunit protein. The mRNA transcripts of CgATP synthase β subunit were detected in all tested tissues, with the highest expression level in hepatopancreas and gills, which was 109.11-fold (p < 0.01) and 97.21-fold (p < 0.01) of that in labial palps, respectively. After rCgAstakine stimulation, the mRNA transcripts of CgATP synthase β subunit in agranulocytes and semi-granulocytes were significantly increased at 24 h (2.44-fold, and 9.01-fold of that in control group, p < 0.01), and those in granulocytes were significantly increased at 6 h (1.83-fold, p < 0.01), 12 h (1.92-fold, p < 0.01) and 24 h (3.47-fold, p < 0.01). The expression level of CgATP synthase β subunit protein in agranulocytes and granulocytes was also significantly increased after rCgAstakine stimulation, which was 1.64-fold (p < 0.05) and 1.85-fold (p < 0.05) of that in control group, respectively, while there were no significant changes in semi-granulocytes. The immunofluorescence assay showed that CgATP synthase β subunit positive signals were mainly located on the membrane of haemocytes. The number of haemocytes with EdU positive signals was significantly increased after rCgAstakine stimulation (2.04-fold of seawater group, p < 0.01), while significantly decreased after the RNA interference (RNAi) of CgATP synthase β subunit, which was 0.28-fold of that in NC group (p < 0.01). Bio-layer interferometry (BLI) assay confirmed in vitro interaction between rCgAstakine and rCgATP synthase β subunit. There results suggested that CgATP synthase β subunit acts as the receptor of CgAstakine and plays important roles in CgAstakine induced renewal of haemocytes in C. gigas.
Collapse
Affiliation(s)
- Ying Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Dan Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Simiao Yu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiyang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
5
|
Yang H, Ji T, Xiong H, Zhang Y, Wei W, Liu Q. Transcriptome profiles of red swamp crayfish Procambarus clarkii hematopoietic tissue in response to WSSV challenge. FISH & SHELLFISH IMMUNOLOGY 2022; 122:146-152. [PMID: 35124203 DOI: 10.1016/j.fsi.2022.01.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The crayfish Procambarus clarkii could achieve a high cumulative mortality after WSSV infections. To better understand the immune response to WSSV in hematopoietic tissue, the present study investigated the immunological response of P. clarkii and analyzed the expression of some hematopoietic cytokines. After assembly, there was an average of 47,712,411 clean reads were obtained in control and treatment groups. A total of 35,945 unigenes were discovered with N50 length of 1554 bp. Under functional classification, enrichment, and pathway analysis using different database, there were about 257 differentially expressed genes (DEGs) identified, of which 139 were up-regulated and 118 were down-regulated. The GO function analysis of these DEGs were mostly participated in activation of immune response, complement activation, complement binding, negative regulation of humoral immune response and secretory granule membrane. Under KEGG analysis, these DEGs were involved in ECM-receptor interaction, HIF-1 signaling pathway, Glycolysis/Gluconeogenesis, Thyroid hormone signaling pathway and Glucagon signaling pathway. The real-time quantitative PCR (RT-qPCR) analysis of 9 selected genes confirmed the reliability of RNA-Seq results. The present research provide for the first time the transcriptomic profile of P. clarkii hematopoietic tissue in response to WSSV infection and reveals the astakines may play important roles in antiviral immune response. The results of the present study will further enrich the theoretical basis of the crayfish immune system and provide new ideas for disease prevention and control.
Collapse
Affiliation(s)
- Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Tongwei Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Haoran Xiong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qiuning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, China.
| |
Collapse
|
6
|
Taylor LJ, Clark KF, Daoud D, van den Heuvel MR, Greenwood SJ. Exposure of American lobster (Homarus americanus) to the pesticide chlorpyrifos results in changes in gene expression. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100918. [PMID: 34688176 DOI: 10.1016/j.cbd.2021.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/28/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022]
Abstract
Chlorpyrifos is an organophosphate that is currently used to reduce arthropod pests for the protection of agricultural crops. Coastal marine ecosystems may be exposed to agricultural pesticides via runoff and pesticide exposure can impact the health and survival of non-target species such as the American lobster (Homarus americanus). In the current study, the gene expression changes of H. americanus stage IV larvae were evaluated to understand the physiological mechanisms affected by exposure to sublethal concentrations of chlorpyrifos. After 48 h chlorpyrifos exposure, surviving lobsters were processed for Illumina RNA sequencing (RNA-seq). Genes of interest that showed significant changes using RNA-seq were verified using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Analysis of RNA-seq and the confirmation of gene expression patterns via RT-qPCR found altered expression in genes related to stress response (glutathione peroxidase 3 and heat shock protein 60), hypoxia response (hairy, astakine 2, hemocyanin), moulting (cytochrome P450 307a1 and chitinase), and immunity (astakine 2) pathways. Changes to gene expression were most notable in lobsters exposed to 0.57 μg/L chlorpyrifos.
Collapse
Affiliation(s)
- Laura J Taylor
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada; AVC Lobster Science Centre, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada.
| | - K Fraser Clark
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| | - Dounia Daoud
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada; EcoNov Inc., Moncton, NB, Canada; Homarus Inc., Shediac, NB, Canada
| | - Michael R van den Heuvel
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada; Canadian Rivers Institute, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Spencer J Greenwood
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada; AVC Lobster Science Centre, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
7
|
Crayfish (Procambarus clarkii) TRPA1 is required for the defense against Aeromonas hydrophila infection under high temperature conditions and contributes to heat sensing. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110654. [PMID: 34371155 DOI: 10.1016/j.cbpb.2021.110654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/18/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022]
Abstract
Temperature is an important environmental factor influencing immune responses of crayfish. However, the mechanism underlying how temperature affects immune responses remains unclear. Here, we identified an ortholog of the transient receptor potential ankyrin subtype 1 (TRPA1), a temperature sensor of Drosophila, from Procambarus clarkii (PcTRPA1-1). Its expression was induced by high temperature and challenge with heat-killed A. hydrophila at high temperature, but not at lower temperature. PcTRPA1-1 silencing led to increased mortality of crayfish challenged with live A. hydrophila at high temperature (32 °C), but had no statistically significant effect on crayfish mortality at 24 °C. This suggests that PcTRPA1-1 is involved in the immune responses of crayfish at high temperature as a potential temperature sensor. Further assay exhibited that PcTRPA1-1 silencing affected immune responses of crayfish, including increase of lipid peroxidation, reduction of total antioxidant capacity, decreased phenoloxidase activity and disruption of circadian rhythm of total hemocyte count entrained by temperature cycles. PcTRPA1-1 silencing also decreased the expression of PcHSP70 and PcHSP90 which are responsive to heat stimuli and bacterial challenge. The results collectively indicate that TRPA1 contributes to heat sensing of crayfish and is required for crayfish defense against bacterial infection.
Collapse
|
8
|
Li F, Zheng Z, Li H, Fu R, Xu L, Yang F. Crayfish hemocytes develop along the granular cell lineage. Sci Rep 2021; 11:13099. [PMID: 34162929 PMCID: PMC8222279 DOI: 10.1038/s41598-021-92473-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/09/2021] [Indexed: 01/21/2023] Open
Abstract
Despite the central role of hemocytes in crustacean immunity, the process of hemocyte differentiation and maturation remains unclear. In some decapods, it has been proposed that the two main types of hemocytes, granular cells (GCs) and semigranular cells (SGCs), differentiate along separate lineages. However, our current findings challenge this model. By tracking newly produced hemocytes and transplanted cells, we demonstrate that almost all the circulating hemocytes of crayfish belong to the GC lineage. SGCs and GCs may represent hemocytes of different developmental stages rather than two types of fully differentiated cells. Hemocyte precursors produced by progenitor cells differentiate in the hematopoietic tissue (HPT) for 3 ~ 4 days. Immature hemocytes are released from HPT in the form of SGCs and take 1 ~ 3 months to mature in the circulation. GCs represent the terminal stage of development. They can survive for as long as 2 months. The changes in the expression pattern of marker genes during GC differentiation support our conclusions. Further analysis of hemocyte phagocytosis indicates the existence of functionally different subpopulations. These findings may reshape our understanding of crustacean hematopoiesis and may lead to reconsideration of the roles and relationship of circulating hemocytes.
Collapse
Affiliation(s)
- Fang Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184# Daxue Road, Xiamen, 361005, China. .,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China.
| | - Zaichao Zheng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184# Daxue Road, Xiamen, 361005, China
| | - Hongyu Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184# Daxue Road, Xiamen, 361005, China
| | - Rongrong Fu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184# Daxue Road, Xiamen, 361005, China
| | - Limei Xu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184# Daxue Road, Xiamen, 361005, China.,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184# Daxue Road, Xiamen, 361005, China. .,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China.
| |
Collapse
|
9
|
Hou X, Qin Z, Wei M, Fu Z, Liu R, Lu L, Bai S, Ma Y, Zhang Z. Identification of the neuropeptide precursor genes potentially involved in the larval settlement in the Echiuran worm Urechis unicinctus. BMC Genomics 2020; 21:892. [PMID: 33317448 PMCID: PMC7737342 DOI: 10.1186/s12864-020-07312-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In marine invertebrate life cycles, which often consist of planktonic larval and benthonic adult stages, settlement of the free-swimming larva to the sea floor in response to environmental cues is a key life cycle transition. Settlement is regulated by a specialized sensory-neurosecretory system, the larval apical organ. The neuroendocrine mechanisms through which the apical organ transduces environmental cues into behavioral responses during settlement are not fully understood yet. RESULTS In this study, a total of 54 neuropeptide precursors (pNPs) were identified in the Urechis unicinctus larva and adult transcriptome databases using local BLAST and NpSearch prediction, of which 10 pNPs belonging to the ancient eumetazoa, 24 pNPs belonging to the ancient bilaterian, 3 pNPs belonging to the ancient protostome, 9 pNPs exclusive in lophotrochozoa, 3 pNPs exclusive in annelid, and 5 pNPs only found in U. unicinctus. Furthermore, four pNPs (MIP, FRWamide, FxFamide and FILamide) which may be associated with the settlement and metamorphosis of U. unicinctus larvae were analysed by qRT-PCR. Whole-mount in situ hybridization results showed that all the four pNPs were expressed in the region of the apical organ of the larva, and the positive signals were also detected in the ciliary band and abdomen chaetae. We speculated that these pNPs may regulate the movement of larval cilia and chaeta by sensing external attachment signals. CONCLUSIONS This study represents the first comprehensive identification of neuropeptides in Echiura, and would contribute to a complete understanding on the roles of various neuropeptides in larval settlement of most marine benthonic invertebrates.
Collapse
Affiliation(s)
- Xitan Hou
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Maokai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhong Fu
- Hebei Research Institute of Marine and Fishery Science, Qinhuangdao, 066002, China
| | - Ruonan Liu
- College of Medical Engineering, Jining Medical University, Jining, 272067, China
| | - Li Lu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shumiao Bai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China.
| |
Collapse
|
10
|
She Q, Han Z, Liang S, Xu W, Li X, Zhao Y, Wei H, Dong J, Li Y. Impacts of circadian rhythm and melatonin on the specific activities of immune and antioxidant enzymes of the Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2019; 89:345-353. [PMID: 30974217 DOI: 10.1016/j.fsi.2019.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/19/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Many physiological functions of crustaceans show a rhythmic change to adapt to daily environmental cycles. However, daily variation in the immune and antioxidant status and its possible correlation with circulatory melatonin levels during the daily cycle have not been reported in the Chinese mitten crab, Eriocheir sinensis. In this study, the specific activities of immune and antioxidant enzymes of E. sinensis during the 24 h cycle and its relationship with injected doses of melatonin were evaluated. The results showed that the immune parameters in the hemolymph, such as total hemolymph count, alkaline phosphatase, lysozyme, acid phosphatase, and phenol oxidase, exhibited bimodal patterns during the 24 h cycle, these parameters were synchronized with the activity of antioxidant enzymes such as malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase, and catalase. However, there was only one peak in the muscle (during 1200-1600 h) and gills (during 0400-0800 h). The survival rate reached approximately 80% in 5 days when melatonin concentrations were lower than 0.05 g/L, significantly decreasing as melatonin concentrations increased. Four hours after melatonin injection, MDA levels in the muscle and hemolymph were significantly lower than those in the control group. Eight hours after melatonin injection, SOD levels in the hemolymph were significantly higher than those in the control group. These findings highlight the importance of considering circadian regulation of innate immunity when comparing immune responses at fixed times.
Collapse
Affiliation(s)
- Qiuxin She
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Zhibin Han
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Shudong Liang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Weibin Xu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Xin Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Yingying Zhao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Hua Wei
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Jing Dong
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Yingdong Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China.
| |
Collapse
|
11
|
Li F, Xu L, Hui X, Huang W, Yang F. Directed differentiation of granular cells from crayfish hematopoietic tissue cells. FISH & SHELLFISH IMMUNOLOGY 2019; 88:28-35. [PMID: 30826415 DOI: 10.1016/j.fsi.2019.02.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/25/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Hemocytes are the major immune cells of crustaceans. New hemocyte production is required throughout the life cycle of these animals to maintain a functional immune system. The mechanism of crustacean hematopoiesis has just begun to be understood and new methods are needed for the investigation of this process. Here we report the directed differentiation of granular cells (GCs) from the hematopoietic tissue (HPT) cells of Cherax quadricarinatus in vitro. We started by providing the cultured HPT cells with different additives to induce possible differentiation. We found that crayfish muscle extract greatly promoted the physical status of the cells and induced the formation of refractile cytoplasmic granules. The transcription of marker genes and the production of functional prophenoloxidase further confirmed the formation of mature GCs. In our experiments, young GCs usually started to develop in ∼2 weeks post induction and over 60% of the cells became mature within 3-4 weeks. This is the first time that the fully differentiation of crustacean hemocytes is accomplished in vitro. It provides a powerful tool for in-depth study of crustacean hematopoiesis.
Collapse
Affiliation(s)
- Fang Li
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China.
| | - Limei Xu
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Xuan Hui
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Wanzhen Huang
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
12
|
Beltz BS, Benton JL. From Blood to Brain: Adult-Born Neurons in the Crayfish Brain Are the Progeny of Cells Generated by the Immune System. Front Neurosci 2017; 11:662. [PMID: 29270102 PMCID: PMC5725445 DOI: 10.3389/fnins.2017.00662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/13/2017] [Indexed: 11/23/2022] Open
Abstract
New neurons continue to be born and integrated into the brains of adult decapod crustaceans. Evidence in crayfish indicates that the 1st-generation neural precursors that generate these adult-born neurons originate in the immune system and travel to the neurogenic niche via the circulatory system. These precursors are attracted to the niche, become integrated amongst niche cells, and undergo mitosis within a few days; both daughters of this division migrate away from the niche toward the brain clusters where they will divide again and differentiate into neurons. In the crustacean brain, the rate of neuronal production is highly sensitive to serotonin (5-hydroxytryptamine, 5-HT) levels. These effects are lineage-dependent, as serotonin's influence is limited to late 2nd-generation neural precursors and their progeny. Experiments indicate that serotonin regulates adult neurogenesis in the crustacean brain by multiple mechanisms: via direct effects of serotonin released from brain neurons into the hemolymph or by local release onto target cells, or by indirect influences via a serotonin-mediated release of agents from other regions, such as hormones from the sinus gland and cytokines from hematopoietic tissues. Evidence in crayfish also indicates that serotonin mediates the attraction of neural precursors generated by the immune system to the neurogenic niche. Thus, studies in the crustacean brain have revealed multiple roles for this monoamine in adult neurogenesis, and identified several pathways by which serotonin influences the generation of new neurons.
Collapse
Affiliation(s)
- Barbara S Beltz
- Neuroscience Program, Wellesley College, Wellesley, MA, United States
| | - Jeanne L Benton
- Neuroscience Program, Wellesley College, Wellesley, MA, United States
| |
Collapse
|
13
|
Exploring the molecular basis of adaptive evolution in hydrothermal vent crab Austinograea alayseae by transcriptome analysis. PLoS One 2017; 12:e0178417. [PMID: 28552991 PMCID: PMC5446156 DOI: 10.1371/journal.pone.0178417] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/12/2017] [Indexed: 12/12/2022] Open
Abstract
Elucidating the genetic mechanisms of adaptation to the hydrothermal vent in organisms at genomic level is significant for understanding the adaptive evolution process in the extreme environment. We performed RNA-seq on four different tissues of a vent crab species, Austinograea alayseae, producing 725,461 unigenes and 134,489 annotated genes. Genes related to sensory, circadian rhythm, hormone, hypoxia stress, metal detoxification and immunity were identified. It was noted that in the degenerated eyestalk, transcription of phototransduction related genes which are important for retinal function was greatly reduced; three crucial neuropeptide hormones, one molt-inhibiting and two crustacean hyperglycemic hormone precursors were characterized with conserved domains; hypoxia-inducible factor 1 and two novel isoforms of metallothioneins in the vent crabs were discovered. An analysis of 6,932 orthologs among three crabs A. alayseae, Portunus trituberculutus and Eriocheir sinensis revealed 19 positive selected genes (PSGs). Most of the PSGs were involved in immune responses, such as crustins and anti-lipopolysaccharide factor, suggesting their function in the adaptation to environment. The characterization of the first vent crab transcriptome provides abundant resources for genetic and evolutionary studies of this species, and paves the way for further investigation of vent adaptation process in crabs.
Collapse
|
14
|
Li Y, Jiang S, Li M, Xin L, Wang L, Wang H, Qiu L, Song L. A cytokine-like factor astakine accelerates the hemocyte production in Pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:179-187. [PMID: 26523496 DOI: 10.1016/j.dci.2015.10.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
Astakine has been reported to be a hematopoietic growth factor of prokineticin homolog firstly found in arthropods freshwater crayfish Pacifastacus leniusculus. In the present study, an astakine homologous gene was identified from Pacific oyster Crassostrea gigas (designated CgAstakine). The full length cDNA of CgAstakine encoded a polypeptide of 103 amino acids containing a prokineticin (PK) domain homologous to that in astakine from freshwater crayfish P. leniusculus. The deduced amino acid sequence of CgAstakine shared higher similarity with those of other invertebrate astakines than prokineticins from vertebrates. The mRNA of CgAstakine was highly expressed in hepatopancreas and adductor muscle of oyster, while the CgAstakine protein was mainly distributed in hepatopancreas, gill and hemocytes. The mRNA expression of CgAstakine in hemocytes was significantly increased (p < 0.01) and maintained at a high level from 3 h to 9 h after Vibrio anguillarum challenge. After the oyster hemocytes were incubated with 5 μg/mL recombinant CgAstakine protein (rCgAstakine) for 24 h in vitro, the proliferation of hemocytes was significantly increased to 1.89 fold of that in control group (p < 0.05). Moreover, the total count of oyster hemocytes was significantly upregulated (2.45 fold of that in control group, p < 0.05) at 12 h after the oysters were received an injection of rCgAstakine (0.5 μg/g). These results collectively indicated that CgAstakine could modulate the hemocytes proliferation both in vitro and in vivo, and probably involved in the hematopoietic process fighting against the invasion of foreign pathogens.
Collapse
Affiliation(s)
- Yiqun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Meijia Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lusheng Xin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
15
|
Zhang L, Shi W, Zeng XC, Ge F, Yang M, Nie Y, Bao A, Wu S, E G. Unique diversity of the venom peptides from the scorpion Androctonus bicolor revealed by transcriptomic and proteomic analysis. J Proteomics 2015; 128:231-50. [DOI: 10.1016/j.jprot.2015.07.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 12/22/2022]
|
16
|
Dong C, Bai S, Du L. Temperature regulates circadian rhythms of immune responses in red swamp crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2015; 45:641-647. [PMID: 26004319 DOI: 10.1016/j.fsi.2015.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
As an ectothermic animal, crayfish immunity and their resistance to pathogen can be significantly affected by environmental factors such as light and temperature. It has been found for a long time that multiple immune parameters of animals and human are circadian-regulated by light-entrained circadian rhythm. Whether temperature also affects the immune rhythm of animals still remains unclear. In the present study, we investigated the effect of temperature cycles on the rhythm of crayfish immunity and their resistance. Survival experiments demonstrated that temperature cycles of 24 °C and 18 °C effectively entrained the circadian rhythm of crayfish resistance to Aeromonas hydrophila in constant dark. After being exposed to temperature cycles, the crayfish injected at different time points exhibited significant difference in resistance to A. hydrophila. Bacterial growth and total hemocyte count (THC) also showed circadian variation in crayfish subjected to temperature cycles, but phenoloxidase (PO) activity didn't show rhythmic change under the same conditions. Quantitative real-time PCR revealed that basal expression of crustin1 and astacidin in crayfish subjected to temperature cycles was circadian-rhythmic, but induced expression by A. hydrophila didn't show the same rhythm. In contrast, crayfish maintained at constant temperature showed completely arrhythmic in bacterial resistance, immune parameters mentioned above and the expression of antimicrobial peptides. The results present here collectively indicated that temperature cycles entrained circadian rhythm of some immune parameters and shaped crayfish resistance to bacteria.
Collapse
Affiliation(s)
- Chaohua Dong
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China.
| | - Suhua Bai
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Liqiang Du
- College of Life Science, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China
| |
Collapse
|
17
|
Shelby KS, Perera OP, Snodgrass GL. Expression profiles of astakine-like transcripts in the tarnished plant bug, Lygus lineolaris, exposed to fungal spores of Beauveria bassiana. INSECT MOLECULAR BIOLOGY 2015; 24:480-490. [PMID: 26018035 DOI: 10.1111/imb.12175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 03/12/2015] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
Astakines are hematopoietic cytokines originally isolated from crustaceans. We identified three astakine-like transcripts in the tarnished plant bug (Lygus lineolaris), LlAst-1, LlAst-2 and LlAst-3, containing prokineticin domains. Quantitative real-time PCR showed variation in expression patterns of astakines in different tissues and between sexes. Relative expression levels of LlAst-1 were highest in the fat bodies of females, while LlAst-2 expression was highest in the fat bodies of both males and females. LlAst-3 expression was higher in male legs compared with the female legs, but lower in all other tissues. Infection with the entomopathogenic fungus Beauveria bassiana slightly elevated LlAst-1 expression 48 h after infection in both males and females. In contrast, the expression levels of LlAst-2 and LlAst-3 were not significantly changed in males and females. Compared with 12:00 h, LlAst-1 level was higher in both sexes at 18:00 h and 00:00 h (midnight). By 6:00 h, the LlAst-1 level in females was significantly reduced while that in males remained high. LlAst-2 and -3 had highest relative expression levels in females at midnight but were significantly lower than in males at midnight and in both sexes at 18:00 h and 6:00 h. This is the first report of expression of astakine-like cytokines from insects.
Collapse
Affiliation(s)
- K S Shelby
- Biological Control of Insects Research Laboratory, USDA, Agricultural Research Service, 1503 S. Providence Road, MO, 65203, Columbia, USA
| | - O P Perera
- Southern Insect Management Research Unit, USDA, Agricultural Research Service, Stoneville, MS, 38776, USA
| | - G L Snodgrass
- Southern Insect Management Research Unit, USDA, Agricultural Research Service, Stoneville, MS, 38776, USA
| |
Collapse
|
18
|
Liang GF, Liang Y, Xue Q, Lu JF, Cheng JJ, Huang J. Astakine LvAST binds to the β subunit of F1-ATP synthase and likely plays a role in white shrimp Litopeneaus vannamei defense against white spot syndrome virus. FISH & SHELLFISH IMMUNOLOGY 2015; 43:75-81. [PMID: 25536411 DOI: 10.1016/j.fsi.2014.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/01/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
Cytokines play a critical role in innate and adaptive immunity. Astakines represent a group of invertebrate cytokines that are related to vertebrate prokineticin and function in promoting hematopoiesis in crustaceans. We have identified an astakine from the white shrimp Litopeneaus vannamei and named it LvAST in a previous research. In the present research, we investigated the interactions among LvAST, the envelope protein VP37 of white spot syndrome virus (i.e., WSSV), and the β subunit of F1-ATP synthase (ATPsyn-β) of the white shrimp (i.e., BP53) using binding assays and co-precipitations. We also examined the effects of LvAST on shrimp susceptibility to WSSV. We found that LvAST and VP37 competitively bound to BP53, but did not bind to each other. Shrimps that had been injected with recombinant LvAST exhibited significantly lower mortality and longer survival time in experimental infections by WSSV. In contrast, shrimps whose LvAST gene expression had been inhibited by RNA interference showed significantly higher WSSV infection intensity and shorter survival time following viral challenges. These results suggested that LvAST and WSSV both likely use ATPsyn-β as a receptor and LvAST plays a role in shrimp defense against WSSV infection. This represented the first research showing the involvement of astakines in host antiviral immunity.
Collapse
Affiliation(s)
- Gao-Feng Liang
- Key Laboratory of Sustainable Development of Marine Fisheries, The Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yan Liang
- Key Laboratory of Sustainable Development of Marine Fisheries, The Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266035, China
| | - Qinggang Xue
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266035, China; School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
| | - Jin-Feng Lu
- Key Laboratory of Sustainable Development of Marine Fisheries, The Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jun-Jun Cheng
- Key Laboratory of Sustainable Development of Marine Fisheries, The Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jie Huang
- Key Laboratory of Sustainable Development of Marine Fisheries, The Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266035, China.
| |
Collapse
|
19
|
Clark KF. Characterization and functional classification of American lobster (Homarus americanus) immune factor transcripts. FISH & SHELLFISH IMMUNOLOGY 2014; 41:12-26. [PMID: 24981290 DOI: 10.1016/j.fsi.2014.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/13/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
The American lobster (Homarus americanus) is the most important commercially exploited marine species in Canada. Very little is known about the H. americanus molecular humoral immune response or how to determine if a seemingly healthy lobster is infected with a pathogen. The goal of this work is to characterize several important H. americanus immune genes as well as highlight and classify hundreds of others into functional immune groups. The protein sequence of H. americanus acute phase serum amyloid protein A (SAA) was found to be similar to that of vertebrate SAA, and is likely a good clinical marker for immune activation in lobsters and some crustaceans. Additionally, only one gene, Trypsin 1b, was found to be differentially regulated during bacterial, microparasitic and viral challenges in lobster and is likely critical for the activation of the H. americanus immune response. Bioinformatic analysis was used to functionally annotate, 263 H. americanus immune genes and identify the few shared patterns of differential gene expression in lobsters in response to bacterial, parasitic and viral challenge. Many of the described immune genes are biomarker candidates which could be used as clinical indicators for lobster health and disease. Biomarkers can facilitate early detection of pathogens, or anthropomorphic stressors, so that mitigation strategies can be developed in order to prevent the devastating economic losses that have occurred in Southern New England, USA. This work is contributes to further our understanding of how the lobster immune system works and how it can be used to maintain the health and sustainability of the overall American lobster fishery.
Collapse
Affiliation(s)
- K Fraser Clark
- AVC Lobster Science Centre, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada; Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada; Department of Plant and Animal Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada.
| |
Collapse
|
20
|
Benton JL, Kery R, Li J, Noonin C, Söderhäll I, Beltz BS. Cells from the immune system generate adult-born neurons in crayfish. Dev Cell 2014; 30:322-33. [PMID: 25117683 DOI: 10.1016/j.devcel.2014.06.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 04/08/2014] [Accepted: 06/19/2014] [Indexed: 10/24/2022]
Abstract
Neurogenesis is an ongoing process in the brains of adult decapod crustaceans. However, the first-generation precursors that produce adult-born neurons, which reside in a neurogenic niche, are not self-renewing in crayfish and must be replenished. The source of these neuronal precursors is unknown. Here, we report that adult-born neurons in crayfish can be derived from hemocytes. Following adoptive transfer of 5-ethynyl-2'-deoxyuridine (EdU)-labeled hemocytes, labeled cells populate the neurogenic niche containing the first-generation neuronal precursors. Seven weeks after adoptive transfer, EdU-labeled cells are located in brain clusters 9 and 10 (where adult-born neurons differentiate) and express appropriate neurotransmitters. Moreover, the number of cells composing the neurogenic niche in crayfish is tightly correlated with total hemocyte counts (THCs) and can be manipulated by raising or lowering THC. These studies identify hemocytes as a source of adult-born neurons in crayfish and demonstrate that the immune system is a key contributor to adult neurogenesis.
Collapse
Affiliation(s)
- Jeanne L Benton
- Neuroscience Program, Wellesley College, Wellesley, MA 02481, USA
| | - Rachel Kery
- Neuroscience Program, Wellesley College, Wellesley, MA 02481, USA
| | - Jingjing Li
- Neuroscience Program, Wellesley College, Wellesley, MA 02481, USA
| | - Chadanat Noonin
- Department of Comparative Physiology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Irene Söderhäll
- Department of Comparative Physiology, Uppsala University, SE-752 36 Uppsala, Sweden.
| | - Barbara S Beltz
- Neuroscience Program, Wellesley College, Wellesley, MA 02481, USA.
| |
Collapse
|
21
|
Gruber C, Vainikka A, Hirvonen H, Rantala MJ, Kortet R. Endogenous Seasonal Variation in the Encapsulation Response of the Noble Crayfish (Astacus astacus). ANN ZOOL FENN 2014. [DOI: 10.5735/086.051.0504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Buchmann K. Evolution of Innate Immunity: Clues from Invertebrates via Fish to Mammals. Front Immunol 2014; 5:459. [PMID: 25295041 PMCID: PMC4172062 DOI: 10.3389/fimmu.2014.00459] [Citation(s) in RCA: 343] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/08/2014] [Indexed: 11/13/2022] Open
Abstract
Host responses against invading pathogens are basic physiological reactions of all living organisms. Since the appearance of the first eukaryotic cells, a series of defense mechanisms have evolved in order to secure cellular integrity, homeostasis, and survival of the host. Invertebrates, ranging from protozoans to metazoans, possess cellular receptors, which bind to foreign elements and differentiate self from non-self. This ability is in multicellular animals associated with presence of phagocytes, bearing different names (amebocytes, hemocytes, coelomocytes) in various groups including animal sponges, worms, cnidarians, mollusks, crustaceans, chelicerates, insects, and echinoderms (sea stars and urchins). Basically, these cells have a macrophage-like appearance and function and the repair and/or fight functions associated with these cells are prominent even at the earliest evolutionary stage. The cells possess pathogen recognition receptors recognizing pathogen-associated molecular patterns, which are well-conserved molecular structures expressed by various pathogens (virus, bacteria, fungi, protozoans, helminths). Scavenger receptors, Toll-like receptors, and Nod-like receptors (NLRs) are prominent representatives within this group of host receptors. Following receptor-ligand binding, signal transduction initiates a complex cascade of cellular reactions, which lead to production of one or more of a wide array of effector molecules. Cytokines take part in this orchestration of responses even in lower invertebrates, which eventually may result in elimination or inactivation of the intruder. Important innate effector molecules are oxygen and nitrogen species, antimicrobial peptides, lectins, fibrinogen-related peptides, leucine rich repeats (LRRs), pentraxins, and complement-related proteins. Echinoderms represent the most developed invertebrates and the bridge leading to the primitive chordates, cephalochordates, and urochordates, in which many autologous genes and functions from their ancestors can be found. They exhibit numerous variants of innate recognition and effector molecules, which allow fast and innate responses toward diverse pathogens despite lack of adaptive responses. The primitive vertebrates (agnathans also termed jawless fish) were the first to supplement innate responses with adaptive elements. Thus hagfish and lampreys use LRRs as variable lymphocyte receptors, whereas higher vertebrates [cartilaginous and bony fishes (jawed fish), amphibians, reptiles, birds, and mammals] developed the major histocompatibility complex, T-cell receptors, and B-cell receptors (immunoglobulins) as additional adaptive weaponry to assist innate responses. Extensive cytokine networks are recognized in fish, but related signal molecules can be traced among invertebrates. The high specificity, antibody maturation, immunological memory, and secondary responses of adaptive immunity were so successful that it allowed higher vertebrates to reduce the number of variants of the innate molecules originating from both invertebrates and lower vertebrates. Nonetheless, vertebrates combine the two arms in an intricate inter-dependent network. Organisms at all developmental stages have, in order to survive, applied available genes and functions of which some may have been lost or may have changed function through evolution. The molecular mechanisms involved in evolution of immune molecules, might apart from simple base substitutions be as diverse as gene duplication, deletions, alternative splicing, gene recombination, domain shuffling, retrotransposition, and gene conversion. Further, variable regulation of gene expression may have played a role.
Collapse
Affiliation(s)
- Kurt Buchmann
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
23
|
Noonin C, Watthanasurorot A, Winberg S, Söderhäll I. Circadian regulation of melanization and prokineticin homologues is conserved in the brain of freshwater crayfish and zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:218-226. [PMID: 23500514 DOI: 10.1016/j.dci.2013.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 06/01/2023]
Abstract
Circadian clock is important to living organisms to adjust to the external environment. This clock has been extensively studied in mammals, and prokineticin 2 (Prok2) acts as one of the messenger between the central nervous system and peripheral tissues. In this study, expression profiles of Prok1 and Prok2 were investigated in a non-mammalian vertebrate brain, zebrafish, and the expression was compared to the Prok homologues, astakines (Ast1 and Ast2) in crayfish. These transcripts exhibited circadian oscillation in the brain, and Ast1 had similar pattern to Prok2. In addition, the expression of tyrosinase, an enzyme which expression is regulated by E-box elements like in Prok2, was also examined in zebrafish brain and was compared with the expression of prophenoloxidase (proPO), the melanization enzyme, in crayfish brain. Interestingly, the expressions of both Tyr and proPO displayed circadian rhythm in a similar pattern to Prok2 and Ast1, respectively. Therefore, this study shows that circadian oscillation of prokineticin homologues and enzymes involved in melanization are conserved.
Collapse
Affiliation(s)
- Chadanat Noonin
- Department of Comparative Physiology, Uppsala University, Norbyv. 18A, 752 36 Uppsala, Sweden
| | | | | | | |
Collapse
|
24
|
Jékely G. Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc Natl Acad Sci U S A 2013; 110:8702-7. [PMID: 23637342 PMCID: PMC3666674 DOI: 10.1073/pnas.1221833110] [Citation(s) in RCA: 304] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuropeptides are signaling molecules that commonly act via G protein-coupled receptors (GPCRs) and are generated in neurons by proneuropeptide (pNP) cleavage. Present in both cnidarians and bilaterians, neuropeptides represent an ancient and widespread mode of neuronal communication. Due to the inherent difficulties of analyzing highly diverse and repetitive pNPs, the relationships among different families are often elusive. Using similarity-based clustering and sensitive similarity searches, I obtained a global view of metazoan pNP diversity and evolution. Clustering revealed a large and diffuse network of sequences connected by significant sequence similarity encompassing one-quarter of all families. pNPs belonging to this cluster were also identified in the early-branching neuronless animal Trichoplax adhaerens. Clustering of neuropeptide GPCRs identified several orthology groups and allowed the reconstruction of the phyletic distribution of receptor families. GPCR phyletic distribution closely paralleled that of pNPs, indicating extensive conservation and long-term coevolution of receptor-ligand pairs. Receptor orthology and intermediate sequences also revealed the homology of pNPs so far considered unrelated, including allatotropin and orexin. These findings, together with the identification of deuterostome achatin and luqin and protostome opioid pNPs, extended the neuropeptide complement of the urbilaterian. Several pNPs were also identified from the hemichordate Saccoglossus kowalevskii and the cephalochordate Branchiostoma floridae, elucidating pNP evolution in deuterostomes. Receptor-ligand conservation also allowed ligand predictions for many uncharacterized GPCRs from nonmodel species. The reconstruction of the neuropeptide-signaling repertoire at deep nodes of the animal phylogeny allowed the formulation of a testable scenario of the evolution of animal neuroendocrine systems.
Collapse
Affiliation(s)
- Gáspár Jékely
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| |
Collapse
|
25
|
Söderhäll I. Recent advances in crayfish hematopoietic stem cell culture: a model for studies of hemocyte differentiation and immunity. Cytotechnology 2013; 65:691-5. [PMID: 23686548 DOI: 10.1007/s10616-013-9578-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/29/2013] [Indexed: 12/11/2022] Open
Abstract
Hematopoiesis is the process by which blood cells (hemocytes) mature and subsequently enter the circulation and we have developed a new technique to culture the hematopoietic progenitor cells in vitro. The reason for the successful culture was the isolation of a plasma protein that turned out to be a novel cytokine, astakine 1 (Ast1) containing a domain present in several vertebrates, so-called prokineticins. Now we have detected several astakines from other invertebrate species. Depending on our discovery of the cytokine Ast1 we have an opportunity to study in detail the differentiation of cells in the hematopoietic tissue of a crustacean, a tissue of evolutionary interest for studies of the connection between the vascular system and the nervous system. We have been able to isolate the entire hematopoietic tissue and for the first time detected a link between this tissue and the brain. We have further localized a proliferation center in the tissue and characterized its different parts. We have also used this system to isolate a new hematopoietic factor CHF that is important in the crossroad between apoptosis and hemocyte differentiation. Our technique for culture of crayfish hematopoietic stem cells provides a simple tool for studying the mechanism of hematopoiesis, but also enables detailed studies of immune defense reactions. Further, the culture system has been used for studies of viral defense and the system is suitable for gene silencing which allows functional characterization of different molecules involved in host defense as well as in hemocyte differentiation.
Collapse
Affiliation(s)
- Irene Söderhäll
- Department of Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden,
| |
Collapse
|
26
|
Watthanasurorot A, Saelee N, Phongdara A, Roytrakul S, Jiravanichpaisal P, Söderhäll K, Söderhäll I. Astakine 2--the dark knight linking melatonin to circadian regulation in crustaceans. PLoS Genet 2013; 9:e1003361. [PMID: 23555281 PMCID: PMC3605217 DOI: 10.1371/journal.pgen.1003361] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 01/05/2013] [Indexed: 11/27/2022] Open
Abstract
Daily, circadian rhythms influence essentially all living organisms and affect many physiological processes from sleep and nutrition to immunity. This ability to respond to environmental daily rhythms has been conserved along evolution, and it is found among species from bacteria to mammals. The hematopoietic process of the crayfish Pacifastacus leniusculus is under circadian control and is tightly regulated by astakines, a new family of cytokines sharing a prokineticin (PROK) domain. The expression of AST1 and AST2 are light-dependent, and this suggests an evolutionarily conserved function for PROK domain proteins in mediating circadian rhythms. Vertebrate PROKs are transmitters of circadian rhythms of the suprachiasmatic nucleus (SCN) in the brain of mammals, but the mechanism by which they function is unknown. Here we demonstrate that high AST2 expression is induced by melatonin in the brain. We identify RACK1 as a binding protein of AST2 and further provide evidence that a complex between AST2 and RACK1 functions as a negative-feedback regulator of the circadian clock. By DNA mobility shift assay, we showed that the AST2-RACK1 complex will interfere with the binding between BMAL1 and CLK and inhibit the E-box binding activity of the complex BMAL1-CLK. Finally, we demonstrate by gene knockdown that AST2 is necessary for melatonin-induced inhibition of the complex formation between BMAL1 and CLK during the dark period. In summary, we provide evidence that melatonin regulates AST2 expression and thereby affects the core clock of the crustacean brain. This process may be very important in all animals that have AST2 molecules, i.e. spiders, ticks, crustaceans, scorpions, several insect groups such as Hymenoptera, Hemiptera, and Blattodea, but not Diptera and Coleoptera. Our findings further reveal an ancient evolutionary role for the prokineticin superfamily protein that links melatonin to direct regulation of the core clock gene feedback loops. Most living organisms are able to sense the time and in particular time of day by their internal clocks. So-called clock proteins control these internal clockworks. BMAL1 and CLK are two important clock proteins, which together form a complex that serves as a transcription factor and controls the production of diurnal proteins. These diurnal proteins, in turn, inhibit the formation of clock proteins so that the concentration of the different proteins in the cell oscillates back and forth throughout the day. External factors may affect the balance of clock proteins, and one such important factor is light. Melatonin is a darkness hormone produced in the brain of most animals during the night, and here we show that melatonin controls the formation of a protein named AST2 in crayfish. AST2 belongs to a group of proteins found in many arthropods, such as spiders, scorpions, crustaceans, and some insects, whose function has been unknown until now. Now we demonstrate that AST2 is induced by melatonin at night and then functions in the internal biological clock by preventing BMAL1 and CLK to form a complex. In this way, AST2 acts as a link between melatonin and the internal biological clock.
Collapse
Affiliation(s)
| | - Netnapa Saelee
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | - Amornrat Phongdara
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology (BIOTEC), NSTDA, Pathumthani, Thailand
| | - Pikul Jiravanichpaisal
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), NSTDA, Pathumthani, Thailand
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | - Irene Söderhäll
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
27
|
Noonin C, Lin X, Jiravanichpaisal P, Söderhäll K, Söderhäll I. Invertebrate hematopoiesis: an anterior proliferation center as a link between the hematopoietic tissue and the brain. Stem Cells Dev 2012; 21:3173-86. [PMID: 22564088 DOI: 10.1089/scd.2012.0077] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During evolution, the innate and adaptive immune systems were developed to protect organisms from non-self substances. The innate immune system is phylogenetically more ancient and is present in most multicellular organisms, whereas adaptive responses are restricted to vertebrates. Arthropods lack the blood cells of the lymphoid lineage and oxygen-carrying erythrocytes, making them suitable model animals for studying the regulation of the blood cells of the innate immune system. Many crustaceans have a long life span and need to continuously synthesize blood cells, in contrast to many insects. The hematopoietic tissue (HPT) of Pacifastacus leniusculus provides a simple model for studying hematopoiesis, because the tissue can be isolated, and the proliferation of stem cells and their differentiation can be studied both in vivo and in vitro. Here, we demonstrate new findings of a physical link between the HPT and the brain. Actively proliferating cells were localized to an anterior proliferation center (APC) in the anterior part of the tissue near the area linking the HPT to the brain, whereas more differentiated cells were detected in the posterior part. The central areas of HPT expand in response to lipopolysaccharide-induced blood loss. Cells isolated from the APC divide rapidly and form cell clusters in vitro; conversely, the cells from the remaining HPT form monolayers, and they can be induced to differentiate in vitro. Our findings offer an opportunity to learn more about invertebrate hematopoiesis and its connection to the central nervous system, thereby obtaining new information about the evolution of different blood and nerve cell lineages.
Collapse
Affiliation(s)
- Chadanat Noonin
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
28
|
Abstract
Abstract
Major contributions to research in hematopoiesis in invertebrate animals have come from studies in the fruit fly, Drosophila melanogaster, and the freshwater crayfish, Pacifastacus leniusculus. These animals lack oxygen-carrying erythrocytes and blood cells of the lymphoid lineage, which participate in adaptive immune defense, thus making them suitable model animals to study the regulation of blood cells of the innate immune system. This review presents an overview of crustacean blood cell formation, the role of these cells in innate immunity, and how their synthesis is regulated by the astakine cytokines. Astakines are among the first invertebrate cytokines shown to be involved in hematopoiesis, and they can stimulate the proliferation, differentiation, and survival of hematopoietic tissue cells. The astakines and their vertebrate homologues, prokineticins, share similar functions in hematopoiesis; thus, studies of astakine-induced hematopoiesis in crustaceans may not only advance our understanding of the regulation of invertebrate hematopoiesis but may also provide new evolutionary perspectives about this process.
Collapse
|
29
|
Wu C, Söderhäll K, Söderhäll I. Two novel ficolin-like proteins act as pattern recognition receptors for invading pathogens in the freshwater crayfish Pacifastacus leniusculus. Proteomics 2011; 11:2249-64. [PMID: 21598394 DOI: 10.1002/pmic.201000728] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 12/31/2022]
Abstract
To isolate pathogen-associated molecular patterns (PAMPs)-binding molecules, the bacterium, Staphylococcus aureus was used as an affinity matrix to find bacteria-binding proteins in the plasma of the freshwater crayfish, Pacifastacus leniusculus. Two new bacteria-binding ficolin-like proteins (FLPs) were identified by 2-DE and MS analysis. The FLPs have a fibrinogen-related domain (FReD) in their C-terminal and a repeat region in their N-terminal regions with putative structural similarities to the collagen-like domain of vertebrate ficolins and mannose binding lectins (MBLs). Phylogenetic analysis shows that the newly isolated crayfish FLP1 and FLP2 cluster separately from other FReD-containing proteins. A tissue distribution study showed that the mRNA expression of FLP occurred mainly in the hematopoietic tissue (Hpt) and in the hepatopancreas. Recombinant FLPs exhibited agglutination activity of Gram-negative bacteria Escherichia coli and Aeromonas hydrophila in the presence of Ca(2+) . The FLPs could bind to A. hydrophila, E. coli as well as S. aureus as judged by bacteria adsorption. Moreover, the FLPs may help crayfish to clear Gram-negative bacteria, but not Gram-positive bacteria which had been injected into the hemolymph. When Gram-negative bacteria coated with FLPs were incubated with Hpt cells, a lower death rate of the cells was found compared with control treatment. Our results suggest that FLPs function as pattern recognition receptors in the immune response of crayfish.
Collapse
Affiliation(s)
- Chenglin Wu
- Department of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|