1
|
Sperstad PD, Holmstrom ED. Conformational dynamics of the hepatitis C virus 3'X RNA. RNA (NEW YORK, N.Y.) 2024; 30:1151-1163. [PMID: 38834242 PMCID: PMC11331413 DOI: 10.1261/rna.079983.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
The 3' end of the hepatitis C virus genome is terminated by a highly conserved, 98 nt sequence called 3'X. This untranslated structural element is thought to regulate several essential RNA-dependent processes associated with infection. 3'X has two proposed conformations comprised of either three or two stem-loop structures that result from the different base-pairing interactions within the first 55 nt. Here, we used single-molecule Förster resonance energy transfer spectroscopy to monitor the conformational status of fluorescently labeled constructs that isolate this region of the RNA (3'X55). We observed that 3'X55 can adopt both proposed conformations and the relative abundance of them can be modulated by either solution conditions or nucleotide deletions. Furthermore, interconversion between the two conformations takes place over the course of several hours. The simultaneous existence of two slowly interconverting conformations may help prime individual copies of the viral genome for either viral protein or RNA synthesis, thereby minimizing conflicts between these two competing processes.
Collapse
Affiliation(s)
- Parker D Sperstad
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Erik D Holmstrom
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
2
|
Ramos-Lorente SE, Berzal-Herranz B, Romero-López C, Berzal-Herranz A. Recruitment of the 40S ribosomal subunit by the West Nile virus 3' UTR promotes the cross-talk between the viral genomic ends for translation regulation. Virus Res 2024; 343:199340. [PMID: 38387694 PMCID: PMC10907855 DOI: 10.1016/j.virusres.2024.199340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
Flaviviral RNA genomes are composed of discrete RNA structural units arranged in an ordered fashion and grouped into complex folded domains that regulate essential viral functions, e.g. replication and translation. This is achieved by adjusting the overall structure of the RNA genome via the establishment of inter- and intramolecular interactions. Translation regulation is likely the main process controlling flaviviral gene expression. Although the genomic 3' UTR is a key player in this regulation, little is known about the molecular mechanisms underlying this role. The present work provides evidence for the specific recruitment of the 40S ribosomal subunit by the 3' UTR of the West Nile virus RNA genome, showing that the joint action of both genomic ends contributes the positioning of the 40S subunit at the 5' end. The combination of structural mapping techniques revealed specific conformational requirements at the 3' UTR for 40S binding, involving the highly conserved SL-III, 5'DB, 3'DB and 3'SL elements, all involved in the translation regulation. These results point to the 40S subunit as a bridge to ensure cross-talk between both genomic ends during viral translation and support a link between 40S recruitment by the 3' UTR and translation control.
Collapse
Affiliation(s)
- Sara Esther Ramos-Lorente
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Av. del Conocimiento 17, 18016 Armilla Granada, Spain
| | - Beatriz Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Av. del Conocimiento 17, 18016 Armilla Granada, Spain
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Av. del Conocimiento 17, 18016 Armilla Granada, Spain.
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Av. del Conocimiento 17, 18016 Armilla Granada, Spain.
| |
Collapse
|
3
|
Allan MF, Brivanlou A, Rouskin S. RNA levers and switches controlling viral gene expression. Trends Biochem Sci 2023; 48:391-406. [PMID: 36710231 DOI: 10.1016/j.tibs.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/27/2022] [Accepted: 12/15/2022] [Indexed: 01/29/2023]
Abstract
RNA viruses are diverse and abundant pathogens that are responsible for numerous human diseases. RNA viruses possess relatively compact genomes and have therefore evolved multiple mechanisms to maximize their coding capacities, often by encoding overlapping reading frames. These reading frames are then decoded by mechanisms such as alternative splicing and ribosomal frameshifting to produce multiple distinct proteins. These solutions are enabled by the ability of the RNA genome to fold into 3D structures that can mimic cellular RNAs, hijack host proteins, and expose or occlude regulatory protein-binding motifs to ultimately control key process in the viral life cycle. We highlight recent findings focusing on less conventional mechanisms of gene expression and new discoveries on the role of RNA structures.
Collapse
Affiliation(s)
- Matthew F Allan
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amir Brivanlou
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Romero-López C, Roda-Herreros M, Berzal-Herranz B, Ramos-Lorente SE, Berzal-Herranz A. Inter- and Intramolecular RNA-RNA Interactions Modulate the Regulation of Translation Mediated by the 3' UTR in West Nile Virus. Int J Mol Sci 2023; 24:5337. [PMID: 36982407 PMCID: PMC10049277 DOI: 10.3390/ijms24065337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
RNA viruses rely on genomic structural elements to accomplish the functions necessary to complete the viral cycle. These elements participate in a dynamic network of RNA-RNA interactions that determine the overall folding of the RNA genome and may be responsible for the fine regulation of viral replication and translation as well as the transition between them. The genomes of members of the genus Flavivirus are characterized by a complexly folded 3' UTR with a number of RNA structural elements that are conserved across isolates of each species. The present work provides evidence of intra- and intermolecular RNA-RNA interactions involving RNA structural elements in the 3' UTR of the West Nile virus genome. The intermolecular interactions can be visualized in vitro by the formation of molecular dimers involving the participation of at least the SLI and 3'DB elements. Certainly, the 3' UTR of dengue virus, which lacks the SLI element, forms molecular dimers in lower quantities via a single interaction site, probably 3'DB. The functional analysis of sequence or deletion mutants revealed an inverse relationship between 3' UTR dimerization and viral translation efficiency in cell cultures. A network of RNA-RNA interactions involving 3' UTR structural elements might therefore exist, helping to regulate viral translation.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18016 Granada, Spain
| | | | | | | | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18016 Granada, Spain
| |
Collapse
|
5
|
Zhou X, Du Z, Huang X. A potential long-range RNA-RNA interaction in the HIV-1 RNA. J Biomol Struct Dyn 2023; 41:14968-14976. [PMID: 36863767 DOI: 10.1080/07391102.2023.2184639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/19/2023] [Indexed: 03/04/2023]
Abstract
It is well-established that viral and cellular mRNAs alike harbour functional long-range intra-molecular RNA-RNA interactions. Despite the biological importance of such interactions, their identification and characterization remain challenging. Here we present a computational method for the identification of certain kinds of long-range intra-molecular RNA-RNA interactions involving the loop nucleotides of a hairpin loop. Using the computational method, we analysed 4272 HIV-1 genomic mRNAs. A potential long-range intra-molecular RNA-RNA interaction within the HIV-1 genomic RNA was identified. The long-range interaction is mediated by a kissing loop structure between two stem-loops of the previously reported SHAPE-based secondary structure of the entire HIV-1 genome. Structural modelling studies were carried out to show that the kissing loop structure not only is sterically feasible, but also contains a conserved RNA structural motif often found in compact RNA pseudoknots. The computational method should be generally applicable to the identification of potential long-range intra-molecular RNA-RNA interactions in any viral or cellular mRNA sequence.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xia Zhou
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, Carbondale, IL, USA
| | - Zhihua Du
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, Carbondale, IL, USA
| | - Xiaolan Huang
- School of Computing, Southern Illinois University at Carbondale, Carbondale, IL, USA
| |
Collapse
|
6
|
Berzal-Herranz A, Berzal-Herranz B, Ramos-Lorente SE, Romero-López C. The Genomic 3' UTR of Flaviviruses Is a Translation Initiation Enhancer. Int J Mol Sci 2022; 23:8604. [PMID: 35955738 PMCID: PMC9369090 DOI: 10.3390/ijms23158604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 12/21/2022] Open
Abstract
Viruses rely on the cellular machinery of host cells to synthesize their proteins, and have developed different mechanisms enabling them to compete with cellular mRNAs for access to it. The genus Flavivirus is a large group of positive, single-stranded RNA viruses that includes several important human pathogens, such as West Nile, Dengue and Zika virus. The genome of flaviviruses bears a type 1 cap structure at its 5' end, needed for the main translation initiation mechanism. Several members of the genus also use a cap-independent translation mechanism. The present work provides evidence that the WNV 5' end also promotes a cap-independent translation initiation mechanism in mammalian and insect cells, reinforcing the hypothesis that this might be a general strategy of flaviviruses. In agreement with previous reports, we show that this mechanism depends on the presence of the viral genomic 3' UTR. The results also show that the 3' UTR of the WNV genome enhances translation of the cap-dependent mechanism. Interestingly, WNV 3' UTR can be replaced by the 3' UTR of other flaviviruses and the translation enhancing effect is maintained, suggesting a molecular mechanism that does not involve direct RNA-RNA interactions to be at work. In addition, the deletion of specific structural elements of the WNV 3' UTR leads to increased cap-dependent and cap-independent translation. These findings suggest the 3' UTR to be involved in a fine-tuned translation regulation mechanism.
Collapse
Affiliation(s)
| | | | | | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina “López-Neyra” (IPBLN), CSIC, PTS Granada, Avenida del Conocimiento 17, 18016 Armilla, Granada, Spain; (B.B.-H.); (S.E.R.-L.)
| |
Collapse
|
7
|
Castillo-Martínez J, Fan L, Szewczyk MP, Wang YX, Gallego J. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2287-2301. [PMID: 35137150 PMCID: PMC8887478 DOI: 10.1093/nar/gkac061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 11/26/2022] Open
Abstract
Subdomain 5BSL3.2 of hepatitis C virus RNA lies at the core of a network of distal RNA–RNA contacts that connect the 5′ and 3′ regions of the viral genome and regulate the translation and replication stages of the viral cycle. Using small-angle X-ray scattering and NMR spectroscopy experiments, we have determined at low resolution the structural models of this subdomain and its distal complex with domain 3′X, located at the 3′-terminus of the viral RNA chain. 5BSL3.2 adopts a characteristic ‘L’ shape in solution, whereas the 5BSL3.2–3′X distal complex forms a highly unusual ‘Y’-shaped kissing junction that blocks the dimer linkage sequence of domain 3′X and promotes translation. The structure of this complex may impede an effective association of the viral polymerase with 5BSL3.2 and 3′X to start negative-strand RNA synthesis, contributing to explain the likely mechanism used by these sequences to regulate viral replication and translation. In addition, sequence and shape features of 5BSL3.2 are present in functional RNA motifs of flaviviruses, suggesting conserved regulatory processes within the Flaviviridae family.
Collapse
Affiliation(s)
- Jesús Castillo-Martínez
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, 46001Valencia, Spain
- Escuela de Doctorado, Universidad Católica de Valencia, 46001Valencia, Spain
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-ray Scattering Core Facility of National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Mateusz P Szewczyk
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, 46001Valencia, Spain
- Escuela de Doctorado, Universidad Católica de Valencia, 46001Valencia, Spain
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - José Gallego
- To whom correspondence should be addressed. Tel: +34 963637412;
| |
Collapse
|
8
|
Fang X, Gallego J, Wang YX. Deriving RNA topological structure from SAXS. Methods Enzymol 2022; 677:479-529. [DOI: 10.1016/bs.mie.2022.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Romero-López C, Berzal-Herranz A, Martínez-Guitarte JL, de la Fuente M. CriTER-A: A Novel Temperature-Dependent Noncoding RNA Switch in the Telomeric Transcriptome of Chironomus riparius. Int J Mol Sci 2021; 22:10310. [PMID: 34638651 PMCID: PMC8508857 DOI: 10.3390/ijms221910310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023] Open
Abstract
The telomeric transcriptome of Chironomus riparius has been involved in thermal stress response. One of the telomeric transcripts, the so-called CriTER-A variant, is highly overexpressed upon heat shock. On the other hand, its homologous variant CriTER-B, which is the most frequently encoded noncoding RNA in the telomeres of C. riparius, is only slightly affected by thermal stress. Interestingly, both transcripts show high sequence homology, but less is known about their folding and how this could influence their differential behaviour. Our study suggests that CriTER-A folds as two different conformers, whose relative proportion is influenced by temperature conditions. Meanwhile, the CriTER-B variant shows only one dominant conformer. Thus, a temperature-dependent conformational equilibrium can be established for CriTER-A, suggesting a putative functional role of the telomeric transcriptome in relation to thermal stress that could rely on the structure-function relationship of the CriTER-A transcripts.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, 18016 Armilla, Granada, Spain;
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, 18016 Armilla, Granada, Spain;
| | - José Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), 28230 Las Rozas, Madrid, Spain;
| | - Mercedes de la Fuente
- Departamento de Ciencias y Técnicas Fisicoquímicas, Universidad Nacional de Educación a Distancia (UNED), 28230 Las Rozas, Madrid, Spain
| |
Collapse
|
10
|
RNA Structures and Their Role in Selective Genome Packaging. Viruses 2021; 13:v13091788. [PMID: 34578369 PMCID: PMC8472981 DOI: 10.3390/v13091788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
To generate infectious viral particles, viruses must specifically select their genomic RNA from milieu that contains a complex mixture of cellular or non-genomic viral RNAs. In this review, we focus on the role of viral encoded RNA structures in genome packaging. We first discuss how packaging signals are constructed from local and long-range base pairings within viral genomes, as well as inter-molecular interactions between viral and host RNAs. Then, how genome packaging is regulated by the biophysical properties of RNA. Finally, we examine the impact of RNA packaging signals on viral evolution.
Collapse
|
11
|
Chkuaseli T, White KA. Activation of viral transcription by stepwise largescale folding of an RNA virus genome. Nucleic Acids Res 2020; 48:9285-9300. [PMID: 32785642 PMCID: PMC7498350 DOI: 10.1093/nar/gkaa675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/08/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
The genomes of RNA viruses contain regulatory elements of varying complexity. Many plus-strand RNA viruses employ largescale intra-genomic RNA-RNA interactions as a means to control viral processes. Here, we describe an elaborate RNA structure formed by multiple distant regions in a tombusvirus genome that activates transcription of a viral subgenomic mRNA. The initial step in assembly of this intramolecular RNA complex involves the folding of a large viral RNA domain, which generates a discontinuous binding pocket. Next, a distally-located protracted stem-loop RNA structure docks, via base-pairing, into the binding site and acts as a linchpin that stabilizes the RNA complex and activates transcription. A multi-step RNA folding pathway is proposed in which rate-limiting steps contribute to a delay in transcription of the capsid protein-encoding viral subgenomic mRNA. This study provides an exceptional example of the complexity of genome-scale viral regulation and offers new insights into the assembly schemes utilized by large intra-genomic RNA structures.
Collapse
Affiliation(s)
- Tamari Chkuaseli
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
12
|
Diversity of the hepatitis C virus NS5B gene during HIV co-infection. PLoS One 2020; 15:e0237162. [PMID: 32750098 PMCID: PMC7402467 DOI: 10.1371/journal.pone.0237162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/20/2020] [Indexed: 01/06/2023] Open
Abstract
Viral diversity is an important feature of hepatitis C virus (HCV) infection and an important predictor of disease progression and treatment response. HIV/HCV co-infection is associated with enhanced HCV replication, increased fibrosis, and the development of liver disease. HIV also increases quasispecies diversity of HCV structural genes, although limited data are available regarding the impact of HIV on non-structural genes of HCV, particularly in the absence of direct-acting therapies. The genetic diversity and presence of drug resistance mutations within the RNA-dependent RNA polymerase (NS5B) gene were examined in 3 groups of women with HCV genotype 1a infection, including those with HCV mono-infection, antiretroviral (ART)-naïve women with HIV/HCV co-infection and CD4 cell count <350 cells/mm3, and ART-naïve women with HIV/HCV co-infection and CD4 cell count ≥350 cells/mm3. None had ever been treated for HCV infection. There was evidence of significant diversity across the entire NS5B gene in all women. There were several nucleotides and amino acids with distinct distributions across the three study groups, although no obvious clustering of NS5B sequences was observed based on HIV co-infection or CD4 cell count. Polymorphisms at amino acid positions associated with resistance to dasabuvir and sofosbuvir were limited, although the Q309R variant associated with ribavirin resistance was present in 12 individuals with HCV mono-infection, 8 HIV/HCV co-infected individuals with CD4 <350 cells/mm3, and 12 HIV/HCV co-infected individuals with CD4 ≥350 cells/mm3. Previously reported fitness altering mutations were rare. CD8+ T cell responses against the human leukocyte antigen (HLA) B57-restricted epitopes NS5B2629-2637 and NS5B2936-2944 are critical for HCV control and were completely conserved in 44 (51.8%) and 70 (82.4%) study participants. These data demonstrate extensive variation across the NS5B gene. Genotypic variation may have a profound impact on HCV replication and pathogenesis and deserves careful evaluation.
Collapse
|
13
|
Hepatitis C Virus Translation Regulation. Int J Mol Sci 2020; 21:ijms21072328. [PMID: 32230899 PMCID: PMC7178104 DOI: 10.3390/ijms21072328] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Translation of the hepatitis C virus (HCV) RNA genome is regulated by the internal ribosome entry site (IRES), located in the 5’-untranslated region (5′UTR) and part of the core protein coding sequence, and by the 3′UTR. The 5′UTR has some highly conserved structural regions, while others can assume different conformations. The IRES can bind to the ribosomal 40S subunit with high affinity without any other factors. Nevertheless, IRES activity is modulated by additional cis sequences in the viral genome, including the 3′UTR and the cis-acting replication element (CRE). Canonical translation initiation factors (eIFs) are involved in HCV translation initiation, including eIF3, eIF2, eIF1A, eIF5, and eIF5B. Alternatively, under stress conditions and limited eIF2-Met-tRNAiMet availability, alternative initiation factors such as eIF2D, eIF2A, and eIF5B can substitute for eIF2 to allow HCV translation even when cellular mRNA translation is downregulated. In addition, several IRES trans-acting factors (ITAFs) modulate IRES activity by building large networks of RNA-protein and protein–protein interactions, also connecting 5′- and 3′-ends of the viral RNA. Moreover, some ITAFs can act as RNA chaperones that help to position the viral AUG start codon in the ribosomal 40S subunit entry channel. Finally, the liver-specific microRNA-122 (miR-122) stimulates HCV IRES-dependent translation, most likely by stabilizing a certain structure of the IRES that is required for initiation.
Collapse
|
14
|
Tabata K, Neufeldt CJ, Bartenschlager R. Hepatitis C Virus Replication. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037093. [PMID: 31570388 DOI: 10.1101/cshperspect.a037093] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Replication and amplification of the viral genome is a key process for all viruses. For hepatitis C virus (HCV), a positive-strand RNA virus, amplification of the viral genome requires the synthesis of a negative-sense RNA template, which is in turn used for the production of new genomic RNA. This process is governed by numerous proteins, both host and viral, as well as distinct lipids and specific RNA elements within the positive- and negative-strand RNAs. Moreover, this process requires specific changes to host cell ultrastructure to create microenvironments conducive to viral replication. This review will focus on describing the processes and factors involved in facilitating or regulating HCV genome replication.
Collapse
Affiliation(s)
- Keisuke Tabata
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany.,Division of Virus-Associated Carcinogenesis, German Cancer Research Center, 69120 Heidelberg, Germany.,German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Romero-López C, Berzal-Herranz A. The Role of the RNA-RNA Interactome in the Hepatitis C Virus Life Cycle. Int J Mol Sci 2020; 21:1479. [PMID: 32098260 PMCID: PMC7073135 DOI: 10.3390/ijms21041479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/05/2023] Open
Abstract
RNA virus genomes are multifunctional entities endowed with conserved structural elements that control translation, replication and encapsidation, among other processes. The preservation of these structural RNA elements constraints the genomic sequence variability. The hepatitis C virus (HCV) genome is a positive, single-stranded RNA molecule with numerous conserved structural elements that manage different steps during the infection cycle. Their function is ensured by the association of protein factors, but also by the establishment of complex, active, long-range RNA-RNA interaction networks-the so-called HCV RNA interactome. This review describes the RNA genome functions mediated via RNA-RNA contacts, and revisits some canonical ideas regarding the role of functional high-order structures during the HCV infective cycle. By outlining the roles of long-range RNA-RNA interactions from translation to virion budding, and the functional domains involved, this work provides an overview of the HCV genome as a dynamic device that manages the course of viral infection.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, Armilla, 18016 Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), Av. Conocimiento 17, Armilla, 18016 Granada, Spain
| |
Collapse
|
16
|
Castillo-Martínez J, Ovejero T, Romero-López C, Sanmartín I, Berzal-Herranz B, Oltra E, Berzal-Herranz A, Gallego J. Structure and function analysis of the essential 3'X domain of hepatitis C virus. RNA (NEW YORK, N.Y.) 2020; 26:186-198. [PMID: 31694875 PMCID: PMC6961542 DOI: 10.1261/rna.073189.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/31/2019] [Indexed: 02/05/2023]
Abstract
The 3'X domain of hepatitis C virus has been reported to control viral replication and translation by modulating the exposure of a nucleotide segment involved in a distal base-pairing interaction with an upstream 5BSL3.2 domain. To study the mechanism of this molecular switch, we have analyzed the structure of 3'X mutants that favor one of the two previously proposed conformations comprising either two or three stem-loops. Only the two-stem conformation was found to be stable and to allow the establishment of the distal contact with 5BSL3.2, and also the formation of 3'X domain homodimers by means of a universally conserved palindromic sequence. Nucleotide changes disturbing the two-stem conformation resulted in poorer replication and translation levels, explaining the high degree of conservation detected for this sequence. The switch function attributed to the 3'X domain does not occur as a result of a transition between two- and three-stem conformations, but likely through the sequestration of the 5BSL3.2-binding sequence by formation of 3'X homodimers.
Collapse
Affiliation(s)
- Jesús Castillo-Martínez
- Facultad de Medicina, Universidad Católica de Valencia, Valencia, 46001, Spain
- Escuela de Doctorado, Universidad Católica de Valencia, Valencia, 46001, Spain
| | - Tamara Ovejero
- Facultad de Medicina, Universidad Católica de Valencia, Valencia, 46001, Spain
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), Armilla, Granada, 18016, Spain
| | - Isaías Sanmartín
- Facultad de Medicina, Universidad Católica de Valencia, Valencia, 46001, Spain
| | - Beatriz Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), Armilla, Granada, 18016, Spain
| | - Elisa Oltra
- Facultad de Medicina, Universidad Católica de Valencia, Valencia, 46001, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), Armilla, Granada, 18016, Spain
| | - José Gallego
- Facultad de Medicina, Universidad Católica de Valencia, Valencia, 46001, Spain
| |
Collapse
|
17
|
Kendall C, Khalid H, Müller M, Banda DH, Kohl A, Merits A, Stonehouse NJ, Tuplin A. Structural and phenotypic analysis of Chikungunya virus RNA replication elements. Nucleic Acids Res 2019; 47:9296-9312. [PMID: 31350895 PMCID: PMC6753490 DOI: 10.1093/nar/gkz640] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging, pathogenic Alphavirus transmitted to humans by Aedes spp. mosquitoes. We have mapped the RNA structure of the 5′ region of the CHIKV genome using selective 2′-hydroxyl acylation analysed by primer extension (SHAPE) to investigate intramolecular base-pairing at single-nucleotide resolution. Taking a structure-led reverse genetic approach, in both infectious virus and sub-genomic replicon systems, we identified six RNA replication elements essential to efficient CHIKV genome replication - including novel elements, either not previously analysed in other alphaviruses or specific to CHIKV. Importantly, through a reverse genetic approach we demonstrate that the replication elements function within the positive-strand genomic copy of the virus genome, in predominantly structure-dependent mechanisms during efficient replication of the CHIKV genome. Comparative analysis in human and mosquito-derived cell lines reveal that a novel element within the 5′UTR is essential for efficient replication in both host systems, while those in the adjacent nsP1 encoding region are specific to either vertebrate or invertebrate host cells. In addition to furthering our knowledge of fundamental aspects of the molecular virology of this important human pathogen, we foresee that results from this study will be important for rational design of a genetically stable attenuated vaccine.
Collapse
Affiliation(s)
- Catherine Kendall
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Henna Khalid
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Marietta Müller
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Dominic H Banda
- University of Ghent, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Alain Kohl
- MRC-Centre for Virus Research, University of Glasgow, Glasgow, G61 1QH, UK
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
18
|
Berzal-Herranz A, Romero-López C, Berzal-Herranz B, Ramos-Lorente S. Potential of the Other Genetic Information Coded by the Viral RNA Genomes as Antiviral Target. Pharmaceuticals (Basel) 2019; 12:38. [PMID: 30871174 PMCID: PMC6469156 DOI: 10.3390/ph12010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 02/05/2023] Open
Abstract
In addition to the protein coding information, viral RNA genomes code functional information in structurally conserved units termed functional RNA domains. These RNA domains play essential roles in the viral cycle (e.g., replication and translation). Understanding the molecular mechanisms behind their function is essential to understanding the viral infective cycle. Further, interfering with the function of the genomic RNA domains offers a potential means of developing antiviral strategies. Aptamers are good candidates for targeting structural RNA domains. Besides its potential as therapeutics, aptamers also provide an excellent tool for investigating the functionality of RNA domains in viral genomes. This review briefly summarizes the work carried out in our laboratory aimed at the structural and functional characterization of the hepatitis C virus (HCV) genomic RNA domains. It also describes the efforts we carried out for the development of antiviral aptamers targeting specific genomic domains of the HCV and the human immunodeficiency virus type-1 (HIV-1).
Collapse
Affiliation(s)
- Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC); Av. del Conocimiento 17, PTS Granada, Armilla, 18016 Granada, Spain.
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC); Av. del Conocimiento 17, PTS Granada, Armilla, 18016 Granada, Spain.
| | - Beatriz Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC); Av. del Conocimiento 17, PTS Granada, Armilla, 18016 Granada, Spain.
| | - Sara Ramos-Lorente
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC); Av. del Conocimiento 17, PTS Granada, Armilla, 18016 Granada, Spain.
| |
Collapse
|
19
|
Desirò D, Hölzer M, Ibrahim B, Marz M. SilentMutations (SIM): A tool for analyzing long-range RNA-RNA interactions in viral genomes and structured RNAs. Virus Res 2019; 260:135-141. [PMID: 30439394 PMCID: PMC7172452 DOI: 10.1016/j.virusres.2018.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/30/2018] [Accepted: 11/09/2018] [Indexed: 01/28/2023]
Abstract
We developed a tool to analyze the effect of multiple point mutations on the secondary structures of two interacting viral RNAs. Our tool simulates destructive and compensatory mutants of two key regions from a single-stranded RNA. The simulated mutants can be utilized for the combinatorial in vitro analysis of RNA–RNA interactions. We predicted potential mutants for in vitro validation experiments of influenza A virus and hepatitis C virus interactions.
A single nucleotide change in the coding region can alter the amino acid sequence of a protein. In consequence, natural or artificial sequence changes in viral RNAs may have various effects not only on protein stability, function and structure but also on viral replication. In recent decades, several tools have been developed to predict the effect of mutations in structured RNAs such as viral genomes or non-coding RNAs. Some tools use multiple point mutations and also take coding regions into account. However, none of these tools was designed to specifically simulate the effect of mutations on viral long-range interactions. Here, we developed SilentMutations (SIM), an easy-to-use tool to analyze the effect of multiple point mutations on the secondary structures of two interacting viral RNAs. The tool can simulate disruptive and compensatory mutants of two interacting single-stranded RNAs. This allows a fast and accurate assessment of key regions potentially involved in functional long-range RNA–RNA interactions and will eventually help virologists and RNA-experts to design appropriate experiments. SIM only requires two interacting single-stranded RNA regions as input. The output is a plain text file containing the most promising mutants and a graphical representation of all interactions. We applied our tool on two experimentally validated influenza A virus and hepatitis C virus interactions and we were able to predict potential double mutants for in vitro validation experiments. The source code and documentation of SIM are freely available at github.com/desiro/silentMutations.
Collapse
Affiliation(s)
- Daniel Desirò
- European Virus Bioinformatics Center, Jena, Germany; RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University, Jena, Germany
| | - Martin Hölzer
- European Virus Bioinformatics Center, Jena, Germany; RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University, Jena, Germany
| | - Bashar Ibrahim
- European Virus Bioinformatics Center, Jena, Germany; Chair of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University, Jena, Germany
| | - Manja Marz
- European Virus Bioinformatics Center, Jena, Germany; RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University, Jena, Germany; Leibniz Institute for Age Research-Fritz Lipmann Institute, Jena, Germany.
| |
Collapse
|
20
|
Genomic-Scale Interaction Involving Complementary Sequences in the Hepatitis C Virus 5'UTR Domain IIa and the RNA-Dependent RNA Polymerase Coding Region Promotes Efficient Virus Replication. Viruses 2018; 11:v11010017. [PMID: 30597844 PMCID: PMC6357077 DOI: 10.3390/v11010017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/22/2018] [Accepted: 12/23/2018] [Indexed: 12/31/2022] Open
Abstract
The hepatitis C virus (HCV) genome contains structured elements thought to play important regulatory roles in viral RNA translation and replication processes. We used in vitro RNA binding assays to map interactions involving the HCV 5′UTR and distal sequences in NS5B to examine their impact on viral RNA replication. The data revealed that 5′UTR nucleotides (nt) 95–110 in the internal ribosome entry site (IRES) domain IIa and matching nt sequence 8528–8543 located in the RNA-dependent RNA polymerase coding region NS5B, form a high-affinity RNA-RNA complex in vitro. This duplex is composed of both wobble and Watson-Crick base-pairings, with the latter shown to be essential to the formation of the high-affinity duplex. HCV genomic RNA constructs containing mutations in domain IIa nt 95–110 or within the genomic RNA location comprising nt 8528–8543 displayed, on average, 5-fold less intracellular HCV RNA and 6-fold less infectious progeny virus. HCV genomic constructs containing complementary mutations for IRES domain IIa nt 95–110 and NS5B nt 8528–8543 restored intracellular HCV RNA and progeny virus titers to levels obtained for parental virus RNA. We conclude that this long-range duplex interaction between the IRES domain IIa and NS5B nt 8528–8543 is essential for optimal virus replication.
Collapse
|
21
|
Chen M, Zheng F, Yuan G, Duan X, Rong L, Liu J, Feng S, Wang Z, Wang M, Feng Y, Zhou Q, Li J, Deng K, Li C, Xia J, Rao G, Zhou Y, Fu Y, Li YP. Development of an Infectious Cell Culture System for Hepatitis C Virus Genotype 6a Clinical Isolate Using a Novel Strategy and Its Sensitivity to Direct-Acting Antivirals. Front Microbiol 2018; 9:2950. [PMID: 30564209 PMCID: PMC6288186 DOI: 10.3389/fmicb.2018.02950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) is classified into seven major genotypes, and genotype 6 is commonly prevalent in Asia, thus reverse genetic system representing genotype 6 isolates in prevalence is required. Here, we developed an infectious clone for a Chinese HCV 6a isolate (CH6a) using a novel strategy. We determined CH6a consensus sequence from patient serum and assembled a CH6a full-length (CH6aFL) cDNA using overlapped PCR product-derived clones that shared the highest homology with the consensus. CH6aFL was non-infectious in hepatoma Huh7.5 cells. Next, we constructed recombinants containing Core-NS5A or 5′UTR-NS5A from CH6a and the remaining sequences from JFH1 (genotype 2a), and both were engineered with 7 mutations identified previously. However, they replicated inefficiently without virus spread in Huh7.5 cells. Addition of adaptive mutations from CH6a Core-NS2 recombinant, with JFH1 5′UTR and NS3-3′UTR, enhanced the viability of Core-NS5A recombinant and acquired replication-enhancing mutations. Combination of 22 mutations in CH6a recombinant with JFH1 5′UTR and 3′UTR (CH6aORF) enabled virus replication and recovered additional four mutations. Adding these four mutations, we generated two efficient recombinants containing 26 mutations (26m), CH6aORF_26m and CH6aFL_26m (designated “CH6acc”), releasing HCV of 104.3–104.5 focus-forming units (FFU)/ml in Huh7.5.1-VISI-mCherry and Huh7.5 cells. Seven newly identified mutations were important for HCV replication, assembly, and release. The CH6aORF_26m virus was inhibited in a dose- and genotype-dependent manner by direct-acting-antivirals targeting NS3/4A, NS5A, and NS5B. The CH6acc enriches the toolbox of HCV culture systems, and the strategy and mutations applied here will facilitate the culture development of other HCV isolates and related viruses.
Collapse
Affiliation(s)
- Mingxiao Chen
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Fuxiang Zheng
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Guosheng Yuan
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaobing Duan
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Liang Rong
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Junwei Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengjun Feng
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Ziting Wang
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Min Wang
- Guangzhou Blood Center, Guangzhou, China
| | - Yetong Feng
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Qing Zhou
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jinqian Li
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Kai Deng
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Chunna Li
- Program of Pathobiology, The Fifth Affiliated Hospital and Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Jinyu Xia
- Program of Pathobiology, The Fifth Affiliated Hospital and Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Guirong Rao
- Key Laboratory of Liver Disease, Center of Infectious Diseases, PLA 458 Hospital, Guangzhou, China
| | - Yuanping Zhou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Yi-Ping Li
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Program of Pathobiology, The Fifth Affiliated Hospital and Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| |
Collapse
|
22
|
Romero-López C, Ríos-Marco P, Berzal-Herranz B, Berzal-Herranz A. The HCV genome domains 5BSL3.1 and 5BSL3.3 act as managers of translation. Sci Rep 2018; 8:16101. [PMID: 30382192 PMCID: PMC6208389 DOI: 10.1038/s41598-018-34422-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/12/2018] [Indexed: 02/08/2023] Open
Abstract
The RNA genome of the hepatitis C virus (HCV) encodes a single open reading frame (ORF) containing numerous functional elements. Among these, the cis-acting replication element (CRE) at the 3' end of the viral ORF, has become of increasing interest given its dual role as a viral translation repressor and replication enhancer. Long-range RNA-RNA contacts mediated by the CRE build the structural scaffold required for its proper functioning. The recruitment of different cellular factors, many related to the functioning of the translation machinery, might aid in the CRE-exerted downregulation of viral translation. The present data show that the CRE promotes a defect in polysome production, and hinders the assembly of the 80S complex, likely through the direct, high affinity recruitment of the 40S ribosomal subunit. This interaction involves the highly conserved 5BSL3.1 and 5BSL3.3 domains of the CRE, and is strictly dependent on RNA-protein contacts, particularly with the ribosomal proteins RPSA and RPS29. These observations support a model in which the CRE-mediated inhibition of viral translation is a multifactorial process defined by the establishment of long-range RNA-RNA interactions between the 5' and 3' ends of the viral genome, the sequestration of the 40S subunit by the CRE, and the subsequent stalling of polysome elongation at the 3' end of the ORF, all governed by the highly stable hairpin domains 5BSL3.1 and 5BSL3.3. The present data thus suggest a new managerial role in HCV translation for these 5BSL3.1 and 5BSL3.3 domains.
Collapse
Grants
- BFU2015-64359-P Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness)
- BFU2015-64359-P Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness)
- CVI-7430 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- CVI-7430 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- Ministerio de Econom&#x00ED;a y Competitividad (Ministry of Economy and Competitiveness)
- Consejer&#x00ED;a de Econom&#x00ED;a, Innovaci&#x00F3;n, Ciencia y Empleo, Junta de Andaluc&#x00ED;a (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC), Av. del Conocimiento 17, 18016, Armilla, Granada, Spain.
| | - Pablo Ríos-Marco
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC), Av. del Conocimiento 17, 18016, Armilla, Granada, Spain
| | - Beatriz Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC), Av. del Conocimiento 17, 18016, Armilla, Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC), Av. del Conocimiento 17, 18016, Armilla, Granada, Spain.
| |
Collapse
|
23
|
Identification of nucleotides in the 5'UTR and amino acids substitutions that are essential for the infectivity of 5'UTR-NS5A recombinant of hepatitis C virus genotype 1b (strain Con1). Virology 2018; 518:253-263. [PMID: 29549787 DOI: 10.1016/j.virol.2018.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 12/19/2022]
Abstract
Genotype 1b strain Con1 represents an important reference in the study of hepatitis C virus (HCV). Here, we aimed to develop an advanced infectious Con1 recombinant. We found that previously identified mutations A1226G/F1464L/A1672S/Q1773H permitted culture adaption of Con1 Core-NS5A (C-5A) recombinant containing 5'UTR and NS5B-3'UTR from JFH1 (genotype 2a), thus acquired additional mutations L725H/F886L/D2415G. C-5A containing all seven mutations (C-5A_7m) replicated efficiently in Huh7.5 and Huh7.5.1 cells and had an increased infectivity in SEC14L2-expressing Huh7.5.1 cells. Incorporation of Con1 NS5B was deleterious to C-5A_7m, however Con1 5'UTR was permissive but attenuated the virus. Nucleotides G1, A4, and G35 primarily accounted for the viral attenuation without affecting RNA translation. C-5A_7m was inhibited dose-dependently by simeprevir and daclatasvir, and substitutions at A4, A29, A34, and G35 conferred resistance to miR-122 antagonism. The novel Con1 5'UTR-NS5A recombinant, adaptive mutations, and critical nucleotides described here will facilitate future studies of HCV culture systems and virus-host interaction.
Collapse
|
24
|
Niepmann M, Shalamova LA, Gerresheim GK, Rossbach O. Signals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication. Front Microbiol 2018; 9:395. [PMID: 29593672 PMCID: PMC5857606 DOI: 10.3389/fmicb.2018.00395] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/21/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) preferentially replicates in the human liver and frequently causes chronic infection, often leading to cirrhosis and liver cancer. HCV is an enveloped virus classified in the genus Hepacivirus in the family Flaviviridae and has a single-stranded RNA genome of positive orientation. The HCV RNA genome is translated and replicated in the cytoplasm. Translation is controlled by the Internal Ribosome Entry Site (IRES) in the 5' untranslated region (5' UTR), while also downstream elements like the cis-replication element (CRE) in the coding region and the 3' UTR are involved in translation regulation. The cis-elements controlling replication of the viral RNA genome are located mainly in the 5'- and 3'-UTRs at the genome ends but also in the protein coding region, and in part these signals overlap with the signals controlling RNA translation. Many long-range RNA-RNA interactions (LRIs) are predicted between different regions of the HCV RNA genome, and several such LRIs are actually involved in HCV translation and replication regulation. A number of RNA cis-elements recruit cellular RNA-binding proteins that are involved in the regulation of HCV translation and replication. In addition, the liver-specific microRNA-122 (miR-122) binds to two target sites at the 5' end of the viral RNA genome as well as to at least three additional target sites in the coding region and the 3' UTR. It is involved in the regulation of HCV RNA stability, translation and replication, thereby largely contributing to the hepatotropism of HCV. However, we are still far from completely understanding all interactions that regulate HCV RNA genome translation, stability, replication and encapsidation. In particular, many conclusions on the function of cis-elements in HCV replication have been obtained using full-length HCV genomes or near-full-length replicon systems. These include both genome ends, making it difficult to decide if a cis-element in question acts on HCV replication when physically present in the plus strand genome or in the minus strand antigenome. Therefore, it may be required to use reduced systems that selectively focus on the analysis of HCV minus strand initiation and/or plus strand initiation.
Collapse
Affiliation(s)
- Michael Niepmann
- Medical Faculty, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Lyudmila A Shalamova
- Medical Faculty, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany.,Faculty of Biology and Chemistry, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Gesche K Gerresheim
- Medical Faculty, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany.,Faculty of Biology and Chemistry, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Oliver Rossbach
- Faculty of Biology and Chemistry, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
25
|
RNA binding protein 24 regulates the translation and replication of hepatitis C virus. Protein Cell 2018; 9:930-944. [PMID: 29380205 PMCID: PMC6208484 DOI: 10.1007/s13238-018-0507-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/10/2017] [Indexed: 12/12/2022] Open
Abstract
The secondary structures of hepatitis C virus (HCV) RNA and the cellular proteins that bind to them are important for modulating both translation and RNA replication. However, the sets of RNA-binding proteins involved in the regulation of HCV translation, replication and encapsidation remain unknown. Here, we identified RNA binding motif protein 24 (RBM24) as a host factor participated in HCV translation and replication. Knockdown of RBM24 reduced HCV propagation in Huh7.5.1 cells. An enhanced translation and delayed RNA synthesis during the early phase of infection was observed in RBM24 silencing cells. However, both overexpression of RBM24 and recombinant human RBM24 protein suppressed HCV IRES-mediated translation. Further analysis revealed that the assembly of the 80S ribosome on the HCV IRES was interrupted by RBM24 protein through binding to the 5'-UTR. RBM24 could also interact with HCV Core and enhance the interaction of Core and 5'-UTR, which suppresses the expression of HCV. Moreover, RBM24 enhanced the interaction between the 5'- and 3'-UTRs in the HCV genome, which probably explained its requirement in HCV genome replication. Therefore, RBM24 is a novel host factor involved in HCV replication and may function at the switch from translation to replication.
Collapse
|
26
|
Willcocks MM, Zaini S, Chamond N, Ulryck N, Allouche D, Rajagopalan N, Davids NA, Fahnøe U, Hadsbjerg J, Rasmussen TB, Roberts LO, Sargueil B, Belsham GJ, Locker N. Distinct roles for the IIId2 sub-domain in pestivirus and picornavirus internal ribosome entry sites. Nucleic Acids Res 2018; 45:13016-13028. [PMID: 29069411 PMCID: PMC5727462 DOI: 10.1093/nar/gkx991] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/12/2017] [Indexed: 01/23/2023] Open
Abstract
Viral internal ribosomes entry site (IRES) elements coordinate the recruitment of the host translation machinery to direct the initiation of viral protein synthesis. Within hepatitis C virus (HCV)-like IRES elements, the sub-domain IIId(1) is crucial for recruiting the 40S ribosomal subunit. However, some HCV-like IRES elements possess an additional sub-domain, termed IIId2, whose function remains unclear. Herein, we show that IIId2 sub-domains from divergent viruses have different functions. The IIId2 sub-domain present in Seneca valley virus (SVV), a picornavirus, is dispensable for IRES activity, while the IIId2 sub-domains of two pestiviruses, classical swine fever virus (CSFV) and border disease virus (BDV), are required for 80S ribosomes assembly and IRES activity. Unlike in SVV, the deletion of IIId2 from the CSFV and BDV IRES elements impairs initiation of translation by inhibiting the assembly of 80S ribosomes. Consequently, this negatively affects the replication of CSFV and BDV. Finally, we show that the SVV IIId2 sub-domain is required for efficient viral RNA synthesis and growth of SVV, but not for IRES function. This study sheds light on the molecular evolution of viruses by clearly demonstrating that conserved RNA structures, within distantly related RNA viruses, have acquired different roles in the virus life cycles.
Collapse
Affiliation(s)
- Margaret M Willcocks
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Salmah Zaini
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Nathalie Chamond
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Nathalie Ulryck
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Delphine Allouche
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Noemie Rajagopalan
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Nana A Davids
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Ulrik Fahnøe
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Johanne Hadsbjerg
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Thomas Bruun Rasmussen
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Lisa O Roberts
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK.,School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Bruno Sargueil
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, Paris, France
| | - Graham J Belsham
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
27
|
Sun LZ, Heng X, Chen SJ. Theory Meets Experiment: Metal Ion Effects in HCV Genomic RNA Kissing Complex Formation. Front Mol Biosci 2017; 4:92. [PMID: 29312955 PMCID: PMC5744182 DOI: 10.3389/fmolb.2017.00092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
The long-range base pairing between the 5BSL3. 2 and 3′X domains in hepatitis C virus (HCV) genomic RNA is essential for viral replication. Experimental evidence points to the critical role of metal ions, especially Mg2+ ions, in the formation of the 5BSL3.2:3′X kissing complex. Furthermore, NMR studies suggested an important ion-dependent conformational switch in the kissing process. However, for a long time, mechanistic understanding of the ion effects for the process has been unclear. Recently, computational modeling based on the Vfold RNA folding model and the partial charge-based tightly bound ion (PCTBI) model, in combination with the NMR data, revealed novel physical insights into the role of metal ions in the 5BSL3.2-3′X system. The use of the PCTBI model, which accounts for the ion correlation and fluctuation, gives reliable predictions for the ion-dependent electrostatic free energy landscape and ion-induced population shift of the 5BSL3.2:3′X kissing complex. Furthermore, the predicted ion binding sites offer insights about how ion-RNA interactions shift the conformational equilibrium. The integrated theory-experiment study shows that Mg2+ ions may be essential for HCV viral replication. Moreover, the observed Mg2+-dependent conformational equilibrium may be an adaptive property of the HCV genomic RNA such that the equilibrium is optimized to the intracellular Mg2+ concentration in liver cells for efficient viral replication.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou, China.,Department of Physics, University of Missouri, Columbia, MO, United States
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Shi-Jie Chen
- Department of Physics, University of Missouri, Columbia, MO, United States.,Department of Biochemistry, University of Missouri, Columbia, MO, United States.,University of Missouri Informatics Institute, University of Missouri, Columbia, MO, United States
| |
Collapse
|
28
|
Romero-López C, Berzal-Herranz A. The 5BSL3.2 Functional RNA Domain Connects Distant Regions in the Hepatitis C Virus Genome. Front Microbiol 2017; 8:2093. [PMID: 29163393 PMCID: PMC5671509 DOI: 10.3389/fmicb.2017.02093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/12/2017] [Indexed: 02/05/2023] Open
Abstract
Viral genomes are complexly folded entities that carry all the information required for the infective cycle. The nucleotide sequence of the RNA virus genome encodes proteins and functional information contained in discrete, highly conserved structural units. These so-called functional RNA domains play essential roles in the progression of infection, which requires their preservation from one generation to the next. Numerous functional RNA domains exist in the genome of the hepatitis C virus (HCV). Among them, the 5BSL3.2 domain in the cis-acting replication element (CRE) at the 3' end of the viral open reading frame has become of particular interest given its role in HCV RNA replication and as a regulator of viral protein synthesis. These functionalities are achieved via the establishment of a complex network of long-distance RNA-RNA contacts involving (at least as known to date) the highly conserved 3'X tail, the apical loop of domain IIId in the internal ribosome entry site, and/or the so-called Alt region upstream of the CRE. Changing contacts promotes the execution of different stages of the viral cycle. The 5BSL3.2 domain thus operates at the core of a system that governs the progression of HCV infection. This review summarizes our knowledge of the long-range RNA-RNA interaction network in the HCV genome, with special attention paid to the structural and functional consequences derived from the establishment of different contacts. The potential implications of such interactions in switching between the different stages of the viral cycle are discussed.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| |
Collapse
|
29
|
Diaz-Toledano R, Lozano G, Martinez-Salas E. In-cell SHAPE uncovers dynamic interactions between the untranslated regions of the foot-and-mouth disease virus RNA. Nucleic Acids Res 2017; 45:1416-1432. [PMID: 28180318 PMCID: PMC5388415 DOI: 10.1093/nar/gkw795] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 12/14/2022] Open
Abstract
The genome of RNA viruses folds into 3D structures that include long-range RNA–RNA interactions relevant to control critical steps of the viral cycle. In particular, initiation of translation driven by the IRES element of foot-and-mouth disease virus is stimulated by the 3΄UTR. Here we sought to investigate the RNA local flexibility of the IRES element and the 3΄UTR in living cells. The SHAPE reactivity observed in vivo showed statistically significant differences compared to the free RNA, revealing protected or exposed positions within the IRES and the 3΄UTR. Importantly, the IRES local flexibility was modified in the presence of the 3΄UTR, showing significant protections at residues upstream from the functional start codon. Conversely, presence of the IRES element in cis altered the 3΄UTR local flexibility leading to an overall enhanced reactivity. Unlike the reactivity changes observed in the IRES element, the SHAPE differences of the 3΄UTR were large but not statistically significant, suggesting multiple dynamic RNA interactions. These results were supported by covariation analysis, which predicted IRES-3΄UTR conserved helices in agreement with the protections observed by SHAPE probing. Mutational analysis suggested that disruption of one of these interactions could be compensated by alternative base pairings, providing direct evidences for dynamic long-range interactions between these distant elements of the viral genome.
Collapse
Affiliation(s)
- Rosa Diaz-Toledano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, Madrid, Spain
| | - Gloria Lozano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, Madrid, Spain
| | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, Madrid, Spain
| |
Collapse
|
30
|
Kranawetter C, Brady S, Sun L, Schroeder M, Chen SJ, Heng X. Nuclear Magnetic Resonance Study of RNA Structures at the 3'-End of the Hepatitis C Virus Genome. Biochemistry 2017; 56:4972-4984. [PMID: 28829576 DOI: 10.1021/acs.biochem.7b00573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 3'-end of the genomic RNA of the hepatitis C virus (HCV) embeds conserved elements that regulate viral RNA synthesis and protein translation by mechanisms that have yet to be elucidated. Previous studies with oligo-RNA fragments have led to multiple, mutually exclusive secondary structure predictions, indicating that HCV RNA structure may be context-dependent. Here we employed a nuclear magnetic resonance (NMR) approach that involves long-range adenosine interaction detection, coupled with site-specific 2H labeling, to probe the structure of the intact 3'-end of the HCV genome (385 nucleotides). Our data reveal that the 3'-end exists as an equilibrium mixture of two conformations: an open conformation in which the 98 nucleotides of the 3'-tail (3'X) form a two-stem-loop structure with the kissing-loop residues sequestered and a closed conformation in which the 3'X rearranges its structure and forms a long-range kissing-loop interaction with an upstream cis-acting element 5BSL3.2. The long-range kissing species is favored under high-Mg2+ conditions, and the intervening sequences do not affect the equilibrium as their secondary structures remain unchanged. The open and closed conformations are consistent with the reported function regulation of viral RNA synthesis and protein translation, respectively. Our NMR detection of these RNA conformations and the structural equilibrium in the 3'-end of the HCV genome support its roles in coordinating various steps of HCV replication.
Collapse
Affiliation(s)
- Clayton Kranawetter
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Samantha Brady
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Lizhen Sun
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri , Columbia, Missouri 65211, United States
| | - Mark Schroeder
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri , Columbia, Missouri 65211, United States
| | - Xiao Heng
- Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| |
Collapse
|
31
|
Prevalence of NS5B Resistance Mutations in Hepatitis C Virus (HCV) Treatment Naive South Africans. HEPATITIS MONTHLY 2017. [DOI: 10.5812/hepatmon.14248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
32
|
Romero-López C, Barroso-delJesus A, Berzal-Herranz A. The chaperone-like activity of the hepatitis C virus IRES and CRE elements regulates genome dimerization. Sci Rep 2017; 7:43415. [PMID: 28233845 PMCID: PMC5324077 DOI: 10.1038/srep43415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/24/2017] [Indexed: 02/08/2023] Open
Abstract
The RNA genome of the hepatitis C virus (HCV) establishes a network of long-distance RNA-RNA interactions that direct the progression of the infective cycle. This work shows that the dimerization of the viral genome, which is initiated at the dimer linkage sequence (DLS) within the 3'UTR, is promoted by the CRE region, while the IRES is a negative regulatory partner. Using differential 2'-acylation probing (SHAPE-dif) and molecular interference (HMX) technologies, the CRE activity was found to mainly lie in the critical 5BSL3.2 domain, while the IRES-mediated effect is dependent upon conserved residues within the essential structural elements JIIIabc, JIIIef and PK2. These findings support the idea that, along with the DLS motif, the IRES and CRE are needed to control HCV genome dimerization. They also provide evidences of a novel function for these elements as chaperone-like partners that fine-tune the architecture of distant RNA domains within the HCV genome.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Alicia Barroso-delJesus
- Unidad de Genómica, Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| |
Collapse
|
33
|
Torrecilla J, Del Pozo-Rodríguez A, Solinís MÁ, Apaolaza PS, Berzal-Herranz B, Romero-López C, Berzal-Herranz A, Rodríguez-Gascón A. Silencing of hepatitis C virus replication by a non-viral vector based on solid lipid nanoparticles containing a shRNA targeted to the internal ribosome entry site (IRES). Colloids Surf B Biointerfaces 2016; 146:808-817. [PMID: 27451369 DOI: 10.1016/j.colsurfb.2016.07.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 02/05/2023]
Abstract
Gene silencing mediated by RNAi has gained increasing interest as an alternative for the treatment of infectious diseases such as refractory hepatitis C virus (HCV) infection. In this work we have designed and evaluated a non-viral vector based on solid lipid nanoparticles (SLN) bearing hyaluronic acid, protamine and a short hairpin RNA (shRNA74) targeted to the Internal Ribosome Entry Site (IRES) of the HCV. The vector was able to inhibit the expression of the HCV IRES in Huh-7 cells, with the inhibition level dependent on the shRNA74 to SLN ratio and on the shRNA74 dose added to the culture cells. The nanocarrier was also able to inhibit the replication in human hepatoma cells supporting a subgenomic HCV replicon (Huh-7 NS3-3'). The vector was quickly and efficiently internalized by the cells, and endocytosis was the most productive uptake mechanism for silencing. Clathrin-mediated endocytosis and to a lesser extent caveolae/lipid raft-mediated endocytosis were identified as endocytic mechanisms involved in the cell uptake. Internalization via the CD44 receptor was also involved, although this entry route seems to be less productive for silencing than endocytosis. The vector did not induce either hemolysis or agglutination of red cells in vitro, which was indicative of good biocompatibility. In summary, we have shown for the first time the ability of a non-viral SLN-based vector to silence a HCV replicon.
Collapse
Affiliation(s)
- Josune Torrecilla
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7. 01006, Vitoria-Gasteiz, Spain.
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7. 01006, Vitoria-Gasteiz, Spain.
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7. 01006, Vitoria-Gasteiz, Spain.
| | - Paola S Apaolaza
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7. 01006, Vitoria-Gasteiz, Spain.
| | - Beatriz Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), PTS Granada, Av del conocimiento s/n, Armilla, 18016, Granada, Spain.
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), PTS Granada, Av del conocimiento s/n, Armilla, 18016, Granada, Spain.
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), PTS Granada, Av del conocimiento s/n, Armilla, 18016, Granada, Spain.
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7. 01006, Vitoria-Gasteiz, Spain.
| |
Collapse
|
34
|
Fricke M, Marz M. Prediction of conserved long-range RNA-RNA interactions in full viral genomes. Bioinformatics 2016; 32:2928-35. [PMID: 27288498 PMCID: PMC7189868 DOI: 10.1093/bioinformatics/btw323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/12/2016] [Indexed: 12/13/2022] Open
Abstract
Motivation: Long-range RNA-RNA interactions (LRIs) play an important role in
viral replication, however, only a few of these interactions are known and only for a
small number of viral species. Up to now, it has been impossible to screen a full viral
genome for LRIs experimentally or in silico. Most known LRIs are
cross-reacting structures (pseudoknots) undetectable by most bioinformatical tools. Results: We present LRIscan, a tool for the LRI prediction in full viral
genomes based on a multiple genome alignment. We confirmed 14 out of 16 experimentally
known and evolutionary conserved LRIs in genome alignments of HCV, Tombusviruses,
Flaviviruses and HIV-1. We provide several promising new interactions, which include
compensatory mutations and are highly conserved in all considered viral sequences.
Furthermore, we provide reactivity plots highlighting the hot spots of predicted LRIs. Availability and Implementation: Source code and binaries of LRIscan freely
available for download at http://www.rna.uni-jena.de/en/supplements/lriscan/, implemented in
Ruby/C ++ and supported on Linux and Windows. Contact:manja@uni-jena.de Supplementary information:Supplementary data are available
at Bioinformatics online.
Collapse
Affiliation(s)
- Markus Fricke
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Manja Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany FLI Leibniz Institute for Age Research, Jena, Germany
| |
Collapse
|
35
|
Ríos-Marco P, Romero-López C, Berzal-Herranz A. The cis-acting replication element of the Hepatitis C virus genome recruits host factors that influence viral replication and translation. Sci Rep 2016; 6:25729. [PMID: 27165399 PMCID: PMC4863150 DOI: 10.1038/srep25729] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/21/2016] [Indexed: 02/08/2023] Open
Abstract
The cis-acting replication element (CRE) of the hepatitis C virus (HCV) RNA genome is a region of conserved sequence and structure at the 3' end of the open reading frame. It participates in a complex and dynamic RNA-RNA interaction network involving, among others, essential functional domains of the 3' untranslated region and the internal ribosome entry site located at the 5' terminus of the viral genome. A proper balance between all these contacts is critical for the control of viral replication and translation, and is likely dependent on host factors. Proteomic analyses identified a collection of proteins from a hepatoma cell line as CRE-interacting candidates. A large fraction of these were RNA-binding proteins sharing highly conserved RNA recognition motifs. The vast majority of these proteins were validated by bioinformatics tools that consider RNA-protein secondary structure. Further characterization of representative proteins indicated that hnRNPA1 and HMGB1 exerted negative effects on viral replication in a subgenomic HCV replication system. Furthermore DDX5 and PARP1 knockdown reduced the HCV IRES activity, suggesting an involvement of these proteins in HCV translation. The identification of all these host factors provides new clues regarding the function of the CRE during viral cycle progression.
Collapse
Affiliation(s)
- Pablo Ríos-Marco
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC). PTS Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC). PTS Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC). PTS Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain
| |
Collapse
|
36
|
Fernández-Sanlés A, Berzal-Herranz B, González-Matamala R, Ríos-Marco P, Romero-López C, Berzal-Herranz A. RNA Aptamers as Molecular Tools to Study the Functionality of the Hepatitis C Virus CRE Region. Molecules 2015; 20:16030-16047. [PMID: 26364632 PMCID: PMC6331917 DOI: 10.3390/molecules200916030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/25/2015] [Accepted: 08/29/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) contains a (+) ssRNA genome with highly conserved structural, functional RNA domains, many of them with unknown roles for the consecution of the viral cycle. Such genomic domains are candidate therapeutic targets. This study reports the functional characterization of a set of aptamers targeting the cis-acting replication element (CRE) of the HCV genome, an essential partner for viral replication and also involved in the regulation of protein synthesis. METHODS Forty-four aptamers were tested for their ability to interfere with viral RNA synthesis in a subgenomic replicon system. Some of the most efficient inhibitors were further evaluated for their potential to affect the recruitment of the HCV RNA-dependent RNA polymerase (NS5B) and the viral translation in cell culture. RESULTS Four aptamers emerged as potent inhibitors of HCV replication by direct interaction with functional RNA domains of the CRE, yielding a decrease in the HCV RNA levels higher than 90%. Concomitantly, one of them also induced a significant increase in viral translation (>50%). The three remaining aptamers efficiently competed with the binding of the NS5B protein to the CRE. CONCLUSIONS Present findings confirm the potential of the CRE as an anti-HCV target and support the use of aptamers as molecular tools for investigating the functionality of RNA domains in viral genomes.
Collapse
Affiliation(s)
- Alba Fernández-Sanlés
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), PTS Granada, Av. Conocimiento, 17, 18016 Armilla, Granada, Spain.
| | - Beatriz Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), PTS Granada, Av. Conocimiento, 17, 18016 Armilla, Granada, Spain.
| | - Rodrigo González-Matamala
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), PTS Granada, Av. Conocimiento, 17, 18016 Armilla, Granada, Spain.
| | - Pablo Ríos-Marco
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), PTS Granada, Av. Conocimiento, 17, 18016 Armilla, Granada, Spain.
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), PTS Granada, Av. Conocimiento, 17, 18016 Armilla, Granada, Spain.
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC), PTS Granada, Av. Conocimiento, 17, 18016 Armilla, Granada, Spain.
| |
Collapse
|
37
|
Fricke M, Dünnes N, Zayas M, Bartenschlager R, Niepmann M, Marz M. Conserved RNA secondary structures and long-range interactions in hepatitis C viruses. RNA (NEW YORK, N.Y.) 2015; 21:1219-32. [PMID: 25964384 PMCID: PMC4478341 DOI: 10.1261/rna.049338.114] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/07/2015] [Indexed: 05/02/2023]
Abstract
Hepatitis C virus (HCV) is a hepatotropic virus with a plus-strand RNA genome of ∼9.600 nt. Due to error-prone replication by its RNA-dependent RNA polymerase (RdRp) residing in nonstructural protein 5B (NS5B), HCV isolates are grouped into seven genotypes with several subtypes. By using whole-genome sequences of 106 HCV isolates and secondary structure alignments of the plus-strand genome and its minus-strand replication intermediate, we established refined secondary structures of the 5' untranslated region (UTR), the cis-acting replication element (CRE) in NS5B, and the 3' UTR. We propose an alternative structure in the 5' UTR, conserved secondary structures of 5B stem-loop (SL)1 and 5BSL2, and four possible structures of the X-tail at the very 3' end of the HCV genome. We predict several previously unknown long-range interactions, most importantly a possible circularization interaction between distinct elements in the 5' and 3' UTR, reminiscent of the cyclization elements of the related flaviviruses. Based on analogy to these viruses, we propose that the 5'-3' UTR base-pairing in the HCV genome might play an important role in viral RNA replication. These results may have important implications for our understanding of the nature of the cis-acting RNA elements in the HCV genome and their possible role in regulating the mutually exclusive processes of viral RNA translation and replication.
Collapse
Affiliation(s)
- Markus Fricke
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Nadia Dünnes
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| | - Margarita Zayas
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Michael Niepmann
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| | - Manja Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany FLI Leibniz Institute for Age Research, 07745 Jena, Germany
| |
Collapse
|
38
|
Tuplin A, Struthers M, Cook J, Bentley K, Evans DJ. Inhibition of HCV translation by disrupting the structure and interactions of the viral CRE and 3' X-tail. Nucleic Acids Res 2015; 43:2914-26. [PMID: 25712095 PMCID: PMC4357731 DOI: 10.1093/nar/gkv142] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A phylogenetically conserved RNA structure within the NS5B coding region of hepatitis C virus functions as a cis-replicating element (CRE). Integrity of this CRE, designated SL9266 (alternatively 5BSL3.2), is critical for genome replication. SL9266 forms the core of an extended pseudoknot, designated SL9266/PK, involving long distance RNA–RNA interactions between unpaired loops of SL9266 and distal regions of the genome. Previous studies demonstrated that SL9266/PK is dynamic, with ‘open’ and ‘closed’ conformations predicted to have distinct functions during virus replication. Using a combination of site-directed mutagenesis and locked nucleic acids (LNA) complementary to defined domains of SL9266 and its interacting regions, we have explored the influence of this structure on genome translation and replication. We demonstrate that LNAs which block formation of the closed conformation inhibit genome translation. Inhibition was at least partly independent of the initiation mechanism, whether driven by homologous or heterologous internal ribosome entry sites or from a capped message. Provision of SL9266/PK in trans relieved translational inhibition, and mutational analysis implied a mechanism in which the closed conformation recruits a cellular factor that would otherwise suppresses translation. We propose that SL9266/PK functions as a temporal switch, modulating the mutually incompatible processes of translation and replication.
Collapse
Affiliation(s)
- Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Madeleine Struthers
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Jonathan Cook
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Kirsten Bentley
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - David J Evans
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
39
|
Tuplin A. Diverse roles and interactions of RNA structures during the replication of positive-stranded RNA viruses of humans and animals. J Gen Virol 2015; 96:1497-503. [PMID: 25626680 DOI: 10.1099/vir.0.000066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Positive-stranded RNA viruses include important human, animal and plant pathogens. Their genomes are able to fold into complex structures stabilized by base pairing between individual nucleotides, many of which are highly conserved and have essential functions during virus replication. With new studies and technological advances the diversity of roles, mechanisms and interactions in which such structured viral RNA functions is becoming increasingly clear. It is also evident that many RNA structures do not function as discrete elements but through mechanisms involving multiple, long-range and often dynamic RNARNA interactions. Through a range of examples and recent advances, this review illustrates the diverse roles and mechanisms of structured viral RNA during the replication of positive-stranded RNA viruses infecting humans and animals.
Collapse
Affiliation(s)
- Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
40
|
Nicholson BL, White KA. Functional long-range RNA-RNA interactions in positive-strand RNA viruses. Nat Rev Microbiol 2014; 12:493-504. [PMID: 24931042 PMCID: PMC7097572 DOI: 10.1038/nrmicro3288] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Long-range RNA–RNA interactions, many of which span several thousands of nucleotides, have been discovered within the genomes of positive-strand RNA viruses. These interactions mediate fundamental viral processes, including translation, replication and transcription. In certain plant viruses that have uncapped, non-polyadenylated RNA genomes, translation initiation is facilitated by 3′ cap-independent translational enhancers (3′ CITEs) that are located in or near to their 3′ UTRs. These RNA elements function by binding to either the ribosome-recruiting eukaryotic translation initiation factor 4F (eIF4F) complex or ribosomal subunits, and they enhance translation initiation by engaging the 5′ end of the genome via a 5′-to-3′ RNA-based bridge. The activities of the internal ribosome entry sites (IRESs) in the 5′ UTRs of various viruses are modulated by RNA-based interactions between the IRESs and elements near to the 3′ ends of their genomes. In several plant viruses, translational recoding events, including ribosomal frameshifting and stop codon readthrough, have been found to rely on long-range RNA–RNA interactions. Multiple 5′-to-3′ base-pairing interactions facilitate genome circularization in flaviviruses, which has been proposed to reposition the 5′-bound RNA-dependent RNA polymerase (RdRp) to the initiation site of negative-strand synthesis at the 3′ terminus. The long-distance interaction between two cis-acting replication elements in tombusviruses generates a bipartite RNA platform for the assembly of the replicase complex and repositions the internally bound RdRp to the 3′ terminus. Tombusviruses also rely on several long-range interactions that mediate the premature termination of the RdRp during negative-strand synthesis that leads to transcription of subgenomic mRNAs (sgmRNAs). In a coronavirus, an exceptionally long-range interaction, which spans ∼26,000 nucleotides, promotes polymerase repriming during the discontinuous template synthesis step of sgmRNA-N transcription. A challenge for the future will be to determine how these long-range interactions are integrated and regulated in the complex context of viral RNA genomes.
Long-range intragenomic RNA–RNA interactions in the genomes of positive-strand RNA viruses involve direct nucleotide base pairing and can span distances of thousands of nucleotides. In this Review, Nicholson and White discuss recent insights into the structure and function of these genomic features and highlight their diverse roles in the gene expression and genome replication of positive-strand RNA viruses. Positive-strand RNA viruses are important human, animal and plant pathogens that are defined by their single-stranded positive-sense RNA genomes. In recent years, it has become increasingly evident that interactions that occur between distantly positioned RNA sequences within these genomes can mediate important viral activities. These long-range intragenomic RNA–RNA interactions involve direct nucleotide base pairing and can span distances of thousands of nucleotides. In this Review, we discuss recent insights into the structure and function of these intriguing genomic features and highlight their diverse roles in the gene expression and genome replication of positive-strand RNA viruses.
Collapse
Affiliation(s)
- Beth L Nicholson
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
41
|
Romero-López C, Berzal-Herranz A. Structure-function relationship in viral RNA genomes: The case of hepatitis C virus. World J Med Genet 2014; 4:6-18. [DOI: 10.5496/wjmg.v4.i2.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/23/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
The acquisition of a storage information system beyond the nucleotide sequence has been a crucial issue for the propagation and dispersion of RNA viruses. This system is composed by highly conserved, complex structural units in the genomic RNA, termed functional RNA domains. These elements interact with other regions of the viral genome and/or proteins to direct viral translation, replication and encapsidation. The genomic RNA of the hepatitis C virus (HCV) is a good model for investigating about conserved structural units. It contains functional domains, defined by highly conserved structural RNA motifs, mostly located in the 5’-untranslatable regions (5’UTRs) and 3’UTR, but also occupying long stretches of the coding sequence. Viral translation initiation is mediated by an internal ribosome entry site located at the 5’ terminus of the viral genome and regulated by distal functional RNA domains placed at the 3’ end. Subsequent RNA replication strongly depends on the 3’UTR folding and is also influenced by the 5’ end of the HCV RNA. Further increase in the genome copy number unleashes the formation of homodimers by direct interaction of two genomic RNA molecules, which are finally packed and released to the extracellular medium. All these processes, as well as transitions between them, are controlled by structural RNA elements that establish a complex, direct and long-distance RNA-RNA interaction network. This review summarizes current knowledge about functional RNA domains within the HCV RNA genome and provides an overview of the control exerted by direct, long-range RNA-RNA contacts for the execution of the viral cycle.
Collapse
|
42
|
Romero-López C, Barroso-delJesus A, García-Sacristán A, Briones C, Berzal-Herranz A. End-to-end crosstalk within the hepatitis C virus genome mediates the conformational switch of the 3'X-tail region. Nucleic Acids Res 2014; 42:567-582. [PMID: 24049069 PMCID: PMC3874160 DOI: 10.1093/nar/gkt841] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/17/2013] [Accepted: 08/27/2013] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV) RNA genome contains multiple structurally conserved domains that make long-distance RNA-RNA contacts important in the establishment of viral infection. Microarray antisense oligonucleotide assays, improved dimethyl sulfate probing methods and 2' acylation chemistry (selective 2'-hydroxyl acylation and primer extension, SHAPE) showed the folding of the genomic RNA 3' end to be regulated by the internal ribosome entry site (IRES) element via direct RNA-RNA interactions. The essential cis-acting replicating element (CRE) and the 3'X-tail region adopted different 3D conformations in the presence and absence of the genomic RNA 5' terminus. Further, the structural transition in the 3'X-tail from the replication-competent conformer (consisting of three stem-loops) to the dimerizable form (with two stem-loops), was found to depend on the presence of both the IRES and the CRE elements. Complex interplay between the IRES, the CRE and the 3'X-tail region would therefore appear to occur. The preservation of this RNA-RNA interacting network, and the maintenance of the proper balance between different contacts, may play a crucial role in the switch between different steps of the HCV cycle.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain, Unidad de Genómica, Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain, Laboratorio de Evolución Molecular, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain and Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| | - Alicia Barroso-delJesus
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain, Unidad de Genómica, Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain, Laboratorio de Evolución Molecular, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain and Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| | - Ana García-Sacristán
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain, Unidad de Genómica, Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain, Laboratorio de Evolución Molecular, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain and Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| | - Carlos Briones
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain, Unidad de Genómica, Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain, Laboratorio de Evolución Molecular, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain and Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain, Unidad de Genómica, Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Avda. del Conocimiento s/n, Armilla, 18016 Granada, Spain, Laboratorio de Evolución Molecular, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain and Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| |
Collapse
|
43
|
Romero-López C, Berzal-Herranz A. Unmasking the information encoded as structural motifs of viral RNA genomes: a potential antiviral target. Rev Med Virol 2013; 23:340-354. [PMID: 23983005 PMCID: PMC7169113 DOI: 10.1002/rmv.1756] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 02/05/2023]
Abstract
RNA viruses show enormous capacity to evolve and adapt to new cellular and molecular contexts, a consequence of mutations arising from errors made by viral RNA-dependent RNA polymerase during replication. Sequence variation must occur, however, without compromising functions essential for the completion of the viral cycle. RNA viruses are safeguarded in this respect by their genome carrying conserved information that does not code only for proteins but also for the formation of structurally conserved RNA domains that directly perform these critical functions. Functional RNA domains can interact with other regions of the viral genome and/or proteins to direct viral translation, replication and encapsidation. They are therefore potential targets for novel therapeutic strategies. This review summarises our knowledge of the functional RNA domains of human RNA viruses and examines the achievements made in the design of antiviral compounds that interfere with their folding and therefore their function.
Collapse
Affiliation(s)
- Cristina Romero-López
- Instituto de Parasitología y Biomedicina 'López-Neyra', IPBLN-CSIC, PTS Granada, Armilla, Granada, Spain
| | | |
Collapse
|
44
|
Bai Y, Zhou K, Doudna JA. Hepatitis C virus 3'UTR regulates viral translation through direct interactions with the host translation machinery. Nucleic Acids Res 2013; 41:7861-74. [PMID: 23783572 PMCID: PMC3763534 DOI: 10.1093/nar/gkt543] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The 3′ untranslated region (3′UTR) of hepatitis C virus (HCV) messenger RNA stimulates viral translation by an undetermined mechanism. We identified a high affinity interaction, conserved among different HCV genotypes, between the HCV 3′UTR and the host ribosome. The 3′UTR interacts with 40S ribosomal subunit proteins residing primarily in a localized region on the 40S solvent-accessible surface near the messenger RNA entry and exit sites. This region partially overlaps with the site where the HCV internal ribosome entry site was found to bind, with the internal ribosome entry site-40S subunit interaction being dominant. Despite its ability to bind to 40S subunits independently, the HCV 3′UTR only stimulates translation in cis, without affecting the first round translation rate. These observations support a model in which the HCV 3′UTR retains ribosome complexes during translation termination to facilitate efficient initiation of subsequent rounds of translation.
Collapse
Affiliation(s)
- Yun Bai
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA, Department of Chemistry, University of California, Berkeley, CA 94720, USA and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
45
|
Systematic analysis of enhancer and critical cis-acting RNA elements in the protein-encoding region of the hepatitis C virus genome. J Virol 2013; 87:5678-96. [PMID: 23487449 DOI: 10.1128/jvi.00840-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hepatitis C virus (HCV) causes chronic hepatitis, cirrhosis, and liver cancer. cis-acting RNA elements of the HCV genome are critical for translation initiation and replication of the viral genome. We hypothesized that the coding regions of nonstructural proteins harbor enhancer and essential cis-acting replication elements (CRE). In order to experimentally identify new cis RNA elements, we utilized an unbiased approach to introduce synonymous substitutions. The HCV genome coding for nonstructural proteins (nucleotide positions 3872 to 9097) was divided into 17 contiguous segments. The wobble nucleotide positions of each codon were replaced, resulting in 33% to 41% nucleotide changes. The HCV genome containing one of each of 17 mutant segments (S1 to S17) was tested for genome replication and infectivity. We observed that silent mutations in segment 13 (S13) (nucleotides [nt] 7457 to 7786), S14 (nt 7787 to 8113), S15 (nt 8114 to 8440), S16 (nt 8441 to 8767), and S17 (nt 8768 to 9097) resulted in impaired genome replication, suggesting CRE structures are enriched in the NS5B region. Subsequent high-resolution mutational analysis of NS5B (nt 7787 to 9289) using approximately 51-nucleotide contiguous subsegment mutant viruses having synonymous mutations revealed that subsegments SS8195-8245, SS8654-8704, and SS9011-9061 were required for efficient viral growth, suggesting that these regions act as enhancer elements. Covariant nucleotide substitution analysis of a stem-loop, JFH-SL9098, revealed the formation of an extended stem structure, which we designated JFH-SL9074. We have identified new enhancer RNA elements and an extended stem-loop in the NS5B coding region. Genetic modification of enhancer RNA elements can be utilized for designing attenuated HCV vaccine candidates.
Collapse
|
46
|
Marton S, Romero-López C, Berzal-Herranz A. RNA aptamer-mediated interference of HCV replication by targeting the CRE-5BSL3.2 domain. J Viral Hepat 2013; 20:103-112. [PMID: 23301545 DOI: 10.1111/j.1365-2893.2012.01629.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The RNA genome of hepatitis C virus (HCV) contains multiple conserved structural RNA domains that play key roles in essential viral processes. A conserved structural component within the 3' end of the region coding for viral RNA-dependent RNA polymerase (NS5B) has been characterized as a functional cis-acting replication element (CRE). This study reports the ability of two RNA aptamers, P-58 and P-78, to interfere with HCV replication by targeting the essential 5BSL3.2 domain within this CRE. Structure-probing assays showed the binding of the aptamers to the CRE results in a structural reorganization of the apical portion of the 5BSL3.2 stem-loop domain. This interfered with the binding of the NS5B protein to the CRE and induced a significant reduction in HCV replication (≈50%) in an autonomous subgenomic HCV replication system. These results highlight the potential of this CRE as a target for the development of anti-HCV therapies and underscore the potential of antiviral agents based on RNA aptamer molecules.
Collapse
Affiliation(s)
- S Marton
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | | | | |
Collapse
|
47
|
|
48
|
Shetty S, Stefanovic S, Mihailescu MR. Hepatitis C virus RNA: molecular switches mediated by long-range RNA-RNA interactions? Nucleic Acids Res 2012; 41:2526-40. [PMID: 23275555 PMCID: PMC3575821 DOI: 10.1093/nar/gks1318] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Multiple conserved structural cis-acting regulatory elements have been recognized both in the coding and untranslated regions (UTRs) of the hepatitis C virus (HCV) genome. For example, the cis-element 5BSL3.2 in the HCV-coding region has been predicted to use both its apical and internal loops to interact with the X RNA in the 3'-UTR, with the IIId domain in the 5'-UTR and with the Alt sequence in the coding region. Additionally, the X RNA region uses a palindromic sequence that overlaps the sequence required for the interaction with 5BSL3.2, to dimerize with another HCV genome. The ability of the 5BSL3.2 and X RNA regions to engage in multi-interactions suggests the existence of one or more molecular RNA switches which may regulate different steps of the HCV life cycle. In this study, we used biophysical methods to characterize the essential interactions of these HCV cis-elements at the molecular level. Our results indicate that X RNA interacts with 5BSL3.2 and another X RNA molecule by adopting two different conformations and that 5BSL3.2 engages simultaneously in kissing interactions using its apical and internal loops. Based on these results, we propose a mode of action for possible molecular switches involving the HCV RNA.
Collapse
Affiliation(s)
- Sumangala Shetty
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA
| | | | | |
Collapse
|
49
|
Romero-López C, Barroso-delJesus A, García-Sacristán A, Briones C, Berzal-Herranz A. The folding of the hepatitis C virus internal ribosome entry site depends on the 3'-end of the viral genome. Nucleic Acids Res 2012; 40:11697-11713. [PMID: 23066110 PMCID: PMC3526292 DOI: 10.1093/nar/gks927] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) translation initiation is directed by an internal ribosome entry site (IRES) and regulated by distant regions at the 3'-end of the viral genome. Through a combination of improved RNA chemical probing methods, SHAPE structural analysis and screening of RNA accessibility using antisense oligonucleotide microarrays, here, we show that HCV IRES folding is fine-tuned by the genomic 3'-end. The essential IRES subdomains IIIb and IIId, and domain IV, adopted a different conformation in the presence of the cis-acting replication element and/or the 3'-untranslatable region compared to that taken up in their absence. Importantly, many of the observed changes involved significant decreases in the dimethyl sulfate or N-methyl-isatoic anhydride reactivity profiles at subdomains IIIb and IIId, while domain IV appeared as a more flexible element. These observations were additionally confirmed in a replication-competent RNA molecule. Significantly, protein factors are not required for these conformational differences to be made manifest. Our results suggest that a complex, direct and long-distance RNA-RNA interaction network plays an important role in the regulation of HCV translation and replication, as well as in the switching between different steps of the viral cycle.
Collapse
Affiliation(s)
- Cristina Romero-López
- Departamento de Biología Molecular, Unidad de Genómica, Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain, Laboratorio de Evolución Molecular, Centro de Astrobiología, CAB-(CSIC-INTA), Carretera de Ajalvir km 4, 28850 Madrid, Spain and Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| | - Alicia Barroso-delJesus
- Departamento de Biología Molecular, Unidad de Genómica, Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain, Laboratorio de Evolución Molecular, Centro de Astrobiología, CAB-(CSIC-INTA), Carretera de Ajalvir km 4, 28850 Madrid, Spain and Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| | - Ana García-Sacristán
- Departamento de Biología Molecular, Unidad de Genómica, Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain, Laboratorio de Evolución Molecular, Centro de Astrobiología, CAB-(CSIC-INTA), Carretera de Ajalvir km 4, 28850 Madrid, Spain and Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| | - Carlos Briones
- Departamento de Biología Molecular, Unidad de Genómica, Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain, Laboratorio de Evolución Molecular, Centro de Astrobiología, CAB-(CSIC-INTA), Carretera de Ajalvir km 4, 28850 Madrid, Spain and Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| | - Alfredo Berzal-Herranz
- Departamento de Biología Molecular, Unidad de Genómica, Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain, Laboratorio de Evolución Molecular, Centro de Astrobiología, CAB-(CSIC-INTA), Carretera de Ajalvir km 4, 28850 Madrid, Spain and Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| |
Collapse
|
50
|
Piñeiro D, Martinez-Salas E. RNA structural elements of hepatitis C virus controlling viral RNA translation and the implications for viral pathogenesis. Viruses 2012. [PMID: 23202462 PMCID: PMC3497050 DOI: 10.3390/v4102233] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) genome multiplication requires the concerted action of the viral RNA, host factors and viral proteins. Recent studies have provided information about the requirement of specific viral RNA motifs that play an active role in the viral life cycle. RNA regulatory motifs controlling translation and replication of the viral RNA are mostly found at the 5' and 3' untranslated regions (UTRs). In particular, viral protein synthesis is under the control of the internal ribosome entry site (IRES) element, a complex RNA structure located at the 5'UTR that recruits the ribosomal subunits to the initiator codon. Accordingly, interfering with this RNA structural motif causes the abrogation of the viral cycle. In addition, RNA translation initiation is modulated by cellular factors, including miRNAs and RNA-binding proteins. Interestingly, a RNA structural motif located at the 3'end controls viral replication and establishes long-range RNA-RNA interactions with the 5'UTR, generating functional bridges between both ends on the viral genome. In this article, we review recent advances on virus-host interaction and translation control modulating viral gene expression in infected cells.
Collapse
Affiliation(s)
- David Piñeiro
- Centro de Biología Molecular Severo Ochoa, Nicolas Cabrera, 1, Cantoblanco, 28049 Madrid, Spain.
| | | |
Collapse
|