1
|
Cai C, Weng Y, Wang X, Wu Y, Li Y, Wang P, Zeng C, Yang Z, Jia B, Tang L, Chen L. Single-cell RNA landscape of cell heterogeneity and immune microenvironment in ligation-induced vascular remodeling in rat. Atherosclerosis 2023; 377:1-11. [PMID: 37343431 DOI: 10.1016/j.atherosclerosis.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND AND AIMS Vascular remodeling is a common pathological basis for cardiovascular diseases. Although both immune and non-immune cells have been suggested to contribute to this process, the complex cellular heterogeneity and intercellular interactions remain largely uncharacterized. METHODS AND RESULTS In this study, we simulated early and late vascular remodeling by ligating the rat carotid artery for 1 week and 4 weeks, respectively. Using single-cell RNA-sequencing, we characterized gene expression signatures and driver signals of major cell types involved in vascular remodeling. Focused analysis revealed a novel sub-population of Selenbp1hi smooth muscle cells (SMCs) associated with vascular remodeling. Results of intercellular communication analyses predicted several ligand-receptor pairs between immune cells with SMCs and endothelial cells (ECs), implicating SMCs apoptosis and repair, ECs aging and inflammatory responses. CONCLUSIONS We present a comprehensive single-cell atlas of vascular cells in early and late stages of ligated rat carotid artery, providing valuable insights into the understanding of the initiation and progression of vascular remodeling.
Collapse
Affiliation(s)
- Changhong Cai
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yingzheng Weng
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, China; Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310013, China
| | - Xihao Wang
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310013, China
| | - Yonghui Wu
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, 323000, China
| | - Ya Li
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, 323000, China
| | - Peipei Wang
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, 323000, China
| | - Chunlai Zeng
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, 323000, China
| | - Zhouxin Yang
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, China
| | - Bingbing Jia
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, China.
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, China.
| | - Lianglong Chen
- Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
2
|
Hiraoka H, Wang J, Nakano T, Hirano Y, Yamazaki S, Hiraoka Y, Haraguchi T. ATP levels influence cell movement during the mound phase in Dictyostelium discoideum as revealed by ATP visualization and simulation. FEBS Open Bio 2022; 12:2042-2056. [PMID: 36054629 PMCID: PMC9623536 DOI: 10.1002/2211-5463.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023] Open
Abstract
Cell migration plays an important role in multicellular organism development. The cellular slime mold Dictyostelium discoideum is a useful model organism for the study of cell migration during development. Although cellular ATP levels are known to determine cell fate during development, the underlying mechanism remains unclear. Here, we report that ATP-rich cells efficiently move to the central tip region of the mound against rotational movement during the mound phase. A simulation analysis based on an agent-based model reproduces the movement of ATP-rich cells observed in the experiments. These findings indicate that ATP-rich cells have the ability to move against the bulk flow of cells, suggesting a mechanism by which high ATP levels determine the cell fate of differentiation.
Collapse
Affiliation(s)
- Haruka Hiraoka
- Graduate School of Frontier BiosciencesOsaka UniversityJapan,Graduate School of ScienceNagoya UniversityJapan
| | - Jiewen Wang
- Graduate School of InformaticsOsaka Metropolitan UniversityJapan
| | - Tadashi Nakano
- Graduate School of InformaticsOsaka Metropolitan UniversityJapan
| | - Yasuhiro Hirano
- Graduate School of Frontier BiosciencesOsaka UniversityJapan
| | | | - Yasushi Hiraoka
- Graduate School of Frontier BiosciencesOsaka UniversityJapan
| | | |
Collapse
|
3
|
Xie J, Gao S, Schafer C, Colijn S, Muthukumar V, Griffin CT. The chromatin-remodeling enzyme CHD3 plays a role in embryonic viability but is dispensable for early vascular development. PLoS One 2020; 15:e0235799. [PMID: 32658897 PMCID: PMC7357745 DOI: 10.1371/journal.pone.0235799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 11/19/2022] Open
Abstract
ATP-dependent chromatin-remodeling complexes epigenetically modulate transcription of target genes to impact a variety of developmental processes. Our lab previously demonstrated that CHD4-a central ATPase and catalytic enzyme of the NuRD chromatin-remodeling complex-plays an important role in murine embryonic endothelial cells by transcriptionally regulating vascular integrity at midgestation. Since NuRD complexes can incorporate the ATPase CHD3 as an alternative to CHD4, we questioned whether the CHD3 enzyme likewise modulates vascular development or integrity. We generated a floxed allele of Chd3 but saw no evidence of lethality or vascular anomalies when we deleted it in embryonic endothelial cells in vivo (Chd3ECKO). Furthermore, double-deletion of Chd3 and Chd4 in embryonic endothelial cells (Chd3/4ECKO) did not dramatically alter the timing and severity of embryonic phenotypes seen in Chd4ECKO mutants, indicating that CHD3 does not play a cooperative role with CHD4 in early vascular development. However, excision of Chd3 at the epiblast stage of development with a Sox2-Cre line allowed us to generate global heterozygous Chd3 mice (Chd3Δ/+), which were subsequently intercrossed and revealed partial lethality of Chd3Δ/Δ mutants prior to weaning. Tissues from surviving Chd3Δ/Δ mutants helped us confirm that CHD3 was efficiently deleted in these animals and that CHD3 is highly expressed in the gonads and brains of adult wildtype mice. Therefore, Chd3-flox mice will be beneficial for future studies about roles for this chromatin-remodeling enzyme in viable embryonic development and in gonadal and brain physiology.
Collapse
Affiliation(s)
- Jun Xie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
| | - Siqi Gao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Christopher Schafer
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
| | - Sarah Colijn
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Vijay Muthukumar
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
| | - Courtney T. Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- * E-mail:
| |
Collapse
|
4
|
Crosswhite PL. ATP-dependent chromatin remodeling complexes in embryonic vascular development and hypertension. Am J Physiol Heart Circ Physiol 2019; 317:H575-H580. [PMID: 31398060 DOI: 10.1152/ajpheart.00147.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypertension, a chronic elevation in blood pressure, is the largest single contributing factor to mortality worldwide and the most common preventable risk factor for cardiovascular disease. High blood pressure increases the risk for someone to experience a number of adverse cardiovascular events including heart failure, stroke, or aneurysm. Despite advancements in understanding factors that contribute to hypertension, the etiology remains elusive and there remains a critical need to develop innovative study approaches to develop more effective therapeutics. ATP-dependent chromatin remodelers are dynamic regulators of DNA-histone bonds and thus gene expression. The goal of this review is to highlight and summarize reports of ATP-dependent chromatin remodelers contribution to the development or maintenance of hypertension. Emerging evidence from hypertensive animal models suggests that induction of chromatin remodeler activity increases proinflammatory genes and increases blood pressure, whereas human studies demonstrate how chromatin remodelers may act as stress-response sensors to harmful physiological stimuli. Importantly, genomic studies have linked patients with hypertension to mutations in chromatin remodeler genes. Collectively, evidence linking chromatin remodelers and hypertension warrants additional research and ultimately could reveal novel therapeutic approaches for treating this complex and devastating disease.
Collapse
|
5
|
Wang C, Tang Y, Wang Y, Li G, Wang L, Li Y. Label-free quantitative proteomics identifies Smarca4 is involved in vascular calcification. Ren Fail 2019; 41:220-228. [PMID: 30973285 PMCID: PMC6461080 DOI: 10.1080/0886022x.2019.1591997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Vascular calcification (VC) is a pathological process characterized by abnormal deposition of calcium phosphate, hydroxyapatite and other mineral substances in the vascular wall. Hyperphosphorus is an important risk factor associated with VC in the general population and patients with chronic kidney disease (CKD). However, there is still a lack of early biomarkers for hyperphosphorus induced VC. We established a calcific rat aorta vascular smooth muscle cells (RASMCs) model by stimulating with β-glycerophosphate. Then we performed label-free quantitative proteomics combined with liquid chromatograph–mass spectrometer/mass spectrometer (LC-2D-MS/MS)analysis and bioinformatics analysis to find the potential biomarkers for VC. In the current study, we identified 113 significantly proteins. Fifty six of these proteins were significantly up-regulated and the other 57 proteins were significantly decreased in calcific RASMCs, compared to that of normal control cells (fold-change (fc)>1.2, p < .05). Bioinformatics analysis indicated that these significant proteins mainly involved in the placenta blood vessel development and liver regeneration. Their molecule function was cell adhesion molecule binding. Among them, Smarca4 is significantly up-regulated in calcific RASMCs with fc = 2.72 and p = .01. In addition, we also established VC rat model. Real-time quantitative PCR analysis confirmed that the expression of Smarca4 was significantly increased in the aorta of calcified rat. Consistent with the up-regulation of Smarca4, the expression of VC associated microRNA such as miR-133b and miR-155 was also increased. Consequently, our study demonstrates that Smarca4 is involved in hyperphosphorus-induced VC. This finding may contribute to the early diagnosis and prevention of VC.
Collapse
Affiliation(s)
- Chan Wang
- a Department of Nephrology , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China , Chengdu , China.,b Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan People's Hospital , Chengdu , China
| | - Yun Tang
- a Department of Nephrology , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China , Chengdu , China.,b Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan People's Hospital , Chengdu , China
| | - Yanmei Wang
- c Department of Nephrology , Affiliated Hospital of North Sichuan Medical College , Nanchong , China
| | - Guisen Li
- a Department of Nephrology , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China , Chengdu , China.,b Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan People's Hospital , Chengdu , China
| | - Li Wang
- a Department of Nephrology , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China , Chengdu , China
| | - Yi Li
- a Department of Nephrology , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China , Chengdu , China.,b Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan People's Hospital , Chengdu , China
| |
Collapse
|
6
|
Menendez MT, Ong EC, Shepherd BT, Muthukumar V, Silasi-Mansat R, Lupu F, Griffin CT. BRG1 (Brahma-Related Gene 1) Promotes Endothelial Mrtf Transcription to Establish Embryonic Capillary Integrity. Arterioscler Thromb Vasc Biol 2017; 37:1674-1682. [PMID: 28729363 DOI: 10.1161/atvbaha.117.309785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 07/10/2017] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The chromatin remodeling enzyme BRG1 (brahma-related gene 1) transcriptionally regulates target genes important for early blood vessel development and primitive hematopoiesis. However, because Brg1 deletion in vascular progenitor cells results in lethal anemia by embryonic day 10.5 (E10.5), roles for BRG1 in embryonic vascular development after midgestation are unknown. In this study, we sought to determine whether endothelial cell BRG1 regulates genes important for vascular development or maintenance later in embryonic development. APPROACH AND RESULTS Using mice with temporally inducible deletion of endothelial BRG1 (Brg1fl/fl;Cdh5(PAC)-CreERT2 ), we found that Brg1 excision between E9.5 and 11.5 results in capillary dilation and lethal hemorrhage by E14.5. This phenotype strongly resembles that seen when the SRF (serum response factor) transcription factor is deleted from embryonic endothelial cells. Although expression of Srf and several of its known endothelial cell target genes are downregulated in BRG1-depleted endothelial cells, we did not detect binding of BRG1 at these gene promoters, indicating that they are not direct BRG1 target genes. Instead, we found that BRG1 binds to the promoters of the SRF cofactors Mrtfa and Mrtfb (myocardin-related transcription factors A and B) in endothelial cells, and these genes are downregulated in Brg1-deficient endothelial cells. CONCLUSIONS BRG1 promotes transcription of endothelial Mrtfa and Mrtfb, which elevates expression of SRF and SRF target genes that establish embryonic capillary integrity. These data highlight a new and temporally specific role for BRG1 in embryonic vasculature and provide novel information about epigenetic regulation of Mrtf expression and SRF signaling in developing blood vessels.
Collapse
Affiliation(s)
- Matthew T Menendez
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City (M.T.M., E.-C.O., B.T.S, V.M., R.S.-M., F.L., C.T.G.); and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City (F.L., C.T.G.)
| | - E-Ching Ong
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City (M.T.M., E.-C.O., B.T.S, V.M., R.S.-M., F.L., C.T.G.); and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City (F.L., C.T.G.)
| | - Brian T Shepherd
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City (M.T.M., E.-C.O., B.T.S, V.M., R.S.-M., F.L., C.T.G.); and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City (F.L., C.T.G.)
| | - Vijay Muthukumar
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City (M.T.M., E.-C.O., B.T.S, V.M., R.S.-M., F.L., C.T.G.); and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City (F.L., C.T.G.)
| | - Robert Silasi-Mansat
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City (M.T.M., E.-C.O., B.T.S, V.M., R.S.-M., F.L., C.T.G.); and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City (F.L., C.T.G.)
| | - Florea Lupu
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City (M.T.M., E.-C.O., B.T.S, V.M., R.S.-M., F.L., C.T.G.); and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City (F.L., C.T.G.)
| | - Courtney T Griffin
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City (M.T.M., E.-C.O., B.T.S, V.M., R.S.-M., F.L., C.T.G.); and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City (F.L., C.T.G.).
| |
Collapse
|
7
|
Banerjee R, Bultman SJ, Holley D, Hillhouse C, Bain JR, Newgard CB, Muehlbauer MJ, Willis MS. Non-targeted metabolomics of Brg1/Brm double-mutant cardiomyocytes reveals a novel role for SWI/SNF complexes in metabolic homeostasis. Metabolomics 2015; 11:1287-1301. [PMID: 26392817 PMCID: PMC4574504 DOI: 10.1007/s11306-015-0786-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mammalian SWI/SNF chromatin-remodeling complexes utilize either BRG1 or Brm as alternative catalytic subunits to alter the position of nucleosomes and regulate gene expression. Genetic studies have demonstrated that SWI/SNF complexes are required during cardiac development and also protect against cardiovascular disease and cancer. However, Brm constitutive null mutants do not exhibit a cardiomyocyte phenotype and inducible Brg1 conditional mutations in cardiomyocyte do not demonstrate differences until stressed with transverse aortic constriction, where they exhibit a reduction in cardiac hypertrophy. We recently demonstrated the overlapping functions of Brm and Brg1 in vascular endothelial cells and sought here to test if this overlapping function occurred in cardiomyocytes. Brg1/Brm double mutants died within 21 days of severe cardiac dysfunction associated with glycogen accumulation and mitochondrial defects based on histological and ultrastructural analyses. To determine the underlying defects, we performed nontargeted metabolomics analysis of cardiac tissue by GC/MS from a line of Brg1/Brm double-mutant mice, which lack both Brg1 and Brm in cardiomyocytes in an inducible manner, and two groups of controls. Metabolites contributing most significantly to the differences between Brg1/Brm double-mutant and control-group hearts were then determined using the variable importance in projection analysis. Increased cardiac linoleic acid and oleic acid suggest alterations in fatty acid utilization or intake are perturbed in Brg1/Brm double mutants. Conversely, decreased glucose-6-phosphate, fructose-6-phosphate, and myoinositol suggest that glycolysis and glycogen formation are impaired. These novel metabolomics findings provide insight into SWI/SNF-regulated metabolic pathways and will guide mechanistic studies evaluating the role of SWI/SNF complexes in homeostasis and cardiovascular disease prevention.
Collapse
Affiliation(s)
- Ranjan Banerjee
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Scott J. Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Darcy Holley
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Carolyn Hillhouse
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - James R. Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA. Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA. Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Michael J. Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Monte S. Willis
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA. McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Wiley MM, Muthukumar V, Griffin TM, Griffin CT. SWI/SNF chromatin-remodeling enzymes Brahma-related gene 1 (BRG1) and Brahma (BRM) are dispensable in multiple models of postnatal angiogenesis but are required for vascular integrity in infant mice. J Am Heart Assoc 2015; 4:jah3948. [PMID: 25904594 PMCID: PMC4579958 DOI: 10.1161/jaha.115.001972] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Mammalian SWItch/Sucrose NonFermentable (SWI/SNF) adenosine triphosphate (ATP)‐dependent chromatin‐remodeling complexes play important roles in embryonic vascular development by modulating transcription of specific target genes. We sought to determine whether SWI/SNF complexes likewise impact postnatal physiological and pathological angiogenesis. Methods and Results Brahma‐related gene 1 (BRG1) and Brahma gene (BRM) are ATPases within mammalian SWI/SNF complexes and are essential for the complexes to function. Using mice with vascular‐specific mutations in Brg1 or with a global mutation in Brm, we employed 3 models to test the role of these ATPases in postnatal angiogenesis. We analyzed neonatal retinal angiogenesis, exercise‐induced angiogenesis in adult quadriceps muscles, and tumor angiogenesis in control and mutant animals. We found no evidence of defective angiogenesis in Brg1 or Brm mutants using these 3 models. Brg1/Brm double mutants likewise show no evidence of vascular defects in the neonatal retina or tumor angiogenesis models. However, 100% of Brg1/Brm‐double mutants in which Brg1 deletion is induced at postnatal day 3 (P3) die by P19 with hemorrhaging in the small intestine and heart. Conclusions Despite their important roles in embryonic vascular development, SWI/SNF chromatin‐remodeling complexes display a surprising lack of participation in the 3 models of postnatal angiogenesis we analyzed. However, these complexes are essential for maintaining vascular integrity in specific tissue beds before weaning. These findings highlight the temporal and spatial specificity of SWI/SNF activities in the vasculature and may indicate that other chromatin‐remodeling complexes play redundant or more essential roles during physiological and pathological postnatal vascular development.
Collapse
Affiliation(s)
- Mandi M. Wiley
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (M.M.W., V.M., C.T.G.)
| | - Vijay Muthukumar
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (M.M.W., V.M., C.T.G.)
| | - Timothy M. Griffin
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (T.M.G.)
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (T.M.G.)
| | - Courtney T. Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (M.M.W., V.M., C.T.G.)
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (C.T.G.)
| |
Collapse
|
9
|
Ingram KG, Curtis CD, Silasi-Mansat R, Lupu F, Griffin CT. The NuRD chromatin-remodeling enzyme CHD4 promotes embryonic vascular integrity by transcriptionally regulating extracellular matrix proteolysis. PLoS Genet 2013; 9:e1004031. [PMID: 24348274 PMCID: PMC3861115 DOI: 10.1371/journal.pgen.1004031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 10/31/2013] [Indexed: 12/31/2022] Open
Abstract
The extracellular matrix (ECM) supports vascular integrity during embryonic development. Proteolytic degradation of ECM components is required for angiogenesis, but excessive ECM proteolysis causes blood vessel fragility and hemorrhage. Little is understood about how ECM proteolysis is transcriptionally regulated during embryonic vascular development. We now show that the NuRD ATP-dependent chromatin-remodeling complex promotes vascular integrity by preventing excessive ECM proteolysis in vivo. Mice lacking endothelial CHD4--a catalytic subunit of NuRD complexes--died at midgestation from vascular rupture. ECM components surrounding rupture-prone vessels in Chd4 mutants were significantly downregulated prior to embryonic lethality. Using qPCR arrays, we found two critical mediators of ECM stability misregulated in mutant endothelial cells: the urokinase-type plasminogen activator receptor (uPAR or Plaur) was upregulated, and thrombospondin-1 (Thbs1) was downregulated. Chromatin immunoprecipitation assays showed that CHD4-containing NuRD complexes directly bound the promoters of these genes in endothelial cells. uPAR and THBS1 respectively promote and inhibit activation of the potent ECM protease plasmin, and we detected increased plasmin activity around rupture-prone vessels in Chd4 mutants. We rescued ECM components and vascular rupture in Chd4 mutants by genetically reducing urokinase (uPA or Plau), which cooperates with uPAR to activate plasmin. Our findings provide a novel mechanism by which a chromatin-remodeling enzyme regulates ECM stability to maintain vascular integrity during embryonic development.
Collapse
Affiliation(s)
- Kyle G. Ingram
- Cardiovascular Biology Research Program; Oklahoma Medical Research Foundation; Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology; University of Oklahoma Health Sciences Center; Oklahoma City, Oklahoma, United States of America
| | - Carol D. Curtis
- Cardiovascular Biology Research Program; Oklahoma Medical Research Foundation; Oklahoma City, Oklahoma, United States of America
| | - Robert Silasi-Mansat
- Cardiovascular Biology Research Program; Oklahoma Medical Research Foundation; Oklahoma City, Oklahoma, United States of America
| | - Florea Lupu
- Cardiovascular Biology Research Program; Oklahoma Medical Research Foundation; Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology; University of Oklahoma Health Sciences Center; Oklahoma City, Oklahoma, United States of America
- Department of Pathology; University of Oklahoma Health Sciences Center; Oklahoma City, Oklahoma, United States of America
| | - Courtney T. Griffin
- Cardiovascular Biology Research Program; Oklahoma Medical Research Foundation; Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology; University of Oklahoma Health Sciences Center; Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
10
|
Davis RB, Curtis CD, Griffin CT. BRG1 promotes COUP-TFII expression and venous specification during embryonic vascular development. Development 2013; 140:1272-81. [PMID: 23406903 DOI: 10.1242/dev.087379] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Arteries and veins acquire distinct molecular identities prior to the onset of embryonic blood circulation, and their specification is crucial for vascular development. The transcription factor COUP-TFII currently functions at the top of a signaling pathway governing venous fate. It promotes venous identity by inhibiting Notch signaling and subsequent arterialization of endothelial cells, yet nothing is known about what regulates COUP-TFII expression in veins. We now report that the chromatin-remodeling enzyme BRG1 promotes COUP-TFII expression in venous endothelial cells during murine embryonic development. Conditional deletion of Brg1 from vascular endothelial cells resulted in downregulated COUP-TFII expression and aberrant expression of arterial markers on veins. BRG1 promotes COUP-TFII expression by binding conserved regulatory elements within the COUP-TFII promoter and remodeling chromatin to make the promoter accessible to transcriptional machinery. This study provides the first description of a factor promoting COUP-TFII expression in vascular endothelium and highlights a novel role for chromatin remodeling in venous specification.
Collapse
Affiliation(s)
- Reema B Davis
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|