1
|
Ahmad F, Abdullah M, Khan Z, Stępień P, Rehman SU, Akram U, Rahman MHU, Ali Z, Ahmad D, Gulzar RMA, Ali MA, Salama EAA. Genome-wide analysis and prediction of chloroplast and mitochondrial RNA editing sites of AGC gene family in cotton (Gossypium hirsutum L.) for abiotic stress tolerance. BMC PLANT BIOLOGY 2024; 24:888. [PMID: 39343888 PMCID: PMC11441078 DOI: 10.1186/s12870-024-05598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Cotton is one of the topmost fiber crops throughout the globe. During the last decade, abrupt changes in the climate resulted in drought, heat, and salinity. These stresses have seriously affected cotton production and significant losses all over the textile industry. The GhAGC kinase, a subfamily of AGC group and member of serine/threonine (Ser/Thr) protein kinases group and is highly conserved among eukaryotic organisms. The AGC kinases are compulsory elements of cell development, metabolic processes, and cell death in mammalian systems. The investigation of RNA editing sites within the organelle genomes of multicellular vascular plants, such as Gossypium hirsutum holds significant importance in understanding the regulation of gene expression at the post-transcriptional level. METHODS In present work, we characterized twenty-eight GhAGC genes in cotton and constructed phylogenetic tree using nine different species from the most primitive to the most recent. RESULTS In sequence logos analyses, highly conserved amino acid residues were found in G. hirsutum, G. arboretum, G. raimondii and A. thaliana. The occurrence of cis-acting growth and stress-related elements in the promoter regions of GhAGCs highlight the significance of these factors in plant development and abiotic stress tolerance. Ka/Ks levels demonstrated that purifying selection pressure resulting from segmental events was applied to GhAGC with little functional divergence. We focused on identifying RNA editing sites in G. hirsutum organelles, specifically in the chloroplast and mitochondria, across all 28 AGC genes. CONCLUSION The positive role of GhAGCs was explored by quantifying the expression in the plant tissues under abiotic stress. These findings help in understanding the role of GhAGC genes under abiotic stresses which may further be used in cotton breeding for the development of climate smart varieties in abruptly changing climate.
Collapse
Grants
- 32130075 National Natural Science Foundation of China
- 32130075 National Natural Science Foundation of China
- 32130075 National Natural Science Foundation of China
- 2021AB008, 2020CB003 Science Technology and Achievement Transformation Project of the Xinjiang Production and Construction Corps
- 2021AB008, 2020CB003 Science Technology and Achievement Transformation Project of the Xinjiang Production and Construction Corps
- 2021AB008, 2020CB003 Science Technology and Achievement Transformation Project of the Xinjiang Production and Construction Corps
- ADP-LO21002838 Punjab, Pak ADP Funded Project entitled National Crop Genomics and Speed Breeding Center for Agri-cultural Sustainability
- ADP-LO21002838 Punjab, Pak ADP Funded Project entitled National Crop Genomics and Speed Breeding Center for Agri-cultural Sustainability
- ADP-LO21002838 Punjab, Pak ADP Funded Project entitled National Crop Genomics and Speed Breeding Center for Agri-cultural Sustainability
- ADP-LO21002838 Punjab, Pak ADP Funded Project entitled National Crop Genomics and Speed Breeding Center for Agri-cultural Sustainability
- ADP-LO21002838 Punjab, Pak ADP Funded Project entitled National Crop Genomics and Speed Breeding Center for Agri-cultural Sustainability
- RSP2024R306 King Saud University, Riyadh, Saudi Arabia
Collapse
Affiliation(s)
- Furqan Ahmad
- Sino-Pak Joint Research Laboratory, Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, 60000, Punjab, Pakistan.
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Muhammad Abdullah
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zulqurnain Khan
- Sino-Pak Joint Research Laboratory, Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, 60000, Punjab, Pakistan
| | - Piotr Stępień
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, ul. Grunwaldzka 53, Wroclaw, 50-357, Poland.
| | - Shoaib Ur Rehman
- Sino-Pak Joint Research Laboratory, Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, 60000, Punjab, Pakistan
| | - Umar Akram
- Sino-Pak Joint Research Laboratory, Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, 60000, Punjab, Pakistan
| | - Muhammad Habib Ur Rahman
- Sino-Pak Joint Research Laboratory, Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, 60000, Punjab, Pakistan
| | - Zulfiqar Ali
- Sino-Pak Joint Research Laboratory, Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, 60000, Punjab, Pakistan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- Programs and Projects Department, Islamic Organization for Food Security, Astana, Kazakhstan
| | - Daraz Ahmad
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Rana Muhammad Amir Gulzar
- Laboratory of molecular biology of plant disease resistance, institute of Biotechnology, college of agriculture and biotechnology, Zhejiang university, Hangzhou, P.R. China
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - Ehab A A Salama
- Agricultural Botany Department (Genetics), Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| |
Collapse
|
2
|
Sharma D, Budhlakoti N, Kumari A, Saini DK, Sharma A, Yadav A, Mir RR, Singh AK, Vikas VK, Singh GP, Kumar S. Exploring the genetic architecture of powdery mildew resistance in wheat through QTL meta-analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1386494. [PMID: 39022610 PMCID: PMC11251950 DOI: 10.3389/fpls.2024.1386494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
Powdery mildew (PM), caused by Blumeria graminis f. sp. tritici, poses a significant threat to wheat production, necessitating the development of genetically resistant varieties for long-term control. Therefore, exploring genetic architecture of PM in wheat to uncover important genomic regions is an important area of wheat research. In recent years, the utilization of meta-QTL (MQTL) analysis has gained prominence as an essential tool for unraveling the complex genetic architecture underlying complex quantitative traits. The aim of this research was to conduct a QTL meta-analysis to pinpoint the specific genomic regions in wheat responsible for governing PM resistance. This study integrated 222 QTLs from 33 linkage-based studies using a consensus map with 54,672 markers. The analysis revealed 39 MQTLs, refined to 9 high-confidence MQTLs (hcMQTLs) with confidence intervals of 0.49 to 12.94 cM. The MQTLs had an average physical interval of 41.00 Mb, ranging from 0.000048 Mb to 380.71 Mb per MQTL. Importantly, 18 MQTLs co-localized with known resistance genes like Pm2, Pm3, Pm8, Pm21, Pm38, and Pm41. The study identified 256 gene models within hcMQTLs, providing potential targets for marker-assisted breeding and genomic prediction programs to enhance PM resistance. These MQTLs would serve as a foundation for fine mapping, gene isolation, and functional genomics studies, facilitating a deeper understanding of molecular mechanisms. The identification of candidate genes opens up exciting possibilities for the development of PM-resistant wheat varieties after validation.
Collapse
Affiliation(s)
- Divya Sharma
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Neeraj Budhlakoti
- Centre for Agriculture Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anita Kumari
- Department of Botany, University of Delhi, Delhi, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, Ludhiana, India
| | - Anshu Sharma
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Aakash Yadav
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Reyazul Rouf Mir
- Department of Genetics and Plant Breeding , Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir (SKUAST-K), Srinagar, Kashmir, India
| | - Amit Kumar Singh
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - V. K. Vikas
- Divison of Crop Improvement, ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, Tamilnadu, India
| | - Gyanendra Pratap Singh
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sundeep Kumar
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
3
|
Rehman A, Alwutayd KM, Alshehri D, Alsudays IM, Azeem F, Rahman S, Abid M, Shah AA. Regulatory role of AGC genes in heat stress adaptation in maize ( Zea mays). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23282. [PMID: 38758970 DOI: 10.1071/fp23282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
Heat stress represents a significant environmental challenge that restricts maize (Zea mays ) growth and yield on a global scale. Within the plant kingdom, the AGC gene family, encoding a group of protein kinases, has emerged as crucial players in various stress responses. Nevertheless, a comprehensive understanding of AGC genes in Z. mays under heat-stress conditions remains elusive. A genome-wide analysis was done using bioinformatics techniques to identify 39 AGC genes in Z. mays , categorising them into three subfamilies based on their conserved domains. We investigated their phylogenetic relationships, gene structures (including intron-exon configurations), and expression patterns. These genes are likely involved in diverse signalling pathways, fulfilling distinct roles when exposed to heat stress conditions. Notably, most ZmAGC1.5, ZmAGC1.9, ZmNDR3, ZmNDR5 and ZmIRE3 exhibited significant changes in expression levels under heat stress, featuring a high G-box ratio. Furthermore, we pinpointed a subset of AGC genes displaying highly coordinated expression, implying their potential involvement in the heat stress response pathway. Our study offers valuable insights into the contribution of AGC genes to Z. mays 's heat stress response, thus facilitating the development of heat-tolerant Z. mays varieties.
Collapse
Affiliation(s)
- Abdul Rehman
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shahroz Rahman
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Abid
- Department of Plant Pathology, Bahauddin Zakariya University, Multan, Pakistan
| | - Asad Ali Shah
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
4
|
Ahn E, Botkin J, Ellur V, Lee Y, Poudel K, Prom LK, Magill C. Genome-Wide Association Study of Seed Morphology Traits in Senegalese Sorghum Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:2344. [PMID: 37375969 DOI: 10.3390/plants12122344] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Sorghum is considered the fifth most important crop in the world. Despite the potential value of Senegalese germplasm for various traits, such as resistance to fungal diseases, there is limited information on the study of sorghum seed morphology. In this study, 162 Senegalese germplasms were evaluated for seed area size, length, width, length-to-width ratio, perimeter, circularity, the distance between the intersection of length & width (IS) and center of gravity (CG), and seed darkness and brightness by scanning and analyzing morphology-related traits with SmartGrain software at the USDA-ARS Plant Science Research Unit. Correlations between seed morphology-related traits and traits associated with anthracnose and head smut resistance were analyzed. Lastly, genome-wide association studies were performed on phenotypic data collected from over 16,000 seeds and 193,727 publicly available single nucleotide polymorphisms (SNPs). Several significant SNPs were found and mapped to the reference sorghum genome to uncover multiple candidate genes potentially associated with seed morphology. The results indicate clear correlations among seed morphology-related traits and potential associations between seed morphology and the defense response of sorghum. GWAS analysis listed candidate genes associated with seed morphologies that can be used for sorghum breeding in the future.
Collapse
Affiliation(s)
- Ezekiel Ahn
- USDA-ARS Plant Science Research Unit, St. Paul, MN 55108, USA
| | - Jacob Botkin
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Vishnutej Ellur
- Molecular Plant Sciences, Washington State University, Pullman, WA 99164, USA
| | - Yoonjung Lee
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Kabita Poudel
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Louis K Prom
- USDA-ARS Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Clint Magill
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
Kumar S, Saini DK, Jan F, Jan S, Tahir M, Djalovic I, Latkovic D, Khan MA, Kumar S, Vikas VK, Kumar U, Kumar S, Dhaka NS, Dhankher OP, Rustgi S, Mir RR. Comprehensive meta-QTL analysis for dissecting the genetic architecture of stripe rust resistance in bread wheat. BMC Genomics 2023; 24:259. [PMID: 37173660 PMCID: PMC10182688 DOI: 10.1186/s12864-023-09336-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Yellow or stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici (Pst) is an important disease of wheat that threatens wheat production. Since developing resistant cultivars offers a viable solution for disease management, it is essential to understand the genetic basis of stripe rust resistance. In recent years, meta-QTL analysis of identified QTLs has gained popularity as a way to dissect the genetic architecture underpinning quantitative traits, including disease resistance. RESULTS Systematic meta-QTL analysis involving 505 QTLs from 101 linkage-based interval mapping studies was conducted for stripe rust resistance in wheat. For this purpose, publicly available high-quality genetic maps were used to create a consensus linkage map involving 138,574 markers. This map was used to project the QTLs and conduct meta-QTL analysis. A total of 67 important meta-QTLs (MQTLs) were identified which were refined to 29 high-confidence MQTLs. The confidence interval (CI) of MQTLs ranged from 0 to 11.68 cM with a mean of 1.97 cM. The mean physical CI of MQTLs was 24.01 Mb, ranging from 0.0749 to 216.23 Mb per MQTL. As many as 44 MQTLs colocalized with marker-trait associations or SNP peaks associated with stripe rust resistance in wheat. Some MQTLs also included the following major genes- Yr5, Yr7, Yr16, Yr26, Yr30, Yr43, Yr44, Yr64, YrCH52, and YrH52. Candidate gene mining in high-confidence MQTLs identified 1,562 gene models. Examining these gene models for differential expressions yielded 123 differentially expressed genes, including the 59 most promising CGs. We also studied how these genes were expressed in wheat tissues at different phases of development. CONCLUSION The most promising MQTLs identified in this study may facilitate marker-assisted breeding for stripe rust resistance in wheat. Information on markers flanking the MQTLs can be utilized in genomic selection models to increase the prediction accuracy for stripe rust resistance. The candidate genes identified can also be utilized for enhancing the wheat resistance against stripe rust after in vivo confirmation/validation using one or more of the following methods: gene cloning, reverse genetic methods, and omics approaches.
Collapse
Affiliation(s)
- Sandeep Kumar
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Farkhandah Jan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Sofora Jan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Mohd Tahir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, Novi Sad, Serbia
| | - Dragana Latkovic
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000, Novi Sad, Serbia
| | - Mohd Anwar Khan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Sundeep Kumar
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - V K Vikas
- ICAR-IARI, Regional Station, Wellington, 643 231, The Nilgiris, India
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology., CCS Haryana Agriculture University, Hisar, India
| | - Sundip Kumar
- Department of Molecular Biology and Genetic Engineering, Molecular Cytogenetics Laboratory, College of Basic Science and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar-263145, U.S. Nagar, Uttarakhand, India
| | - Narendra Singh Dhaka
- Department of Genetics and Plant Breeding, College of Agriculture, G. B. Pant, University of Agriculture & Technology, Pantnagar-263145, U. S. Nagar, Uttarakhand, India
| | - Om Parkash Dhankher
- School of Agriculture, University of Massachusetts Amherst, Stockbridge Amherst, MA, 01003, USA
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University, 2200 Pocket Road, Florence, SC, 29506, USA
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India.
| |
Collapse
|
6
|
Moghadam A, Foroozan E, Tahmasebi A, Taghizadeh MS, Bolhassani M, Jafari M. System network analysis of Rosmarinus officinalis transcriptome and metabolome-Key genes in biosynthesis of secondary metabolites. PLoS One 2023; 18:e0282316. [PMID: 36862714 PMCID: PMC9980811 DOI: 10.1371/journal.pone.0282316] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023] Open
Abstract
Medicinal plants contain valuable compounds that have attracted worldwide interest for their use in the production of natural drugs. The presence of compounds such as rosmarinic acid, carnosic acid, and carnosol in Rosmarinus officinalis has made it a plant with unique therapeutic effects. The identification and regulation of the biosynthetic pathways and genes will enable the large-scale production of these compounds. Hence, we studied the correlation between the genes involved in biosynthesis of the secondary metabolites in R. officinalis using proteomics and metabolomics data by WGCNA. We identified three modules as having the highest potential for the metabolite engineering. Moreover, the hub genes highly connected to particular modules, TFs, PKs, and transporters were identified. The TFs of MYB, C3H, HB, and C2H2 were the most likely candidates associated with the target metabolic pathways. The results indicated that the hub genes including Copalyl diphosphate synthase (CDS), Phenylalanine ammonia lyase (PAL), Cineole synthase (CIN), Rosmarinic acid synthase (RAS), Tyrosine aminotransferase (TAT), Cinnamate 4-hydroxylase (C4H), and MYB58 are responsible for biosynthesis of important secondary metabolites. Thus, we confirmed these results using qRT-PCR after treating R. officinalis seedlings with methyl jasmonate. These candidate genes may be employed for genetic and metabolic engineering research to increase R. officinalis metabolite production.
Collapse
Affiliation(s)
- Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Eisa Foroozan
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | | | | | | | - Morteza Jafari
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| |
Collapse
|
7
|
Genome-Wide Analysis of AGC Kinases Reveals that MoFpk1 Is Required for Development, Lipid Metabolism, and Autophagy in Hyperosmotic Stress of the Rice Blast Fungus Magnaporthe oryzae. mBio 2022; 13:e0227922. [PMID: 36259725 PMCID: PMC9765699 DOI: 10.1128/mbio.02279-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During eukaryotic evolution, the TOR-AGC kinase signaling module is involved in the coordinated regulation of cell growth and survival. However, the AGC kinases in plant-pathogenic fungi remain poorly understood. In this study, we have identified 20 members of the AGC family of protein kinases. Evolutionary and biological studies have revealed that AGC kinases are highly conserved and involved in the growth (8 genes), conidiation (13 genes), conidial germination (9 genes), appressorium formation (9 genes), and pathogenicity (5 genes) of Magnaporthe oryzae, in which a subfamily protein of the AGC kinases, MoFpk1, the activator of flippase, specifically exhibited diverse roles. Two kinase sites were screened and found to be critical for MoFpk1: 230K and 326D. Moreover, MoFpk1 is involved in cell wall integrity through the negative regulation of MoMps1 phosphorylation. The deletion of MoFpk1 resulted in defective phosphatidylacetamide (PE) and phosphatidylserine (PS) turnover and a series of lipid metabolism disorders. Under hyperosmotic stress, since the ΔMofpk1 mutant is unable to maintain membrane asymmetry, MoYpk1 phosphorylation and MoTor activity were downregulated, thus enhancing autophagy. Our results provide insights into the evolutionary and biological relationships of AGC kinases and new insight into plasma membrane (PM) homeostasis, i.e., responses to membrane stress and autophagy through lipid asymmetry maintenance. IMPORTANCE Our identification and analysis of evolutionary and biological relationships provide us with an unprecedented high-resolution view of the flexible and conserved roles of the AGC family in the topmost fungal pathogens that infect rice, wheat, barley, and millet. Guided by these insights, an AGC member, MoFpk1, was found to be indispensable for M. oryzae development. Our study defined a novel mechanism of plasma membrane homeostasis, i.e., adaptation to stress through the asymmetric distribution of phospholipids. Furthermore, defects in the asymmetric distribution of phospholipids in the membrane enhanced autophagy under hyperosmotic stress. This study provides a new mechanism for the internal linkage between lipid metabolism and autophagy, which may help new fungicide target development for controlling this devastating disease.
Collapse
|
8
|
Ercoli MF, Ramos PZ, Jain R, Pilotte J, Dong OX, Thompson T, Wells CI, Elkins JM, Edwards AM, Couñago RM, Drewry DH, Ronald PC. An open source plant kinase chemogenomics set. PLANT DIRECT 2022; 6:e460. [PMID: 36447653 PMCID: PMC9694430 DOI: 10.1002/pld3.460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
One hundred twenty-nine protein kinases, selected to represent the diversity of the rice (Oryza sativa) kinome, were cloned and tested for expression in Escherichia coli. Forty of these rice kinases were purified and screened using differential scanning fluorimetry (DSF) against 627 diverse kinase inhibitors, with a range of structures and activities targeting diverse human kinases. Thirty-seven active compounds were then tested for their ability to modify primary root development in Arabidopsis. Of these, 14 compounds caused a significant reduction of primary root length compared with control plants. Two of these inhibitory compounds bind to the predicted orthologue of Arabidopsis PSKR1, one of two receptors for PSK, a small sulfated peptide that positively controls root development. The reduced root length phenotype could not be rescued by the exogenous addition of the PSK peptide, suggesting that chemical treatment may inhibit both PSKR1 and its closely related receptor PSKR2. Six of the compounds acting as root growth inhibitors in Arabidopsis conferred the same effect in rice. Compound RAF265 (CHIR-265), previously shown to bind the human kinase BRAF (B-Raf proto-oncogene, serine/threonine kinase), also binds to nine highly conserved rice kinases tested. The binding of human and rice kinases to the same compound suggests that human kinase inhibitor sets will be useful for dissecting the function of plant kinases.
Collapse
Affiliation(s)
| | - Priscila Zonzini Ramos
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG)Universidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
| | - Rashmi Jain
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Joseph Pilotte
- Structural Genomics Consortium (SGC)UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNCUSA
- Division of Chemical Biology and Medicinal ChemistryUNC Eshelman School of Pharmacy, UNC‐CHChapel HillNCUSA
| | - Oliver Xiaoou Dong
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Ty Thompson
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Carrow I. Wells
- Structural Genomics Consortium (SGC)UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNCUSA
- Division of Chemical Biology and Medicinal ChemistryUNC Eshelman School of Pharmacy, UNC‐CHChapel HillNCUSA
| | - Jonathan M. Elkins
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG)Universidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
- Centre for Medicines DiscoveryUniversity of OxfordOxfordUK
| | - Aled M. Edwards
- Structural Genomics ConsortiumUniversity of TorontoTorontoCanada
| | - Rafael M. Couñago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG)Universidade Estadual de Campinas (UNICAMP)CampinasSPBrazil
| | - David H. Drewry
- Structural Genomics Consortium (SGC)UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNCUSA
- Division of Chemical Biology and Medicinal ChemistryUNC Eshelman School of Pharmacy, UNC‐CHChapel HillNCUSA
| | - Pamela C. Ronald
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
9
|
Piya S, Hawk T, Patel B, Baldwin L, Rice JH, Stewart CN, Hewezi T. Kinase-dead mutation: A novel strategy for improving soybean resistance to soybean cyst nematode Heterodera glycines. MOLECULAR PLANT PATHOLOGY 2022; 23:417-430. [PMID: 34851539 PMCID: PMC8828698 DOI: 10.1111/mpp.13168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 05/29/2023]
Abstract
Protein kinases phosphorylate proteins for functional changes and are involved in nearly all cellular processes, thereby regulating almost all aspects of plant growth and development, and responses to biotic and abiotic stresses. We generated two independent co-expression networks of soybean genes using control and stress response gene expression data and identified 392 differentially highly interconnected kinase hub genes among the two networks. Of these 392 kinases, 90 genes were identified as "syncytium highly connected hubs", potentially essential for activating kinase signalling pathways in the nematode feeding site. Overexpression of wild-type coding sequences of five syncytium highly connected kinase hub genes using transgenic soybean hairy roots enhanced plant susceptibility to soybean cyst nematode (SCN; Heterodera glycines) Hg Type 0 (race 3). In contrast, overexpression of kinase-dead variants of these five syncytium kinase hub genes significantly enhanced soybean resistance to SCN. Additionally, three of the five tested kinase hub genes enhanced soybean resistance to SCN Hg Type 1.2.5.7 (race 2), highlighting the potential of the kinase-dead approach to generate effective and durable resistance against a wide range of SCN Hg types. Subcellular localization analysis revealed that kinase-dead mutations do not alter protein cellular localization, confirming the structure-function of the kinase-inactive variants in producing loss-of-function phenotypes causing significant decrease in nematode susceptibility. Because many protein kinases are highly conserved and are involved in plant responses to various biotic and abiotic stresses, our approach of identifying kinase hub genes and their inactivation using kinase-dead mutation could be translated for biotic and abiotic stress tolerance.
Collapse
Affiliation(s)
- Sarbottam Piya
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Tracy Hawk
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Bhoomi Patel
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Logan Baldwin
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - John H. Rice
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - C. Neal Stewart
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Tarek Hewezi
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| |
Collapse
|
10
|
Amo A, Soriano JM. Unravelling consensus genomic regions conferring leaf rust resistance in wheat via meta-QTL analysis. THE PLANT GENOME 2022; 15:e20185. [PMID: 34918873 DOI: 10.1002/tpg2.20185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Leaf rust, caused by the fungus Puccinia triticina Erikss (Pt), is a destructive disease affecting wheat (Triticum aestivum L.) and a threat to food security. Developing resistant cultivars represents a useful method of disease control, and thus, understanding the genetic basis for leaf rust resistance is required. To this end, a comprehensive bibliographic search for leaf rust resistance quantitative trait loci (QTL) was performed, and 393 QTL were collected from 50 QTL mapping studies. Afterward, a consensus map with a total length of 4,567 cM consisting of different types of markers (simple sequence repeat [SSR], diversity arrays technology [DArT], chip-based single-nucleotide polymorphism [SNP] markers, and SNP markers from genotyping-by-sequencing) was used for QTL projection, and meta-QTL (MQTL) analysis was performed on 320 QTL. A total of 75 MQTL were discovered and refined to 15 high-confidence MQTL (hcmQTL). The candidate genes discovered within the hcmQTL interval were then checked for differential expression using data from three transcriptome studies, resulting in 92 differentially expressed genes (DEGs). The expression of these genes in various leaf tissues during wheat development was explored. This study provides insight into leaf rust resistance in wheat and thereby provides an avenue for developing resistant cultivars by incorporating the most important hcmQTL.
Collapse
Affiliation(s)
- Aduragbemi Amo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F Univ., Yangling, Shaanxi, China
| | - Jose Miguel Soriano
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, 25198, Spain
| |
Collapse
|
11
|
Zhang Q, Wu L, Yin H, Xu Z, Zhao Y, Gao M, Wu H, Chen Y, Wang Y. D6 protein kinase in root xylem benefiting resistance to Fusarium reveals infection and defense mechanisms in tung trees. HORTICULTURE RESEARCH 2021; 8:240. [PMID: 34719680 PMCID: PMC8558330 DOI: 10.1038/s41438-021-00656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/04/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Fusarium oxysporum, a global soil-borne pathogen, causes severe disease in various cultivated plants. The mechanism underlying infection and resistance remains largely elusive. Vernicia fordii, known as the tung tree, suffers from disease caused by F. oxysporum f. sp. fordiis (Fof-1), while its sister species V. montana displays high resistance to Fof-1. To investigate the process of infection and resistance ability, we demonstrated that Fof-1 can penetrate the epidermis of root hairs and then centripetally invade the cortex and phloem in both species. Furthermore, Fof-1 spread upwards through the root xylem in susceptible V. fordii trees, whereas it failed to infect the root xylem in resistant V. montana trees. We found that D6 PROTEIN KINASE LIKE 2 (VmD6PKL2) was specifically expressed in the lateral root xylem and was induced after Fof-1 infection in resistant trees. Transgenic analysis in Arabidopsis and tomato revealed that VmD6PKL2 significantly enhanced resistance in both species, whereas the d6pkl2 mutant displayed reduced resistance against Fof-1. Additionally, VmD6PKL2 was identified to interact directly with synaptotagmin (VmSYT3), which is specifically expressed in the root xylem and mediates the negative regulation responding to Fof-1. Our data suggested that VmD6PKL2 could act as a resistance gene against Fof-1 through suppression of VmSYT3-mediated negative regulation in the lateral root xylem of the resistant species. These findings provide novel insight into Fusarium wilt resistance in plants.
Collapse
Affiliation(s)
- Qiyan Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang Province, China
| | - Liwen Wu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang Province, China
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang Province, China
| | - Zilong Xu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang Province, China
| | - Yunxiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang Province, China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang Province, China
| | - Hong Wu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang Province, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China.
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang Province, China.
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China.
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang Province, China.
| |
Collapse
|
12
|
Huangfu Y, Pan J, Li Z, Wang Q, Mastouri F, Li Y, Yang S, Liu M, Dai S, Liu W. Genome-wide identification of PTI1 family in Setaria italica and salinity-responsive functional analysis of SiPTI1-5. BMC PLANT BIOLOGY 2021; 21:319. [PMID: 34217205 PMCID: PMC8254068 DOI: 10.1186/s12870-021-03077-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/27/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND PTI1 (Pto-interacting 1) protein kinase belongs to the receptor-like cytoplasmic kinase (RLCK) group of receptor-like protein kinases (RLK), but lack extracellular and transmembrane domains. PTI1 was first identified in tomato (Solanum lycopersicum) and named SlPTI1, which has been reported to interact with bacterial effector Pto, a serine/threonine protein kinase involved in plant resistance to bacterial disease. Briefly, the host PTI1 specifically recognizes and interacts with the bacterial effector AvrPto, which triggers hypersensitive cell death to inhibit the pathogen growth in the local infection site. Previous studies have demonstrated that PTI1 is associated with oxidative stress and hypersensitivity. RESULTS We identified 12 putative PTI1 genes from the genome of foxtail millet (Setaria italica) in this study. Gene replication analysis indicated that both segmental replication events played an important role in the expansion of PTI1 gene family in foxtail millet. The PTI1 family members of model plants, i.e. S. italica, Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), maize (Zea mays), S. lycopersicum, and soybean (Glycine max), were classified into six major categories according to the phylogenetic analysis, among which the PTI1 family members in foxtail millet showed higher degree of homology with those of rice and maize. The analysis of a complete set of SiPTI1 genes/proteins including classification, chromosomal location, orthologous relationships and duplication. The tissue expression characteristics revealed that SiPTI1 genes are mainly expressed in stems and leaves. Experimental qRT-PCR results demonstrated that 12 SiPTI1 genes were induced by multiple stresses. Subcellular localization visualized that all of foxtail millet SiPTI1s were localized to the plasma membrane. Additionally, heterologous expression of SiPTI1-5 in yeast and E. coli enhanced their tolerance to salt stress. CONCLUSIONS Our results contribute to a more comprehensive understanding of the roles of PTI1 protein kinases and will be useful in prioritizing particular PTI1 for future functional validation studies in foxtail millet.
Collapse
Affiliation(s)
- Yongguan Huangfu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Jiaowen Pan
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Zhen Li
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Qingguo Wang
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Fatemeh Mastouri
- Bota Bioscience, 325 Vassar st. Suite 2a, Cambridge, MA, 02139, USA
| | - Ying Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Stephen Yang
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr, Rockville, MD, 20850, USA
| | - Min Liu
- Shandong Agriculture and Engineering University, Jinan, 250100, Shandong, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Wei Liu
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
13
|
Ma H, Li J, Ma L, Wang P, Xue Y, Yin P, Xiao J, Wang S. Pathogen-inducible OsMPKK10.2-OsMPK6 cascade phosphorylates the Raf-like kinase OsEDR1 and inhibits its scaffold function to promote rice disease resistance. MOLECULAR PLANT 2021; 14:620-632. [PMID: 33450368 DOI: 10.1016/j.molp.2021.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 05/11/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades regulate a myriad of plant biological processes, including disease resistance. Plant genomes encode a large number of MAPK kinase kinases (MAPKKKs) that can be divided into two subfamilies, namely MEKK-like kinases and Raf-like kinases. Thus far, the functions of MEKK-like MAPKKKs have been relatively well characterized, but the roles of Raf-like MAPKKKs in plant MAPK cascades remain less understood. Here, we report the role of OsEDR1, a Raf-like MAPKKK, in the regulation of the MAPK cascade in rice response to the bacterial pathogen Xanthomonas oryzae pv. oryzicola (Xoc). We found that OsEDR1 inhibits OsMPKK10.2 (a MAPK kinase) activity through physical interaction. Upon Xoc infection, OsMPKK10.2 is phosphorylated at S304 to activate OsMPK6 (a MAPK). Interestingly, activated OsMPK6 phosphorylates OsEDR1 at S861, which destabilizes OsEDR1 and thus releases the inhibition of OsMPKK10.2, leading to increased OsMPKK10.2 activity and enhanced resistance of rice plants to Xoc. Taken together, these results provide new insights into the functions of Raf-like kinases in the regulation of the MAPK cascade in plant immunity.
Collapse
Affiliation(s)
- Haigang Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Juan Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Peilun Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan Xue
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Tan S, Luschnig C, Friml J. Pho-view of Auxin: Reversible Protein Phosphorylation in Auxin Biosynthesis, Transport and Signaling. MOLECULAR PLANT 2021; 14:151-165. [PMID: 33186755 DOI: 10.1016/j.molp.2020.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/07/2020] [Accepted: 11/07/2020] [Indexed: 05/24/2023]
Abstract
The phytohormone auxin plays a central role in shaping plant growth and development. With decades of genetic and biochemical studies, numerous core molecular components and their networks, underlying auxin biosynthesis, transport, and signaling, have been identified. Notably, protein phosphorylation, catalyzed by kinases and oppositely hydrolyzed by phosphatases, has been emerging to be a crucial type of post-translational modification, regulating physiological and developmental auxin output at all levels. In this review, we comprehensively discuss earlier and recent advances in our understanding of genetics, biochemistry, and cell biology of the kinases and phosphatases participating in auxin action. We provide insights into the mechanisms by which reversible protein phosphorylation defines developmental auxin responses, discuss current challenges, and provide our perspectives on future directions involving the integration of the control of protein phosphorylation into the molecular auxin network.
Collapse
Affiliation(s)
- Shutang Tan
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
15
|
Defense Response in Chickpea Pod Wall due to Simulated Herbivory Unfolds Differential Proteome Profile. Protein J 2020; 39:240-257. [PMID: 32356273 DOI: 10.1007/s10930-020-09899-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The pod wall of legumes is known to protect the developing seeds from pests and pathogens. However, the mechanism of conferring defense against insects has not yet been deciphered. Here, we have utilized 2-dimensional gel electrophoresis (2D-GE) coupled with mass spectrometry (MS/MS) to identify over expressed proteins in the pod wall of two different cultivars (commercial cultivar: JG 11 and tolerant cultivar: ICC 506-EB) of chickpea after 12 h of application of Helicoverpa armigera oral secretions (simulated herbivory). The assays were performed with a view that larvae are a voracious feeder and cause substantial damage to the pod within 12 h. A total of 600 reproducible protein spots were detected on gels, and the comparative analysis helped identify 35 (12 up-regulated, 23 down-regulated) and 20 (10 up-regulated, 10 down-regulated) differentially expressed proteins in JG 11 and ICC 506-EB, respectively. Functional classification of protein spots of each cultivar after MS/MS indicated that the differentially expressed proteins were associated with various metabolic activities. Also, stress-related proteins such as mannitol dehydrogenase (MADH), disease resistance-like protein-CSA1, serine/threonine kinase (D6PKL2), endoglucanase-19 etc. were up-regulated due to simulated herbivory. The proteins identified with a possible role in defense were further analyzed using the STRING database to advance our knowledge on their interacting partners. It decoded the involvement of several reactive oxygen species (ROS) scavengers and other proteins involved in cell wall reinforcement. The biochemical analysis also confirmed the active role of ROS scavengers during simulated herbivory. Thus, our study provides valuable new insights on chickpea-H.armigera interactions at the protein level.
Collapse
|
16
|
Integrated Analysis of mRNA and microRNA Elucidates the Regulation of Glycyrrhizic Acid Biosynthesis in Glycyrrhiza uralensis Fisch. Int J Mol Sci 2020; 21:ijms21093101. [PMID: 32353999 PMCID: PMC7247157 DOI: 10.3390/ijms21093101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 01/24/2023] Open
Abstract
Licorice (Glycyrrhiza) is a staple Chinese herbal medicine in which the primary bioactive compound is glycyrrhizic acid (GA), which has important pharmacological functions. To date, the structural genes involved in GA biosynthesis have been identified. However, the regulation of these genes in G. uralensis has not been elucidated. In this study, we performed a comprehensive analysis based on the transcriptome and small RNAome by high-throughput sequencing. In total, we identified 18 structural GA genes and 3924 transporter genes. We identified genes encoding 2374 transporters, 1040 transcription factors (TFs), 262 transcriptional regulators (TRs) and 689 protein kinases (PKs), which were coexpressed with at least one structural gene. We also identified 50,970 alternative splicing (AS) events, in which 17 structural genes exhibited AS. Finally, we also determined that miRNAs potentially targeted 4 structural genes, and 318, 8, and 218 miRNAs potentially regulated 150 TFs, 34 TRs, and 88 PKs, respectively, related to GA. Overall, the results of this study helped to elucidate the gene expression and regulation of GA biosynthesis in G. uralensis, provided a theoretical basis for the synthesis of GA via synthetic biology, and laid a foundation for the cultivation of new varieties of licorice with high GA content.
Collapse
|
17
|
Cao P, Kim SJ, Xing A, Schenck CA, Liu L, Jiang N, Wang J, Last RL, Brandizzi F. Homeostasis of branched-chain amino acids is critical for the activity of TOR signaling in Arabidopsis. eLife 2019; 8:e50747. [PMID: 31808741 PMCID: PMC6937141 DOI: 10.7554/elife.50747] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/05/2019] [Indexed: 01/11/2023] Open
Abstract
The target of rapamycin (TOR) kinase is an evolutionarily conserved hub of nutrient sensing and metabolic signaling. In plants, a functional connection of TOR activation with glucose availability was demonstrated, while it is yet unclear whether branched-chain amino acids (BCAAs) are a primary input of TOR signaling as they are in yeast and mammalian cells. Here, we report on the characterization of an Arabidopsis mutant over-accumulating BCAAs. Through chemical interventions targeting TOR and by examining mutants of BCAA biosynthesis and TOR signaling, we found that BCAA over-accumulation leads to up-regulation of TOR activity, which causes reorganization of the actin cytoskeleton and actin-associated endomembranes. Finally, we show that activation of TOR is concomitant with alteration of cell expansion, proliferation and specialized metabolism, leading to pleiotropic effects on plant growth and development. These results demonstrate that BCAAs contribute to plant TOR activation and reveal previously uncharted downstream subcellular processes of TOR signaling.
Collapse
Affiliation(s)
- Pengfei Cao
- MSU-DOE Plant Research LabMichigan State UniversityEast LansingUnited States
- Department of Plant BiologyMichigan State UniversityEast LansingUnited States
| | - Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast LansingUnited States
| | - Anqi Xing
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Craig A Schenck
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Lu Liu
- MSU-DOE Plant Research LabMichigan State UniversityEast LansingUnited States
| | - Nan Jiang
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Jie Wang
- Department of Plant BiologyMichigan State UniversityEast LansingUnited States
| | - Robert L Last
- Department of Plant BiologyMichigan State UniversityEast LansingUnited States
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Federica Brandizzi
- MSU-DOE Plant Research LabMichigan State UniversityEast LansingUnited States
- Department of Plant BiologyMichigan State UniversityEast LansingUnited States
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast LansingUnited States
| |
Collapse
|
18
|
Smita S, Katiyar A, Lenka SK, Dalal M, Kumar A, Mahtha SK, Yadav G, Chinnusamy V, Pandey DM, Bansal KC. Gene network modules associated with abiotic stress response in tolerant rice genotypes identified by transcriptome meta-analysis. Funct Integr Genomics 2019; 20:29-49. [PMID: 31286320 DOI: 10.1007/s10142-019-00697-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/31/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
Abstract
Abiotic stress tolerance is a complex trait regulated by multiple genes and gene networks in plants. A range of abiotic stresses are known to limit rice productivity. Meta-transcriptomics has emerged as a powerful approach to decipher stress-associated molecular network in model crops. However, retaining specificity of gene expression in tolerant and susceptible genotypes during meta-transcriptome analysis is important for understanding genotype-dependent stress tolerance mechanisms. Addressing this aspect, we describe here "abiotic stress tolerant" (ASTR) genes and networks specifically and differentially expressing in tolerant rice genotypes in response to different abiotic stress conditions. We identified 6,956 ASTR genes, key hub regulatory genes, transcription factors, and functional modules having significant association with abiotic stress-related ontologies and cis-motifs. Out of the 6956 ASTR genes, 73 were co-located within the boundary of previously identified abiotic stress trait-related quantitative trait loci. Functional annotation of 14 uncharacterized ASTR genes is proposed using multiple computational methods. Around 65% of the top ASTR genes were found to be differentially expressed in at least one of the tolerant genotypes under different stress conditions (cold, salt, drought, or heat) from publicly available RNAseq data comparison. The candidate ASTR genes specifically associated with tolerance could be utilized for engineering rice and possibly other crops for broad-spectrum tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Shuchi Smita
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amit Katiyar
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
- ICMR-AIIMS Computational Genomics Center, Div. of I.S.R.M., Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
| | - Sangram Keshari Lenka
- TERI-Deakin Nanobiotechnology Center, The Energy and Resources Institute, Gurgaon, Haryana, 122001, India
| | - Monika Dalal
- ICAR-National Research Center on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Amish Kumar
- Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sanjeet Kumar Mahtha
- Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gitanjali Yadav
- Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Viswanathan Chinnusamy
- ICAR-Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Dev Mani Pandey
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Kailash Chander Bansal
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research Institute Campus, New Delhi, 110012, India.
- TERI-Deakin Nanobiotechnology Center, The Energy and Resources Institute, Gurgaon, Haryana, 122001, India.
| |
Collapse
|
19
|
Thomas J, Kim HR, Rahmatallah Y, Wiggins G, Yang Q, Singh R, Glazko G, Mukherjee A. RNA-seq reveals differentially expressed genes in rice (Oryza sativa) roots during interactions with plant-growth promoting bacteria, Azospirillum brasilense. PLoS One 2019; 14:e0217309. [PMID: 31120967 PMCID: PMC6532919 DOI: 10.1371/journal.pone.0217309] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/08/2019] [Indexed: 11/24/2022] Open
Abstract
Major non-legume crops can form beneficial associations with nitrogen-fixing bacteria like Azospirillum brasilense. Our current understanding of the molecular aspects and signaling that occur between important crops like rice and these nitrogen-fixing bacteria is limited. In this study, we used an experimental system where the bacteria could colonize the plant roots and promote plant growth in wild type rice and symbiotic mutants (dmi3 and pollux) in rice. Our data suggest that plant growth promotion and root penetration is not dependent on these genes. We then used this colonization model to identify regulation of gene expression at two different time points during this interaction: at 1day post inoculation (dpi), we identified 1622 differentially expressed genes (DEGs) in rice roots, and at 14dpi, we identified 1995 DEGs. We performed a comprehensive data mining to classify the DEGs into the categories of transcription factors (TFs), protein kinases (PKs), and transporters (TRs). Several of these DEGs encode proteins that are involved in the flavonoid biosynthetic pathway, defense, and hormone signaling pathways. We identified genes that are involved in nitrate and sugar transport and are also implicated to play a role in other plant-microbe interactions. Overall, findings from this study will serve as an excellent resource to characterize the host genetic pathway controlling the interactions between non-legumes and beneficial bacteria which can have long-term implications towards sustainably improving agriculture.
Collapse
Affiliation(s)
- Jacklyn Thomas
- Department of Biology, University of Central Arkansas, Conway, Arkansas, United States of America
| | - Ha Ram Kim
- Department of Biology, University of Central Arkansas, Conway, Arkansas, United States of America
| | - Yasir Rahmatallah
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Grant Wiggins
- Department of Biology, University of Central Arkansas, Conway, Arkansas, United States of America
| | - Qinqing Yang
- Department of Biology, University of Central Arkansas, Conway, Arkansas, United States of America
| | - Raj Singh
- Department of Biology, University of Central Arkansas, Conway, Arkansas, United States of America
| | - Galina Glazko
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Arijit Mukherjee
- Department of Biology, University of Central Arkansas, Conway, Arkansas, United States of America
| |
Collapse
|
20
|
Scholz S, Pleßmann J, Enugutti B, Hüttl R, Wassmer K, Schneitz K. The AGC protein kinase UNICORN controls planar growth by attenuating PDK1 in Arabidopsis thaliana. PLoS Genet 2019; 15:e1007927. [PMID: 30742613 PMCID: PMC6386418 DOI: 10.1371/journal.pgen.1007927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/22/2019] [Accepted: 01/02/2019] [Indexed: 11/19/2022] Open
Abstract
Tissue morphogenesis critically depends on the coordination of cellular growth patterns. In plants, many organs consist of clonally distinct cell layers, such as the epidermis, whose cells undergo divisions that are oriented along the plane of the layer. The developmental control of such planar growth is poorly understood. We have previously identified the Arabidopsis AGCVIII-class protein kinase UNICORN (UCN) as a central regulator of this process. Plants lacking UCN activity show spontaneous formation of ectopic multicellular protrusions in integuments and malformed petals indicating that UCN suppresses uncontrolled growth in those tissues. In the current model UCN regulates planar growth of integuments in part by directly repressing the putative transcription factor ABERRANT TESTA SHAPE (ATS). Here we report on the identification of 3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE 1 (PDK1) as a novel factor involved in UCN-mediated growth control. PDK1 constitutes a basic component of signaling mediated by AGC protein kinases throughout eukaryotes. Arabidopsis PDK1 is implied in stress responses and growth promotion. Here we show that loss-of-function mutations in PDK1 suppress aberrant growth in integuments and petals of ucn mutants. Additional genetic, in vitro, and cell biological data support the view that UCN functions by repressing PDK1. Furthermore, our data indicate that PDK1 is indirectly required for deregulated growth caused by ATS overexpression. Our findings support a model proposing that UCN suppresses ectopic growth in integuments through two independent processes: the attenuation of the protein kinase PDK1 in the cytoplasm and the repression of the transcription factor ATS in the nucleus.
Collapse
Affiliation(s)
- Sebastian Scholz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Janys Pleßmann
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Balaji Enugutti
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Regina Hüttl
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Katrin Wassmer
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- * E-mail:
| |
Collapse
|
21
|
Physiological Functions of Phosphoinositide-Modifying Enzymes and Their Interacting Proteins in Arabidopsis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 30499079 DOI: 10.1007/5584_2018_295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The integrity of cellular membranes is maintained not only by structural phospholipids such as phosphatidylcholine and phosphatidylethanolamine, but also by regulatory phospholipids, phosphatidylinositol phosphates (phosphoinositides). Although phosphoinositides constitute minor membrane phospholipids, they exert a wide variety of regulatory functions in all eukaryotic cells. They act as key markers of membrane surfaces that determine the biological integrity of cellular compartments to recruit various phosphoinositide-binding proteins. This review focuses on recent progress on the significance of phosphoinositides, their modifying enzymes, and phosphoinositide-binding proteins in Arabidopsis.
Collapse
|
22
|
Wang C, Shen D, Wang J, Chen Y, Dong Y, Tang Z, Xia A. An AGC kinase, PgAGC1 regulates virulence in the entomopathogenic oomycete Pythium guiyangense. Fungal Biol 2018; 123:87-93. [PMID: 30654961 DOI: 10.1016/j.funbio.2018.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Mosquitoes are the most important medical species by transmitting some of deadly infectious diseases to human. In recent years extensive studies of vector control have been focused on biological control agents due to the grave issue raised by continuous application of chemical compounds. Pythium guiyangense X.Q. Su was first isolated from infected larvae of Aedes albopictus in 2006 in China and it has been proven to be a promising mosquito control agent. However, the molecular mechanisms of this oomycete pathogenic to mosquitoes are still not clear. In this study, we identified a new gene from the genome of P. guiyangense, PgAGC1 that belongs to the AGC kinase group and we found that the transcriptional expression levels of this gene were significantly up-regulated during infection of mosquito Culex pipiens pallens. Disruption of the PgAGC1gene via genetic transformation methods affects colony growth and stress responses and results in reduced mortality and infection rates. All the evidence revealed that, besides its role in growth and stress resistance, PgAGC1 is putative determinants of P. guiyangense virulence. The results of this study become of particular importance in understanding the mechanisms of oomycete-mosquito interactions.
Collapse
Affiliation(s)
- Cong Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China.
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.
| | - Jing Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China.
| | - Yang Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.
| | - Yumei Dong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China.
| | - Zhaoyang Tang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.
| | - Ai Xia
- Department of Entomology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
23
|
Saini K, AbdElgawad H, Markakis MN, Schoenaers S, Asard H, Prinsen E, Beemster GTS, Vissenberg K. Perturbation of Auxin Homeostasis and Signaling by PINOID Overexpression Induces Stress Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1308. [PMID: 28824662 PMCID: PMC5539238 DOI: 10.3389/fpls.2017.01308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/12/2017] [Indexed: 05/02/2023]
Abstract
Under normal and stress conditions plant growth require a complex interplay between phytohormones and reactive oxygen species (ROS). However, details of the nature of this crosstalk remain elusive. Here, we demonstrate that PINOID (PID), a serine threonine kinase of the AGC kinase family, perturbs auxin homeostasis, which in turn modulates rosette growth and induces stress responses in Arabidopsis plants. Arabidopsis mutants and transgenic plants with altered PID expression were used to study the effect on auxin levels and stress-related responses. In the leaves of plants with ectopic PID expression an accumulation of auxin, oxidative burst and disruption of hormonal balance was apparent. Furthermore, PID overexpression led to the accumulation of antioxidant metabolites, while pid knockout mutants showed only moderate changes in stress-related metabolites. These physiological changes in the plants overexpressing PID modulated their response toward external drought and osmotic stress treatments when compared to the wild type. Based on the morphological, transcriptome, and metabolite results, we propose that perturbations in the auxin hormone levels caused by PID overexpression, along with other hormones and ROS downstream, cause antioxidant accumulation and modify growth and stress responses in Arabidopsis. Our data provide further proof for a strong correlation between auxin and stress biology.
Collapse
Affiliation(s)
- Kumud Saini
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
- Department of Botany, Faculty of Science, Beni-Suef UniversityBeni Suef, Egypt
| | - Marios N. Markakis
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
- Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Han Asard
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Els Prinsen
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Gerrit T. S. Beemster
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
- Plant and Biochemistry and Biotechnology Lab, Department of Agriculture, School of Agriculture, Food and Nutrition, Technological Educational Institute of Crete: University of Applied SciencesHeraklion, Greece
| |
Collapse
|
24
|
Padder BA, Kamfwa K, Awale HE, Kelly JD. Transcriptome Profiling of the Phaseolus vulgaris - Colletotrichum lindemuthianum Pathosystem. PLoS One 2016; 11:e0165823. [PMID: 27829044 PMCID: PMC5102369 DOI: 10.1371/journal.pone.0165823] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/18/2016] [Indexed: 01/08/2023] Open
Abstract
Bean (Phaseolus vulgaris) anthracnose caused by the hemi-biotrophic pathogen Colletotrichum lindemuthianum is a major factor limiting production worldwide. Although sources of resistance have been identified and characterized, the early molecular events in the host-pathogen interface have not been investigated. In the current study, we conducted a comprehensive transcriptome analysis using Illumina sequencing of two near isogenic lines (NILs) differing for the presence of the Co-1 gene on chromosome Pv01 during a time course following infection with race 73 of C. lindemuthianum. From this, we identified 3,250 significantly differentially expressed genes (DEGs) within and between the NILs over the time course of infection. During the biotrophic phase the majority of DEGs were up regulated in the susceptible NIL, whereas more DEGs were up-regulated in the resistant NIL during the necrotrophic phase. Various defense related genes, such as those encoding PR proteins, peroxidases, lipoxygenases were up regulated in the resistant NIL. Conversely, genes encoding sugar transporters were up-regulated in the susceptible NIL during the later stages of infection. Additionally, numerous transcription factors (TFs) and candidate genes within the vicinity of the Co-1 locus were differentially expressed, suggesting a global reprogramming of gene expression in and around the Co-1 locus. Through this analysis, we reduced the previous number of candidate genes reported at the Co-1 locus from eight to three. These results suggest the dynamic nature of P. vulgaris-C. lindemuthianum interaction at the transcriptomic level and reflect the role of both pathogen and effector triggered immunity on changes in plant gene expression.
Collapse
Affiliation(s)
- Bilal A. Padder
- Dept. of Plant, Soil and Microbial Sciences, Michigan State Univ., 1066 Bogue St., East Lansing, MI, 48824, United States of America
| | - Kelvin Kamfwa
- Dept. of Plant, Soil and Microbial Sciences, Michigan State Univ., 1066 Bogue St., East Lansing, MI, 48824, United States of America
| | - Halima E. Awale
- Dept. of Plant, Soil and Microbial Sciences, Michigan State Univ., 1066 Bogue St., East Lansing, MI, 48824, United States of America
| | - James D. Kelly
- Dept. of Plant, Soil and Microbial Sciences, Michigan State Univ., 1066 Bogue St., East Lansing, MI, 48824, United States of America
| |
Collapse
|
25
|
Jain S, Chittem K, Brueggeman R, Osorno JM, Richards J, Nelson BD. Comparative Transcriptome Analysis of Resistant and Susceptible Common Bean Genotypes in Response to Soybean Cyst Nematode Infection. PLoS One 2016; 11:e0159338. [PMID: 27441552 PMCID: PMC4956322 DOI: 10.1371/journal.pone.0159338] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/30/2016] [Indexed: 12/21/2022] Open
Abstract
Soybean cyst nematode (SCN; Heterodera glycines Ichinohe) reproduces on the roots of common bean (Phaseolus vulgaris L.) and can cause reductions in plant growth and seed yield. The molecular changes in common bean roots caused by SCN infection are unknown. Identification of genetic factors associated with SCN resistance could help in development of improved bean varieties with high SCN resistance. Gene expression profiling was conducted on common bean roots infected by SCN HG type 0 using next generation RNA sequencing technology. Two pinto bean genotypes, PI533561 and GTS-900, resistant and susceptible to SCN infection, respectively, were used as RNA sources eight days post inoculation. Total reads generated ranged between ~ 3.2 and 5.7 million per library and were mapped to the common bean reference genome. Approximately 70-90% of filtered RNA-seq reads uniquely mapped to the reference genome. In the inoculated roots of resistant genotype PI533561, a total of 353 genes were differentially expressed with 154 up-regulated genes and 199 down-regulated genes when compared to the transcriptome of non- inoculated roots. On the other hand, 990 genes were differentially expressed in SCN-inoculated roots of susceptible genotype GTS-900 with 406 up-regulated and 584 down-regulated genes when compared to non-inoculated roots. Genes encoding nucleotide-binding site leucine-rich repeat resistance (NLR) proteins, WRKY transcription factors, pathogenesis-related (PR) proteins and heat shock proteins involved in diverse biological processes were differentially expressed in both resistant and susceptible genotypes. Overall, suppression of the photosystem was observed in both the responses. Furthermore, RNA-seq results were validated through quantitative real time PCR. This is the first report describing genes/transcripts involved in SCN-common bean interaction and the results will have important implications for further characterization of SCN resistance genes in common bean.
Collapse
Affiliation(s)
- Shalu Jain
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, 58108, United States of America
| | - Kishore Chittem
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, 58108, United States of America
| | - Robert Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, 58108, United States of America
| | - Juan M. Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, 58108, United States of America
| | - Jonathan Richards
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, 58108, United States of America
| | - Berlin D. Nelson
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, 58108, United States of America
| |
Collapse
|
26
|
Zhu X, Yang K, Wei X, Zhang Q, Rong W, Du L, Ye X, Qi L, Zhang Z. The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6591-603. [PMID: 26220083 PMCID: PMC4623678 DOI: 10.1093/jxb/erv367] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Considerable progress has been made in understanding the roles of AGC kinases in mammalian systems. However, very little is known about the roles of AGC kinases in wheat (Triticum aestivum). The necrotrophic fungus Rhizoctonia cerealis is the major pathogen of the destructive disease sharp eyespot of wheat. In this study, the wheat AGC kinase gene TaAGC1, responding to R. cerealis infection, was isolated, and its properties and role in wheat defence were characterized. R. cerealis-resistant wheat lines expressed TaAGC1 at higher levels than susceptible wheat lines. Sequence and phylogenetic analyses showed that the TaAGC1 protein is a serine/threonine kinase belonging to the NDR (nuclear Dbf2-related) subgroup of AGC kinases. Kinase activity assays proved that TaAGC1 is a functional kinase and the Asp-239 residue located in the conserved serine/threonine kinase domain of TaAGC1 is required for the kinase activity. Subcellular localization assays indicated that TaAGC1 localized in the cytoplasm and nucleus. Virus-induced TaAGC1 silencing revealed that the down-regulation of TaAGC1 transcripts significantly impaired wheat resistance to R. cerealis. The molecular characterization and responses of TaAGC1 overexpressing transgenic wheat plants indicated that TaAGC1 overexpression significantly enhanced resistance to sharp eyespot and reduced the accumulation of reactive oxygen species (ROS) in wheat plants challenged with R. cerealis. Furthermore, ROS-scavenging and certain defence-associated genes were up-regulated in resistant plants overexpressing TaAGC1 but down-regulated in susceptible knock-down plants. These results suggested that the kinase TaAGC1 positively contributes to wheat immunity to R. cerealis through regulating expression of ROS-related and defence-associated genes.
Collapse
Affiliation(s)
- Xiuliang Zhu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun Yang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuening Wei
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiaofeng Zhang
- Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Wei Rong
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lipu Du
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingguo Ye
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lin Qi
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zengyan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
27
|
Pastor-Flores D, Ferrer-Dalmau J, Bahí A, Boleda M, Biondi RM, Casamayor A. Depletion of yeast PDK1 orthologs triggers a stress-like transcriptional response. BMC Genomics 2015; 16:719. [PMID: 26391581 PMCID: PMC4578605 DOI: 10.1186/s12864-015-1903-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pkh proteins are the PDK1 orthologs in S. cerevisiae. They have redundant and essential activity and are responsible for the phosphorylation of several members of the AGC family of protein kinases. Pkh proteins have been involved in several cellular functions, including cell wall integrity and endocytosis. However the global expression changes caused by their depletion are still unknown. RESULTS A doxycycline-repressible tetO7 promoter driving the expression of PKH2 in cells carrying deletions of the PKH1 and PKH3 genes allowed us to progressively deplete cells from Pkh proteins when treated with doxycycline. Global gene expression analysis indicate that depletion of Pkh results in the up-regulation of genes involved in the accumulation of glycogen and also of those related to stress responses. Moreover, genes involved in the ion transport were quickly down-regulated when the levels of Pkh decreased. The reduction in the mRNA levels required for protein translation, however, was only observed after longer doxycycline treatment (24 h). We uncovered that Pkh is important for the proper transcriptional response to heat shock, and is mostly required for the effects driven by the transcription factors Hsf1 and Msn2/Msn4, but is not required for down-regulation of the mRNA coding for ribosomal proteins. CONCLUSIONS By using the tetO7 promoter we elucidated for the first time the transcriptomic changes directly or indirectly caused by progressive depletion of Pkh. Furthermore, this system enabled the characterization of the transcriptional response triggered by heat shock in wild-type and Pkh-depleted cells, showing that about 40 % of the observed expression changes were, to some degree, dependent on Pkh.
Collapse
Affiliation(s)
- Daniel Pastor-Flores
- Research Group PhosphoSites, Medizinische Klinik I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany. .,Present address: Division of Redox Regulation, German Cancer Research Center, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Jofre Ferrer-Dalmau
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain. .,Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain.
| | - Anna Bahí
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain. .,Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain.
| | - Martí Boleda
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain. .,Laboratoire d'Ecologie Alpine (LECA), UMR 5553, CNRS-Université Joseph Fourie, BP 53, 38041, Grenoble, France.
| | - Ricardo M Biondi
- Research Group PhosphoSites, Medizinische Klinik I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Antonio Casamayor
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain. .,Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain.
| |
Collapse
|
28
|
Receptor-like cytoplasmic kinase MARIS functions downstream of CrRLK1L-dependent signaling during tip growth. Proc Natl Acad Sci U S A 2015; 112:12211-6. [PMID: 26378127 DOI: 10.1073/pnas.1512375112] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Growing plant cells need to rigorously coordinate external signals with internal processes. For instance, the maintenance of cell wall (CW) integrity requires the coordination of CW sensing with CW remodeling and biosynthesis to avoid growth arrest or integrity loss. Despite the involvement of receptor-like kinases (RLKs) of the Catharanthus roseus RLK1-like (CrRLK1L) subfamily and the reactive oxygen species-producing NADPH oxidases, it remains largely unknown how this coordination is achieved. ANXUR1 (ANX1) and ANX2, two redundant members of the CrRLK1L subfamily, are required for tip growth of the pollen tube (PT), and their closest homolog, FERONIA, controls root-hair tip growth. Previously, we showed that ANX1 overexpression mildly inhibits PT growth by oversecretion of CW material, whereas pollen tubes of anx1 anx2 double mutants burst spontaneously after germination. Here, we report the identification of suppressor mutants with improved fertility caused by the rescue of anx1 anx2 pollen tube bursting. Mapping of one these mutants revealed an R240C nonsynonymous substitution in the activation loop of a receptor-like cytoplasmic kinase (RLCK), which we named MARIS (MRI). We show that MRI is a plasma membrane-localized member of the RLCK-VIII subfamily and is preferentially expressed in both PTs and root hairs. Interestingly, mri-knockout mutants display spontaneous PT and root-hair bursting. Moreover, expression of the MRI(R240C) mutant, but not its wild-type form, partially rescues the bursting phenotypes of anx1 anx2 PTs and fer root hairs but strongly inhibits wild-type tip growth. Thus, our findings identify a novel positive component of the CrRLK1L-dependent signaling cascade that coordinates CW integrity and tip growth.
Collapse
|
29
|
Ruelland E, Kravets V, Derevyanchuk M, Martinec J, Zachowski A, Pokotylo I. Role of phospholipid signalling in plant environmental responses. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2015; 114:129-143. [PMID: 0 DOI: 10.1016/j.envexpbot.2014.08.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
30
|
Bigeard J, Colcombet J, Hirt H. Signaling mechanisms in pattern-triggered immunity (PTI). MOLECULAR PLANT 2015; 8:521-39. [PMID: 25744358 DOI: 10.1016/j.molp.2014.12.022] [Citation(s) in RCA: 536] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/17/2014] [Accepted: 12/30/2014] [Indexed: 05/20/2023]
Abstract
In nature, plants constantly have to face pathogen attacks. However, plant disease rarely occurs due to efficient immune systems possessed by the host plants. Pathogens are perceived by two different recognition systems that initiate the so-called pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), both of which are accompanied by a set of induced defenses that usually repel pathogen attacks. Here we discuss the complex network of signaling pathways occurring during PTI, focusing on the involvement of mitogen-activated protein kinases.
Collapse
Affiliation(s)
- Jean Bigeard
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA/CNRS/Université d'Evry Val d'Essonne/Saclay Plant Sciences, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Jean Colcombet
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA/CNRS/Université d'Evry Val d'Essonne/Saclay Plant Sciences, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Heribert Hirt
- Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
31
|
Crozet P, Margalha L, Confraria A, Rodrigues A, Martinho C, Adamo M, Elias CA, Baena-González E. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. FRONTIERS IN PLANT SCIENCE 2014; 5:190. [PMID: 24904600 PMCID: PMC4033248 DOI: 10.3389/fpls.2014.00190] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/22/2014] [Indexed: 05/17/2023]
Abstract
The SNF1 (sucrose non-fermenting 1)-related protein kinases 1 (SnRKs1) are the plant orthologs of the budding yeast SNF1 and mammalian AMPK (AMP-activated protein kinase). These evolutionarily conserved kinases are metabolic sensors that undergo activation in response to declining energy levels. Upon activation, SNF1/AMPK/SnRK1 kinases trigger a vast transcriptional and metabolic reprograming that restores energy homeostasis and promotes tolerance to adverse conditions, partly through an induction of catabolic processes and a general repression of anabolism. These kinases typically function as a heterotrimeric complex composed of two regulatory subunits, β and γ, and an α-catalytic subunit, which requires phosphorylation of a conserved activation loop residue for activity. Additionally, SNF1/AMPK/SnRK1 kinases are controlled by multiple mechanisms that have an impact on kinase activity, stability, and/or subcellular localization. Here we will review current knowledge on the regulation of SNF1/AMPK/SnRK1 by upstream components, post-translational modifications, various metabolites, hormones, and others, in an attempt to highlight both the commonalities of these essential eukaryotic kinases and the divergences that have evolved to cope with the particularities of each one of these systems.
Collapse
Affiliation(s)
| | | | | | - Américo Rodrigues
- Instituto Gulbenkian de CiênciaOeiras, Portugal
- Escola Superior de Turismo e Tecnologia do Mar de Peniche, Instituto Politécnico de LeiriaPeniche, Portugal
| | | | | | | | - Elena Baena-González
- Instituto Gulbenkian de CiênciaOeiras, Portugal
- *Correspondence: Elena Baena-González, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal e-mail:
| |
Collapse
|
32
|
Effect of salicylic acid on the attenuation of aluminum toxicity in Coffea arabica L. suspension cells: A possible protein phosphorylation signaling pathway. J Inorg Biochem 2013; 128:188-95. [PMID: 23953991 DOI: 10.1016/j.jinorgbio.2013.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/02/2013] [Accepted: 07/07/2013] [Indexed: 11/21/2022]
Abstract
The protective effect of salicylic acid (SA) on aluminum (Al) toxicity was studied in suspension cells of Coffea arabica L. The results showed that SA does not produce any effect on cell growth and that the growth inhibition produced by aluminum is restored during simultaneous treatment of the cells with Al and SA. In addition, the cells exposed to both compounds, Al and SA, showed evident morphological signals of recovery from the toxic state produced in the presence of Al. The cells treated with SA showed a lower accumulation of Al, which was linked to restoration from Al toxicity because the concentration of Al(3+) outside the cells, measured as the Al(3+)-morin complex, was not modified by the presence of SA. Additionally, the inhibition of phospholipase C by Al treatment was restored during the exposure of the cells to SA and Al. The involvement of protein phosphorylation in the protective effect of SA on Al-toxicity was suggested because staurosporine, a protein kinase inhibitor, reverted the stimulatory effect of the combination of Al and SA on protein kinase activity. These results suggest that SA attenuates aluminum toxicity by affecting a signaling pathway linked to protein phosphorylation.
Collapse
|
33
|
Gray JW, Nelson Dittrich AC, Chen S, Avila J, Giavalisco P, Devarenne TP. Two Pdk1 phosphorylation sites on the plant cell death suppressor Adi3 contribute to substrate phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1834:1099-106. [PMID: 23507047 PMCID: PMC4301410 DOI: 10.1016/j.bbapap.2013.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/06/2013] [Accepted: 03/08/2013] [Indexed: 12/26/2022]
Abstract
The tomato AGC kinase Adi3 is phosphorylated by Pdk1 for activation of its cell death suppression activity. The Pdk1 phosphorylation site for activation of Adi3 is at Ser539. However, there is at least one additional Pdk1 phosphorylation site on Adi3 that has an unknown function. Here we identify an Arabidopsis thaliana sequence homologue of Adi3 termed AGC1-3. Two Pdk1 phosphorylation sites were identified on AGC1-3, activation site Ser596 and Ser269, and by homology Ser212 on Adi3 was identified as a second Pdk1 phosphorylation site. While Ser212 is not required for Adi3 autophosphorylation, Ser212 was shown to be required for full phosphorylation of the Adi3 substrate Gal83.
Collapse
Affiliation(s)
- Joel W. Gray
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843
| | | | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610
| | - Julian Avila
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843
| | - Patrick Giavalisco
- Max Planck Institute of Molecular Plant Physiology, 14476 Glom-Potsdam, Germany
| | - Timothy P. Devarenne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843
| |
Collapse
|
34
|
Lan P, Li W, Schmidt W. Genome-wide co-expression analysis predicts protein kinases as important regulators of phosphate deficiency-induced root hair remodeling in Arabidopsis. BMC Genomics 2013; 14:210. [PMID: 23547783 PMCID: PMC3636113 DOI: 10.1186/1471-2164-14-210] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/20/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Phosphorus (P) is one of the essential but often limiting elements for plants. Based on transcriptional profiling we reported previously that more than 3,000 genes are differentially expressed between phosphate (Pi)-deficient and Pi-sufficient Arabidopsis roots (MCP 11(11):1156-1166, 2012). The current study extends these findings by focusing on the analysis of genes that encode protein kinases (PK) and phosphatases (PP) by mining PK and PP genes that were differentially expressed in response to Pi deficiency. RESULTS Subsets of 1,118 and 205 annotated PK and PP genes were mined on the basis of the TAIR10 release of the Arabidopsis genome. Analysis of RNA-seq data showed that 92 PK and 19 PP genes were not detected in roots (zero reads in three biological repeats); 96 PK and 10 PP showed low abundance (≤ 10 reads). Gene ontology analysis revealed that the 188 PK genes with no or low expression level in Arabidopsis roots are mainly involved in pollen recognition, pollen tube growth or other processes not relevant for root hair formation. More than 50% of the cysteine-rich RLK (receptor-like protein kinase) subfamily genes belong to this group. Among the 29 PP genes with no or low expression level, purple acid phosphatases, haloacid dehalogenase-like hydrolases, and PP2C genes with functions in the dephosphorylation of RNA polymerase II C-terminal domain and mRNA capping were enriched. Subsets of 173 PK and 35 PP genes were differentially expressed under Pi-deficient conditions. Putative functional modules (clusters) of these PK and PP genes were constructed based on co-expression analysis using the MACCU toolbox. A co-expression network comprising 65 known or annotated PK and PP genes (60 PK and 5 PP genes, respectively) was subdivided into several highly co-expressed gene sub-clusters. The largest sub-cluster was composed of 22 genes, most of which have been assigned to the RLK superfamily and were associated with cell wall metabolism, pollen tube and/or root hair development and growth. CONCLUSIONS We here provide comprehensive 'digital' transcriptional information on PK and PP genes in Arabidopsis roots. The co-expression network derived from our data mining approach sets the stage for follow-up experimentation that helps to complete our understanding of the post-translational regulation of Pi deficiency-induced changes in root hair morphogenesis.
Collapse
Affiliation(s)
- Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science, Chinese Academy Sciences, Nanjing, 210008, People's Republic of China.
| | | | | |
Collapse
|
35
|
Nongbri PL, Vahabi K, Mrozinska A, Seebald E, Sun C, Sherameti I, Johnson JM, Oelmüller R. Balancing defense and growth—Analyses of the beneficial symbiosis between Piriformospora indica and Arabidopsis thaliana. Symbiosis 2013. [DOI: 10.1007/s13199-012-0209-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|