1
|
Sheahan TD, Warwick CA, Cui AY, Baranger DAA, Perry VJ, Smith KM, Manalo AP, Nguyen EK, Koerber HR, Ross SE. Kappa opioids inhibit spinal output neurons to suppress itch. SCIENCE ADVANCES 2024; 10:eadp6038. [PMID: 39321286 PMCID: PMC11423883 DOI: 10.1126/sciadv.adp6038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
Itch is a protective sensation that drives scratching. Although specific cell types have been proposed to underlie itch, the neural basis for itch remains unclear. Here, we used two-photon Ca2+ imaging of the dorsal horn to visualize neuronal populations that are activated by itch-inducing agents. We identify a convergent population of spinal interneurons recruited by diverse itch-causing stimuli that represents a subset of neurons that express the gastrin-releasing peptide receptor (GRPR). Moreover, we find that itch is conveyed to the brain via GRPR-expressing spinal output neurons that target the lateral parabrachial nuclei. We then show that the kappa opioid receptor agonist nalfurafine relieves itch by selectively inhibiting GRPR spinoparabrachial neurons. These experiments provide a population-level view of the spinal neurons that respond to pruritic stimuli, pinpoint the output neurons that convey itch to the brain, and identify the cellular target of kappa opioid receptor agonists for the inhibition of itch.
Collapse
Affiliation(s)
- Tayler D Sheahan
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles A Warwick
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abby Y Cui
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A A Baranger
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Vijay J Perry
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelly M Smith
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allison P Manalo
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eileen K Nguyen
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - H Richard Koerber
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah E Ross
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Hou J, Liu J, Huang Z, Wang Y, Yao H, Hu Z, Shi C, Xu J, Wang Q. Structure and function of the membrane microdomains in osteoclasts. Bone Res 2023; 11:61. [PMID: 37989999 PMCID: PMC10663511 DOI: 10.1038/s41413-023-00294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 11/23/2023] Open
Abstract
The cell membrane structure is closely related to the occurrence and progression of many metabolic bone diseases observed in the clinic and is an important target to the development of therapeutic strategies for these diseases. Strong experimental evidence supports the existence of membrane microdomains in osteoclasts (OCs). However, the potential membrane microdomains and the crucial mechanisms underlying their roles in OCs have not been fully characterized. Membrane microdomain components, such as scaffolding proteins and the actin cytoskeleton, as well as the roles of individual membrane proteins, need to be elucidated. In this review, we discuss the compositions and critical functions of membrane microdomains that determine the biological behavior of OCs through the three main stages of the OC life cycle.
Collapse
Affiliation(s)
- Jialong Hou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhixian Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yining Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanbing Yao
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenxin Hu
- Department of Spine Surgery, Peking University Fourth School of Clinical Medicine, Beijing, China
| | - Chengge Shi
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
3
|
Yang JG, Sun B, Wang Z, Li X, Gao JH, Qian JJ, Li J, Wei WJ, Zhang P, Wang W. Exosome-targeted delivery of METTL14 regulates NFATc1 m6A methylation levels to correct osteoclast-induced bone resorption. Cell Death Dis 2023; 14:738. [PMID: 37957146 PMCID: PMC10643436 DOI: 10.1038/s41419-023-06263-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Osteoporosis has a profound influence on public health. First-line bisphosphonates often cause osteonecrosis of the jaw meanwhile inhibiting osteoclasts. Therefore, it is important to develop effective treatments. The results of this study showed that the increased level of NFATc1 m6A methylation caused by zoledronic acid (ZOL), with 4249A as the functional site, is highly correlated with the decreased bone resorption of osteoclasts. Upstream, METTL14 regulates osteoclast bone absorption through the methylation functional site of NFATc1. Downstream, YTHDF1 and YTHDF2 show antagonistic effects on the post-transcriptional regulation of NFATc1 after the m6A methylation level is elevated by METTL14. In this study, meRIP-Seq, luciferase reporter assays, meRIP and other methods were used to elucidate the NFATc1 regulatory mechanism of osteoclasts from the perspective of RNA methylation. In addition, EphA2 overexpression on exosomes is an effective biological method for targeted delivery of METTL14 into osteoclasts. Importantly, this study shows that METTL14 released by exosomes can increase the m6A methylation level of NFATc1 to inhibit osteoclasts, help postmenopausal osteoporosis patients preserve bone mass, and avoid triggering osteonecrosis of the jaw, thus becoming a new bioactive molecule for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Jin-Gang Yang
- Department of Stomatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Bao Sun
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Zheng Wang
- Concordia Institute for Information Systems Engineering, Concordia University, 1455 De Maisonneuve Blvd. W., Montreal, QC H3G 1M8, Canada
| | - Xing Li
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jia-Hui Gao
- Department of Ecology, College of Life Sciences, Henan Normal University, No. 46 Jianshe East Road, Xinxiang, Henan Province, 453007, China
| | - Jia-Jun Qian
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jiang Li
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Wen-Jia Wei
- Department of Stomatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China.
| | - Ping Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 136 Hanzhong Road, Nanjing, Jiangsu Province, 210029, China.
| | - Wei Wang
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
4
|
Jiang T, Xia T, Qiao F, Wang N, Jiang Y, Xin H. Role and Regulation of Transcription Factors in Osteoclastogenesis. Int J Mol Sci 2023; 24:16175. [PMID: 38003376 PMCID: PMC10671247 DOI: 10.3390/ijms242216175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Bones serve mechanical and defensive functions, as well as regulating the balance of calcium ions and housing bone marrow.. The qualities of bones do not remain constant. Instead, they fluctuate throughout life, with functions increasing in some situations while deteriorating in others. The synchronization of osteoblast-mediated bone formation and osteoclast-mediated bone resorption is critical for maintaining bone mass and microstructure integrity in a steady state. This equilibrium, however, can be disrupted by a variety of bone pathologies. Excessive osteoclast differentiation can result in osteoporosis, Paget's disease, osteolytic bone metastases, and rheumatoid arthritis, all of which can adversely affect people's health. Osteoclast differentiation is regulated by transcription factors NFATc1, MITF, C/EBPα, PU.1, NF-κB, and c-Fos. The transcriptional activity of osteoclasts is largely influenced by developmental and environmental signals with the involvement of co-factors, RNAs, epigenetics, systemic factors, and the microenvironment. In this paper, we review these themes in regard to transcriptional regulation in osteoclastogenesis.
Collapse
Affiliation(s)
- Tao Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Tianshuang Xia
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Fangliang Qiao
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China;
| | - Yiping Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Hailiang Xin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
5
|
Sheahan TD, Warwick CA, Cui AY, Baranger DA, Perry VJ, Smith KM, Manalo AP, Nguyen EK, Koerber HR, Ross SE. Identification of a convergent spinal neuron population that encodes itch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560205. [PMID: 37873278 PMCID: PMC10592866 DOI: 10.1101/2023.09.29.560205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Itch is a protective sensation that drives scratching. Although specific cell types have been proposed to underlie itch, the neural circuit basis for itch remains unclear. Here, we used two-photon Ca2+ imaging of the dorsal horn to visualize the neuronal populations that are activated by itch-inducing agents. We identify a convergent population of spinal neurons that is defined by the expression of GRPR. Moreover, we discover that itch is conveyed to the brain via GRPR-expressing spinal output neurons that target the lateral parabrachial nucleus. Further, we show that nalfurafine, a clinically effective kappa opioid receptor agonist, relieves itch by inhibiting GRPR spinoparabrachial neurons. Finally, we demonstrate that a subset of GRPR spinal neurons show persistent, cell-intrinsic Ca2+ oscillations. These experiments provide the first population-level view of the spinal neurons that respond to pruritic stimuli, pinpoint the output neurons that convey itch to the brain, and identify the cellular target of kappa opioid receptor agonists for the inhibition of itch.
Collapse
Affiliation(s)
- Tayler D. Sheahan
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Co-first authors
| | - Charles A. Warwick
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Co-first authors
| | - Abby Y. Cui
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David A.A. Baranger
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis Missouri, USA
| | - Vijay J. Perry
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kelly M. Smith
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Current Address: Biohaven Pharmaceuticals, LTD, Pittsburgh, Pennsylvania, USA
| | - Allison P. Manalo
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eileen K. Nguyen
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Current Address: Department of Anesthesiology and Perioperative Care, University of California, Los Angeles, Los Angeles, California, USA
| | - H. Richard Koerber
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah E. Ross
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Lead contact
| |
Collapse
|
6
|
Groetsch B, Schachtschabel E, Tripal P, Schmid B, Smith AS, Schett G, Bozec A. Inflammatory activation of the FcγR and IFNγR pathways co-influences the differentiation and activity of osteoclasts. Front Immunol 2022; 13:958974. [PMID: 36148242 PMCID: PMC9486546 DOI: 10.3389/fimmu.2022.958974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoclasts are polykaryons formed by cell–cell fusion of highly motile progenitors of the myeloid lineage. Osteoclast activity can preserve skeletal strength and bone homeostasis. However, osteoclasts are responsible for bone destruction in rheumatoid arthritis (RA). Fc receptors activated by IgG immune complexes (IC) can boost osteoclast differentiation and bone loss in the course of RA. In contrast, interferon (IFN) γ secreted by immune cells blocks osteoclast activation. Despite their hypothetical importance in the regulation of osteoclast differentiation in RA, the interconnection between the two pathways has not been described so far. Here, we show by total internal reflection fluorescence (TIRF) microscopy that FcγR3 and IFNγ receptor (IFNγR) locate at close vicinity to each other on the human osteoclast surface. Moreover, the average distance increases during the differentiation process. Interestingly, FcγR and IFNγR activation shapes the position of both receptors to each other. Surprisingly, the inhibitory action of IFNγ on in-vitro human osteoclast differentiation depends on the osteoclast differentiation stage. Indeed, IFNγR activation in early osteoclast precursors completely inhibits the formation of polynucleated osteoclasts, while in premature osteoclasts, it further enhanced their fusion. In addition, gene expression analyses showed that IFNγR activation on early precursor cells but not on premature osteoclasts could induce FcγR expression, suggesting a co-regulation of both receptors on human osteoclast precursors. Phosphokinase array data of precursor cells demonstrate that the observed divergence of IFNγR signaling is dependent on the mitogen−activated protein kinase (MAPK) downstream signaling pathway. Overall, our data indicate that FcγR and IFNγR signaling pathways co-influence the differentiation and activity of osteoclasts dependent on the differentiation state, which might reflect the different stages in RA.
Collapse
Affiliation(s)
- Bettina Groetsch
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Elisabeth Schachtschabel
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Philipp Tripal
- Optical Imaging Centre Erlangen (OICE), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Schmid
- Optical Imaging Centre Erlangen (OICE), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ana-Suncana Smith
- Institute for Theoretical Physics, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- *Correspondence: Aline Bozec,
| |
Collapse
|
7
|
Yamaguchi Y, Kadowaki T, Aibara N, Ohyama K, Okamoto K, Sakai E, Tsukuba T. Coronin1C Is a GDP-Specific Rab44 Effector That Controls Osteoclast Formation by Regulating Cell Motility in Macrophages. Int J Mol Sci 2022; 23:ijms23126619. [PMID: 35743062 PMCID: PMC9224296 DOI: 10.3390/ijms23126619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Osteoclasts are multinucleated bone-resorbing cells that are formed by the fusion of macrophages. Recently, we identified Rab44, a large Rab GTPase, as an upregulated gene during osteoclast differentiation that negatively regulates osteoclast differentiation. However, the molecular mechanisms by which Rab44 negatively regulates osteoclast differentiation remain unknown. Here, we found that the GDP form of Rab44 interacted with the actin-binding protein, Coronin1C, in murine macrophages. Immunoprecipitation experiments revealed that the interaction of Rab44 and Coronin1C occurred in wild-type and a dominant-negative (DN) mutant of Rab44, but not in a constitutively active (CA) mutant of Rab44. Consistent with these findings, the expression of the CA mutant inhibited osteoclast differentiation, whereas that of the DN mutant enhanced this differentiation. Using a phase-contrast microscope, Coronin1C-knockdown osteoclasts apparently impaired multinuclear formation. Moreover, Coronin1C knockdown impaired the migration and chemotaxis of RAW-D macrophages. An in vivo experimental system demonstrated that Coronin1C knockdown suppresses osteoclastogenesis. Therefore, the decreased cell formation and fusion of Coronin1C-depleted osteoclasts might be due to the decreased migration of Coronin1C-knockdown macrophages. These results indicate that Coronin1C is a GDP-specific Rab44 effector that controls osteoclast formation by regulating cell motility in macrophages.
Collapse
Affiliation(s)
- Yu Yamaguchi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.Y.); (E.S.)
| | - Tomoko Kadowaki
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan;
| | - Nozomi Aibara
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (N.A.); (K.O.)
| | - Kaname Ohyama
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (N.A.); (K.O.)
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan;
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.Y.); (E.S.)
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.Y.); (E.S.)
- Correspondence: ; Tel.: +81-95-819-7652
| |
Collapse
|
8
|
Shi P, Hou A, Li C, Wu X, Jia S, Cen H, Hu X, Gong H. Continuous subcutaneous insulin infusion ameliorates bone structures and mechanical properties in type 2 diabetic rats by regulating bone remodeling. Bone 2021; 153:116101. [PMID: 34245934 DOI: 10.1016/j.bone.2021.116101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/21/2021] [Accepted: 07/01/2021] [Indexed: 12/29/2022]
Abstract
Continuous subcutaneous insulin infusion (CSII) is an intensive insulin therapy for patients with type 2 diabetes mellitus (T2DM) who have poor glycemic control, but its effect on T2DM-related bone disorder is unclear. This study described the possible mechanisms by which CSII affects bone remodeling, structures, and mechanical properties in T2DM rats. Herein, male rats (6-week-old) were assigned randomly to 4-week and 8-week administration groups, each of which included healthy control, T2DM, CSII, and Placebo groups. Then, metabolic markers, bone formation and resorption markers in serum and protein expressions of osteoclastogenesis regulators in tibias were detected. Meanwhile, microstructures, nanostructures, macro-mechanical properties, nano-mechanical properties, and mineral compositions in femurs were evaluated. 4-week later, CSII treatment restored circulatory metabolites, bone formation and resorption markers, and osteoclastogenesis regulators, improved certain bone microstructures, decreased matrix mineralization, and increased fracture toughness in T2DM rats. For 8-week group, CSII treatment restored bone formation and resorption markers, osteoclastogenesis regulators, and bone microstructures, besides improved bone mineral compositions and nanostructures, enhanced bone mechanical properties such as fracture toughness, maximum load, elastic modulus, indentation modulus and hardness. Collectively, 8-week CSII treatment is more conducive to ameliorating bone structures and mechanical properties in T2DM rats by regulating bone remodeling compared with 4-week CSII treatment, thus improving whole bone quality and providing valuable information for clinical prevention and treatment of T2DM-related bone disorders.
Collapse
Affiliation(s)
- Peipei Shi
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Aiqi Hou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Chenchen Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiaodan Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Shaowei Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Haipeng Cen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiaorong Hu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - He Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
9
|
Sun J, Chen W, Li S, Yang S, Zhang Y, Hu X, Qiu H, Wu J, Xu S, Chu T. Nox4 Promotes RANKL-Induced Autophagy and Osteoclastogenesis via Activating ROS/PERK/eIF-2α/ATF4 Pathway. Front Pharmacol 2021; 12:751845. [PMID: 34650437 PMCID: PMC8505706 DOI: 10.3389/fphar.2021.751845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Receptor activator of nuclear factor-κB ligand (RANKL) has been found to induce osteoclastogenesis and bone resorption. However, the underlying molecular mechanisms remain unclear. Via conducting a series of biochemical experiments with in vitro cell lines, this study investigated the role and mechanism of NADPH oxidase 4 (Nox4) in RANKL-induced autophagy and osteoclastogenesis. In the current study, we found that RANKL dramatically induced autophagy and osteoclastogenesis, inhibition of autophagy with chloroquine (CQ) markedly attenuates RANKL-induced osteoclastogenesis. Interestingly, we found that the protein level of Nox4 was remarkably upregulated by RANKL treatment. Inhibition of Nox4 by 5-O-methyl quercetin or knockdown of Nox4 with specific shRNA markedly attenuated RANKL-induced autophagy and osteoclastogenesis. Furthermore, we found that Nox4 stimulated the production of nonmitochondrial reactive oxygen species (ROS), activating the critical unfolded protein response (UPR)-related signaling pathway PERK/eIF-2α/ATF4, leading to RANKL-induced autophagy and osteoclastogenesis. Blocking the activation of PERK/eIF-2α/ATF4 signaling pathway either by Nox4 shRNA, ROS scavenger (NAC) or PERK inhibitor (GSK2606414) significantly inhibited autophagy during RANKL-induced osteoclastogenesis. Collectively, this study reveals that Nox4 promotes RANKL-induced autophagy and osteoclastogenesis via activating ROS/PERK/eIF-2α/ATF4 pathway, suggesting that the pathway may be a novel potential therapeutic target for osteoclastogenesis-related disease.
Collapse
Affiliation(s)
- Jing Sun
- Department of Orthopedics, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Wugui Chen
- Department of Orthopedics, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Songtao Li
- Department of Orthopedics, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Sizhen Yang
- Department of Orthopedics, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Ying Zhang
- Department of Orthopedics, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Xu Hu
- Department of Orthopedics, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Hao Qiu
- Department of Orthopedics, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Jigong Wu
- Department of Spinal Surgery, 306 Hospital of PLA, Beijing, China
| | - Shangcheng Xu
- The Center of Laboratory Medicine, The Sixth People's Hospital of Chongqing, Chongqing, China
| | - Tongwei Chu
- Department of Orthopedics, Xinqiao Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
10
|
Kim HY, Park JH, Kim MJ, Lee JH, Oh SH, Byun JH. The effects of VEGF-centered biomimetic delivery of growth factors on bone regeneration. Biomater Sci 2021; 9:3675-3691. [PMID: 33899852 DOI: 10.1039/d1bm00245g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
It is accepted that biomimetic supply of signaling molecules during bone regeneration can provide an appropriate environment for accelerated new bone formation. In this study, we developed a growth factor delivery system based on porous particles and a thermosensitive hydrogel that allowed fast, continuous, and delayed/continuous release of growth factors to mimic their biological production during bone regeneration. It was observed that the Continuous group (continuous release of growth factors) provides a better environment for the osteogenic differentiation of hPDCs than the Biomimetic group (biomimetic release of growth factors), and thus is anticipated to promote bone regeneration. However, contrary to expectation, the Biomimetic group promoted significant new bone formation compared to the Continuous group. From the systematic cell culture experiments, the initial supply of VEGF was considered to have more favorable effects on the osteoclastogenesis than osteogenesis, which may hinder bone regeneration. Our results indicated that the continuous supply of VEGF (in particular, at early stage) from VEGF-loaded biomaterial might not be conducive to new bone formation. Therefore, we suggest that a biomimetic supply of growth factors is a more pivotal parameter for sufficient tissue regeneration. Its use as a molecular delivery system may also serve as a useful tool for the investigation of biological processes and molecules during tissue regeneration processes.
Collapse
Affiliation(s)
- Ho Yong Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea.
| | - Jin-Ho Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea. and Department of Convergence Medical Science, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Min Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea.
| | - Jin Ho Lee
- Department of Advanced Materials, Hannam University, Daejeon 34054, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea.
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea. and Department of Convergence Medical Science, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
11
|
Zhao Z, Zhang Y, Wang C, Wang X, Wang Y, Zhang H. Angiotensin II upregulates RANKL/NFATC1 expression in synovial cells from patients with rheumatoid arthritis through the ERK1/2 and JNK pathways. J Orthop Surg Res 2021; 16:297. [PMID: 33952303 PMCID: PMC8097914 DOI: 10.1186/s13018-021-02451-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/27/2021] [Indexed: 02/03/2023] Open
Abstract
Background Angiotensin II (Ang II) is associated with rheumatoid arthritis (RA) development. The present study investigated the impact of Ang II on the expression of receptor activator of nuclear factor-κB ligand (RANKL), as well as of nuclear factor of activated T cells cytoplasmic 1 (NFATC1) in RA synovial cells, and explored the underlying mechanism. Methods The expression levels of RANKL, NFATC1, and Ang II type 1 receptor (AT1R) were analyzed by RT PCR, western-blot, and/or immunohistochemistry. Western blot was also used to analyze the p38MAPK, JNK, and ERK1/2 pathways. Results The expressions of RANKL and NFATC1 increased in synovial tissues of RA compared to osteoarthritis (OA) synovial tissues. The expression of RANKL was upregulated by Ang II, and this effect was mitigated by an AT1R blocker but not by an AT2R blocker. Furthermore, Ang II activated the ERK1/2, JNK, and p38MAPK pathways, and this effect was blocked by the AT1R blocker. However, ERK1/2 and JNK inhibitors, but not a p38MAPK inhibitor, blocked Ang II-induced RANKL expression. Ang II also increased the level of NFATC1, and this upregulation was attenuated by AT1R blockade, ERK1/2 and JNK inhibition, and siRNA-mediated RANKL silencing, but not by AT2R blockade or p38MAPK inhibition. Conclusion Our results indicated that Ang II activated the ERK1/2 and JNK pathways via AT1R, thus upregulating RANKL and NFATC1 expressions in RA synovial cells.
Collapse
Affiliation(s)
- Zhiping Zhao
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yongtao Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Changyao Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiangyu Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yingzhen Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Haining Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China. .,Department of Orthopedics, The Affiliated Hospital of Qingdao University, 59 Hai Er Road, Qingdao, Shandong, 266061, P.R. China.
| |
Collapse
|
12
|
Ihn HJ, Kim YS, Lim S, Bae JS, Jung JC, Kim YH, Park JW, Wang Z, Koh JT, Bae YC, Baek MC, Park EK. PF-3845, a Fatty Acid Amide Hydrolase Inhibitor, Directly Suppresses Osteoclastogenesis through ERK and NF-κB Pathways In Vitro and Alveolar Bone Loss In Vivo. Int J Mol Sci 2021; 22:ijms22041915. [PMID: 33671948 PMCID: PMC7919013 DOI: 10.3390/ijms22041915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Alveolar bone loss, the major feature of periodontitis, results from the activation of osteoclasts, which can consequently cause teeth to become loose and fall out; the development of drugs capable of suppressing excessive osteoclast differentiation and function is beneficial for periodontal disease patients. Given the difficulties associated with drug discovery, drug repurposing is an efficient approach for identifying alternative uses of commercially available compounds. Here, we examined the effects of PF-3845, a selective fatty acid amide hydrolase (FAAH) inhibitor, on receptor activator of nuclear factor kappa B ligand (RANKL)-mediated osteoclastogenesis, its function, and the therapeutic potential for the treatment of alveolar bone destruction in experimental periodontitis. PF-3845 significantly suppressed osteoclast differentiation and decreased the induction of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) and the expression of osteoclast-specific markers. Actin ring formation and osteoclastic bone resorption were also reduced by PF-3845, and the anti-osteoclastogenic and anti-resorptive activities were mediated by the suppression of phosphorylation of rapidly accelerated fibrosarcoma (RAF), mitogen-activated protein kinase (MEK), extracellular signal-regulated kinase, (ERK) and nuclear factor κB (NF-κB) inhibitor (IκBα). Furthermore, the administration of PF-3845 decreased the number of osteoclasts and the amount of alveolar bone destruction caused by ligature placement in experimental periodontitis in vivo. The present study provides evidence that PF-3845 is able to suppress osteoclastogenesis and prevent alveolar bone loss, and may give new insights into its role as a treatment for osteoclast-related diseases.
Collapse
Affiliation(s)
- Hye-Jung Ihn
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea;
| | - Yi-Seul Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu 41940, Korea; (Y.-S.K.); (S.L.)
| | - Soomin Lim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu 41940, Korea; (Y.-S.K.); (S.L.)
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Jae-Chang Jung
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Yeo-Hyang Kim
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea;
| | - Zhao Wang
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea; (Z.W.); (J.-T.K.)
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea; (Z.W.); (J.-T.K.)
| | - Yong-Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea;
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (M.-C.B.); (E.-K.P.); Tel.: +82-53-420-4948 (M.-C.B.); +82-53-420-4995 (E.-K.P.)
| | - Eui-Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu 41940, Korea; (Y.-S.K.); (S.L.)
- Correspondence: (M.-C.B.); (E.-K.P.); Tel.: +82-53-420-4948 (M.-C.B.); +82-53-420-4995 (E.-K.P.)
| |
Collapse
|
13
|
Regulation of Osteoclast Differentiation and Activity by Lipid Metabolism. Cells 2021; 10:cells10010089. [PMID: 33430327 PMCID: PMC7825801 DOI: 10.3390/cells10010089] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Bone is a dynamic tissue and is constantly being remodeled by bone cells. Metabolic reprogramming plays a critical role in the activation of these bone cells and skeletal metabolism, which fulfills the energy demand for bone remodeling. Among various metabolic pathways, the importance of lipid metabolism in bone cells has long been appreciated. More recent studies also establish the link between bone loss and lipid-altering conditions—such as atherosclerotic vascular disease, hyperlipidemia, and obesity—and uncover the detrimental effect of fat accumulation on skeletal homeostasis and increased risk of fracture. Targeting lipid metabolism with statin, a lipid-lowering drug, has been shown to improve bone density and quality in metabolic bone diseases. However, the molecular mechanisms of lipid-mediated regulation in osteoclasts are not completely understood. Thus, a better understanding of lipid metabolism in osteoclasts can be used to harness bone cell activity to treat pathological bone disorders. This review summarizes the recent developments of the contribution of lipid metabolism to the function and phenotype of osteoclasts.
Collapse
|
14
|
Bae S, Zeng S, Park-Min KH. Nuclear receptors in osteoclasts. Curr Opin Pharmacol 2020; 53:8-17. [PMID: 32569976 PMCID: PMC7669703 DOI: 10.1016/j.coph.2020.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 02/08/2023]
Abstract
Osteoclasts are bone-resorbing cells that play an essential role in the remodeling of bone under physiological conditions and numerous pathological conditions, such as osteoporosis, bone metastasis, and inflammatory bone erosion. Nuclear receptors are crucial to various physiological processes, including metabolism, development and inflammation, and function as transcription factors to activate target genes. Synthetic ligands of nuclear receptors are also available for the treatment of metabolic and inflammatory diseases. However, dysregulated bone phenotypes have been documented in patients who take synthetic nuclear receptor ligands as a therapy. Therefore, the effect of nuclear receptors on bone cells has become an important area of exploration; additionally, the molecular mechanisms underlying the action of nuclear receptors in osteoclasts have not been completely understood. Here, we cover the recent progress in our understanding of the roles of nuclear receptors in osteoclasts.
Collapse
Affiliation(s)
- Seyeon Bae
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Steven Zeng
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
| |
Collapse
|
15
|
Borciani G, Montalbano G, Baldini N, Cerqueni G, Vitale-Brovarone C, Ciapetti G. Co-culture systems of osteoblasts and osteoclasts: Simulating in vitro bone remodeling in regenerative approaches. Acta Biomater 2020; 108:22-45. [PMID: 32251782 DOI: 10.1016/j.actbio.2020.03.043] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 02/08/2023]
Abstract
Bone is an extremely dynamic tissue, undergoing continuous remodeling for its whole lifetime, but its regeneration or augmentation due to bone loss or defects are not always easy to obtain. Bone tissue engineering (BTE) is a promising approach, and its success often relies on a "smart" scaffold, as a support to host and guide bone formation through bone cell precursors. Bone homeostasis is maintained by osteoblasts (OBs) and osteoclasts (OCs) within the basic multicellular unit, in a consecutive cycle of resorption and formation. Therefore, a functional scaffold should allow the best possible OB/OC cooperation for bone remodeling, as happens within the bone extracellular matrix in the body. In the present work OB/OC co-culture models, with and without scaffolds, are reviewed. These experimental systems are intended for different targets, including bone remodeling simulation, drug testing and the assessment of biomaterials and 3D scaffolds for BTE. As a consequence, several parameters, such as cell type, cell ratio, culture medium and inducers, culture times and setpoints, assay methods, etc. vary greatly. This review identifies and systematically reports the in vitro methods explored up to now, which, as they allow cellular communication, more closely resemble bone remodeling and/or the regeneration process in the framework of BTE. STATEMENT OF SIGNIFICANCE: Bone is a dynamic tissue under continuous remodeling, but spontaneous healing may fail in the case of excessive bone loss which often requires valid alternatives to conventional treatments to restore bone integrity, like bone tissue engineering (BTE). Pre-clinical evaluation of scaffolds for BTE requires in vitro testing where co-cultures combining innovative materials with osteoblasts (OBs) and osteoclasts (OCs) closely mimic the in vivo repair process. This review considers the direct and indirect OB/OC co-cultures relevant to BTE, from the early mouse-cell models to the recent bone regenerative systems. The co-culture modeling of bone microenvironment provides reliable information on bone cell cross-talk. Starting from improved knowledge on bone remodeling, bone disease mechanisms may be understood and new BTE solutions are designed.
Collapse
|
16
|
Hydrogen gas protects against ovariectomy-induced osteoporosis by inhibiting NF-κB activation. Menopause 2020; 26:785-792. [PMID: 31083022 DOI: 10.1097/gme.0000000000001310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Osteoporosis is a prevalent condition among postmenopausal women, and lacks satisfactory therapeutic options. Hydrogen (H2) has been shown to be effective in alleviating many diseases. This study aimed to investigate the effects of H2 on inhibiting osteoclastogenesis and bone loss in ovariectomized mice. METHODS Osteoclast differentiation from Raw264.7 cells was induced with receptor activator NF-κB ligand (RANKL) with or without 60% H2. The number and resorption activity of osteocalsts were assessed by tartrate-resistant acid phosphatase staining and pit formation assay, respectively. The expression of osteoclast markers and NF-κB phosphorylation were detected by western blot. NF-κB nuclear translocation was assessed by immunofluorescence. NF-κB transcriptional activity was analyzed by luciferase assay. Bone loss in mice was induced by ovariectomy (OVX). OVX mice were given either regular air or 60% H2. Bone structure was analyzed by micro-computed tomography and hematoxylin and eosin staining. Cytokine levels were measured by enzyme-linked immunosorbent assay. The data were analyzed with one-way or two-way ANOVA followed by Bonferroni post hoc tests. RESULTS H2 did not have any measurable effect on the proliferation of Raw264.7 cells. The number of osteoclasts and size of resorption pits of RANKL+H2-treated cells were 3 to 4 times less than RANKL treated cells. The expression of osteoclast marker genes of RANKL+H2-treated cells was 30% to 60% lower than RANKL-treated cells (P < 0.05). H2 markedly inhibited RANKL-induced activation, nuclear translocation, and transcriptional activity of NF-κB (P < 0.05, RANKL+H2 vs RANKL). The amount and density of trabecular bone and bone mineral density of ovariectomized mice were significantly less than sham-operated mice (P < 0.05 OVX vs sham). The amount of trabecular bone and bone mineral density of OVX mice that inhaled H2 were more than 40% higher, whereas the levels of serum proinflammatory cytokine interleukin 1β, IL-6, and tumor necrosis factor-α were more than 50% lower than those of OVX mice (P < 0.05). CONCLUSIONS These results demonstrated that H2 could be an effective therapeutic agent of postmenopausal osteoporosis.
Collapse
|
17
|
Zhao H, Sun Z, Ma Y, Song R, Yuan Y, Bian J, Gu J, Liu Z. Antiosteoclastic bone resorption activity of osteoprotegerin via enhanced AKT/mTOR/ULK1-mediated autophagic pathway. J Cell Physiol 2019; 235:3002-3012. [PMID: 31535378 DOI: 10.1002/jcp.29205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Autophagy plays a critical role in the maintenance of bone homeostasis. Osteoprotegerin (OPG) is an inhibitor of osteoclast-mediated bone resorption. However, whether autophagy is involved in the antiosteoclastogenic effects of OPG remains unclear. The present study aimed to investigate the potential mechanism of autophagy during OPG-induced bone resorption via inhibition of osteoclasts differentiated from bone marrow-derived macrophages in BALB/c mice. The results showed that after treatment with receptor activator of nuclear factor-κΒ ligand and macrophage colony-stimulating factor for 3 days, TRAP+ osteoclasts formed, representing the resting state of autophagy. These osteoclasts were treated with OPG and underwent autophagy, as demonstrated by LC3-II accumulation, acidic vesicular organelle formation, and the presence of autophagosomes. The levels of autophagy-related proteins, LC3-II increased and P62 decreased at 3 hr in OPG-treated osteoclasts. The viability, differentiation, and bone resorption activity of osteoclasts declined after OPG treatment. Treatment with OPG and chloroquine, an autophagy inhibitor, attenuated OPG-induced inhibition of osteoclastic bone resorption, whereas rapamycin (RAP), an autophagy inducer, enhanced OPG-induced inhibition of differentiation, survival, and bone resorption activity of osteoclasts. Furthermore, OPG reduced the amount of phosphorylated(p) protein kinase B (AKT) and pmTOR and increased the level of pULK, in a dose-dependant manner. LY294002, a phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT pathway inhibitor, attenuated the decline in pAKT, but enhanced the decline in pmTOR and the increase in pULK1 following OPG treatment. RAP enhanced the OPG-induced increase in pULK1. The PI3K inhibitor 3-methyladenine partly blocked OPG-induced autophagy. Thus, the results revealed that OPG inhibits osteoclast bone resorption by inducing autophagy via the AKT/mTOR/ULK1 signaling pathway.
Collapse
Affiliation(s)
- Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ziqiang Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
18
|
Dolcino M, Tinazzi E, Puccetti A, Lunardi C. Long Non-Coding RNAs Target Pathogenetically Relevant Genes and Pathways in Rheumatoid Arthritis. Cells 2019; 8:cells8080816. [PMID: 31382516 PMCID: PMC6721587 DOI: 10.3390/cells8080816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease driven by genetic, environmental and epigenetic factors. Long non-coding RNAs (LncRNAs) are a key component of the epigenetic mechanisms and are known to be involved in the development of autoimmune diseases. In this work we aimed to identify significantly differentially expressed LncRNAs (DE-LncRNAs) that are functionally connected to modulated genes strictly associated with RA. In total, 542,500 transcripts have been profiled in peripheral blood mononuclear cells (PBMCs) from four patients with early onset RA prior any treatment and four healthy donors using Clariom D arrays. Results were confirmed by real-time PCR in 20 patients and 20 controls. Six DE-LncRNAs target experimentally validated miRNAs able to regulate differentially expressed genes (DEGs) in RA; among them, only FTX, HNRNPU-AS1 and RP11-498C9.15 targeted a large number of DEGs. Most importantly, RP11-498C9.15 targeted the largest number of signalling pathways that were found to be enriched by the global amount of RA-DEGs and that have already been associated with RA and RA-synoviocytes. Moreover, RP11-498C9.15 targeted the most highly connected genes in the RA interactome, thus suggesting its involvement in crucial gene regulation. These results indicate that, by modulating both microRNAs and gene expression, RP11-498C9.15 may play a pivotal role in RA pathogenesis.
Collapse
Affiliation(s)
- Marzia Dolcino
- Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Elisa Tinazzi
- Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Antonio Puccetti
- Department of Experimental Medicine-Section of Histology, University of Genova, 16132 Genova, Italy
| | - Claudio Lunardi
- Department of Medicine, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
19
|
Huang XL, Huang LY, Cheng YT, Li F, Zhou Q, Wu C, Shi QH, Guan ZZ, Liao J, Hong W. Zoledronic acid inhibits osteoclast differentiation and function through the regulation of NF-κB and JNK signalling pathways. Int J Mol Med 2019; 44:582-592. [PMID: 31173157 PMCID: PMC6605660 DOI: 10.3892/ijmm.2019.4207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/13/2019] [Indexed: 12/20/2022] Open
Abstract
It is well known that extensive osteoclast formation plays a key role in osteoporosis in post‑menopausal women and the elderly. The suppression of extensive osteoclastogenesis and bone resorption may be an effective preventive strategy for osteoporosis. Zoledronic acid (ZOL) has been indicated to play an essential role in regulating bone mineral density and has already been used in large clinical trials. However, the effects of ZOL on osteoclastogenesis remain to be fully elucidated. Therefore, the present study aimed to determine the effects of ZOL on osteoclastogenesis, and to explore the corresponding signalling pathways. By using a cell viability assay, as well as in vitro osteoclastogenesis, immunofluorescence and resorption pit assays, we demonstrated that ZOL (0.1‑5 µM) suppressed receptor activator of nuclear factor‑κB ligand (RANKL)‑induced osteoclast differentiation and bone resorptive activity. Furthermore, western blot analysis and reverse transcription‑quantitative PCR indicated that ZOL inhibited the RANKL‑induced activation of NF‑κB and the phosphorylation of JNK in RAW264.7 cells, and subsequently decreased the expression of osteoclastogenesis‑associated genes, including calcitonin receptor, tartrate‑resistant acid phosphatase and dendritic cell‑specific transmembrane protein. ZOL inhibited osteoclast formation and resorption in vitro by specifically suppressing NF‑κB and JNK signalling. On the whole, the findings of this study indicate that ZOL may serve as a potential agent for the treatment of osteoclast‑associated diseases, including osteoporosis.
Collapse
Affiliation(s)
- Xiao-Lin Huang
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Lie-Yu Huang
- Department of Medical Psychology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yu-Ting Cheng
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Fang Li
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Qian Zhou
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Chao Wu
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Qian-Hui Shi
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Zhi-Zhong Guan
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Jian Liao
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| | - Wei Hong
- School/Hospital of Stomatology and Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
20
|
Lozano C, Duroux-Richard I, Firat H, Schordan E, Apparailly F. MicroRNAs: Key Regulators to Understand Osteoclast Differentiation? Front Immunol 2019; 10:375. [PMID: 30899258 PMCID: PMC6416164 DOI: 10.3389/fimmu.2019.00375] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding single-stranded RNAs that represent important posttranscriptional regulators of protein-encoding genes. In particular, miRNAs play key roles in regulating cellular processes such as proliferation, migration, and cell differentiation. Recently, miRNAs emerged as critical regulators of osteoclasts (OCs) biology and have been involved in OCs pathogenic role in several disorders. OCs are multinucleated cells generated from myeloid precursors in the bone marrow, specialized in bone resorption. While there is a growing number of information on the cytokines and signaling pathways that are critical to control the differentiation of osteoclast precursors (OCPs) into mature OCs, the connection between OC differentiation steps and miRNAs is less well-understood. The present review will first summarize our current understanding of the miRNA-regulated pathways in the sequential steps required for OC formation, from the motility and migration of OCPs to the cell-cell fusion and the final formation of the actin ring and ruffled border in the functionally resorbing multinucleated OCs. Then, considering the difficulty of working on primary OCs and on the generation of robust data we will give an update on the most recent advances in the detection technologies for miRNAs quantification and how these are of particular interest for the understanding of OC biology and their use as potential biomarkers.
Collapse
Affiliation(s)
- Claire Lozano
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France.,Immunology Department, CHU Montpellier, Montpellier, France
| | | | | | | | | |
Collapse
|
21
|
Hrdlicka HC, Lee SK, Delany AM. MicroRNAs are Critical Regulators of Osteoclast Differentiation. CURRENT MOLECULAR BIOLOGY REPORTS 2019; 5:65-74. [PMID: 30800633 PMCID: PMC6380495 DOI: 10.1007/s40610-019-0116-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Our goal is to comprehensively review the most recent reports of microRNA (miRNA) regulation of osteoclastogenesis. We highlight validated miRNA-target interactions and their place in the signaling networks controlling osteoclast differentiation and function. RECENT FINDINGS Using unbiased approaches to identify miRNAs of interest and reporter-3'UTR assays to validate interactions, recent studies have elucidated the impact of specific miRNA-mRNA interactions during in vitro osteoclastogenesis. There has been a focus on signaling mediators downstream of the RANK and CSF1R signaling, and genes essential for differentiation and function. For example, several miRNAs directly and indirectly target the master osteoclast transcription factor, Nfatc1 (e.g. miR-124 and miR-214) and Rho-GTPases, Cdc42 and Rac1 (e.g. miR-29 family). SUMMARY Validating miRNA expression patterns, targets, and impact in osteoclasts and other skeletal cells is critical for understanding basic bone biology and for fulfilling the therapeutic potential of miRNA-based strategies in the treatment bone diseases.
Collapse
Affiliation(s)
| | | | - Anne M. Delany
- Center for Molecular Oncology, UConn Health, Farmington, CT 03030
| |
Collapse
|
22
|
Chan CL, Chen JY, Shih MC, Wang CLA, Liou YM. L-caldesmon alters cell spreading and adhesion force in RANKL-induced osteoclasts. J Biomed Sci 2019; 26:12. [PMID: 30678675 PMCID: PMC6345023 DOI: 10.1186/s12929-019-0505-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/18/2019] [Indexed: 01/21/2023] Open
Abstract
Background Osteoclasts (OCs) are motile multinucleated cells derived from differentiation and fusion of hematopoietic progenitors of the monocyte-macrophage lineage that undergo a multistep process called osteoclastogenesis. The biological function of OCs is to resorb bone matrix for controlling bone strength and integrity, which is essential for bone development. The bone resorption function is based on the remodelling of the actin cytoskeleton into an F-actin-rich structure known as the sealing zone for bone anchoring and matrix degradation. Non-muscle caldesmon (l-CaD) is known to participate in the regulation of actin cytoskeletal remodeling, but its function in osteoclastogenesis remains unclear. Methods/results In this study, gain and loss of the l-CaD level in RAW264.7 murine macrophages followed by RANKL induction was used as an experimental approach to examine the involvement of l-CaD in the control of cell fusion into multinucleated OCs in osteoclastogenesis. In comparison with controls, l-CaD overexpression significantly increased TRAP activity, actin ring structure and mineral substrate resorption in RANKL-induced cells. In contrast, gene silencing against l-CaD decreased the potential for RANKL-induced osteoclastogenesis and mineral substrate resorption. In addition, OC precursor cells with l-CaD overexpression and gene silencing followed by RANKL induction caused 13% increase and 24% decrease, respectively, in cell fusion index. To further understand the mechanistic action of l-CaD in the modulation of OC fusion, atomic force microscopy was used to resolve the mechanical changes of cell spreading and adhesion force in RANKL-induced cells with and without l-CaD overexpression or gene silencing. Conclusions l-CaD plays a key role in the regulation of actin cytoskeletal remodeling for the formation of actin ring structure at the cell periphery, which may in turn alter the mechanical property of cell-spreading and cell surface adhesion force, thereby facilitating cell-cell fusion into multinucleated OCs during osteoclastogenesis. Electronic supplementary material The online version of this article (10.1186/s12929-019-0505-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chu-Lung Chan
- Department of Life Sciences, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Jiann-Yeu Chen
- Research Center for Sustainable Energy and Nanotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Ming-Chih Shih
- Department of Physics, National Chung-Hsing University, Taichung, 40227, Taiwan
| | | | - Ying-Ming Liou
- Department of Life Sciences, National Chung-Hsing University, Taichung, 40227, Taiwan. .,The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
23
|
Zhang X, Li X, Fang J, Hou X, Fang H, Guo F, Li F, Chen A, Huang S. (2R,3R)Dihydromyricetin inhibits osteoclastogenesis and bone loss through scavenging LPS-induced oxidative stress and NF-κB and MAPKs pathways activating. J Cell Biochem 2018; 119:8981-8995. [PMID: 30076654 DOI: 10.1002/jcb.27154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/18/2018] [Indexed: 12/26/2022]
Abstract
Osteolysis is a serious complication of several chronic inflammatory diseases and is closely associated with a local chronic inflammatory reaction with a variety of causes. However, similarities exist in the mechanisms of their pathological processes. Inflammatory factors and oxidative stress-induced nuclear factor κB (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways play a center role in bone erosion. Dihydromyricetin (DMY) is a natural compound with anti-inflammatory and antioxidative effect, which are commonly used in chronic pharyngitis and alcohol use disorders. In the current study, we identified that DMY attenuated lipopolysaccharide (LPS)-induced oxidative stress through inhibiting the production of reactive oxygen species (ROS) and nitric oxide (NO), downregulated COX-2 and iNOS, and promoted the activity of the antioxidative system by activating superoxide dismutase (SOD) and Nrf2/HO-1 pathway. To further investigate the underlying mechanism, we found that DMY inhibits osteoclast (OC) differentiation and bone resorption activity through blocking the RANKL-induced activation of the NF-κB and MAPKs signaling pathways and then downregulated c-Fos and NFATc1, which is essential for OC differentiation. Furthermore, DMY inhibited LPS-induced osteolysis in vivo. Collectively, these results indicate that DMY might be a promising prophylactic antiosteoclastic/resorptive agent in preventing or treating bone lysis diseases.
Collapse
Affiliation(s)
- Xuejun Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianguo Fang
- Department of Pharmacy, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolong Hou
- Department of Pharmacy, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huang Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shilong Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Sassi F, Buondonno I, Luppi C, Spertino E, Stratta E, Di Stefano M, Ravazzoli M, Isaia G, Trento M, Passera P, Porta M, Isaia GC, D’Amelio P. Type 2 diabetes affects bone cells precursors and bone turnover. BMC Endocr Disord 2018; 18:55. [PMID: 30089481 PMCID: PMC6083573 DOI: 10.1186/s12902-018-0283-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/01/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Here we study the effect of type 2 diabetes (T2DM) on bone cell precursors, turnover and cytokines involved in the control of bone cell formation and activity. METHODS We enrolled in the study 21 T2DM women and 21 non diabetic controls matched for age and body mass index (BMI). In each subject we measured bone cell precursors, Receptor Activator of Nuclear Factor κB (RANKL), Osteoprotegerin (OPG), Sclerostin (SCL) and Dickoppf-1 (DKK-1) as cytokines involved in the control of osteoblast and osteoclast formation and activity, bone density (BMD) and quality trough trabecular bone score (TBS) and bone turnover. T2DM patients and controls were compared for the analyzed variables by one way ANOVA for Gaussian ones and by Mann-Whitney or Kruskal-Wallis test for non-Gaussian variables. RESULTS RANKL was decreased and DKK-1 increased in T2DM. Accordingly, patients with T2DM have lower bone turnover compared to controls. BMD and TBS were not significantly different from healthy controls. Bone precursor cells were more immature in T2DM. However the number of osteoclast precursors was increased and that of osteoblasts decreased. CONCLUSIONS Patients with T2DM have more immature bone cells precursors, with increased number of osteoclasts and decreased osteoblasts, confirming low bone turnover and reduced cytokines such as RANKL and DKK-1. BMD and TBS are not significantly altered in T2DM although, in contrast with other studies, this may be due to the match of patients and controls for BMI rather than age.
Collapse
Affiliation(s)
- Francesca Sassi
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Torino, Corso Bramante 88/90, 10126 Torino, Italy
| | - Ilaria Buondonno
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Torino, Corso Bramante 88/90, 10126 Torino, Italy
| | - Chiara Luppi
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Torino, Corso Bramante 88/90, 10126 Torino, Italy
| | - Elena Spertino
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Torino, Corso Bramante 88/90, 10126 Torino, Italy
| | - Emanuela Stratta
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Torino, Corso Bramante 88/90, 10126 Torino, Italy
| | - Marco Di Stefano
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Torino, Corso Bramante 88/90, 10126 Torino, Italy
| | - Marco Ravazzoli
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Torino, Corso Bramante 88/90, 10126 Torino, Italy
| | - Gianluca Isaia
- Geriatric Division, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| | - Marina Trento
- Department of Medical Science, Internal Medicine, University of Torino, Torino, Italy
| | - Pietro Passera
- Department of Medical Science, Internal Medicine, University of Torino, Torino, Italy
| | - Massimo Porta
- Department of Medical Science, Internal Medicine, University of Torino, Torino, Italy
| | - Giovanni Carlo Isaia
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Torino, Corso Bramante 88/90, 10126 Torino, Italy
| | - Patrizia D’Amelio
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Torino, Corso Bramante 88/90, 10126 Torino, Italy
| |
Collapse
|
25
|
Liou YM, Chan CL, Huang R, Wang CLA. Effect of l-caldesmon on osteoclastogenesis in RANKL-induced RAW264.7 cells. J Cell Physiol 2018; 233:6888-6901. [PMID: 29377122 DOI: 10.1002/jcp.26452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/05/2018] [Indexed: 01/08/2023]
Abstract
Non-muscle caldesmon (l-CaD) is involved in the regulation of actin cytoskeletal remodeling in the podosome formation, but its function in osteoclastogenesis remains to be determined. In this study, RANKL-induced differentiation of RAW264.7 murine macrophages to osteoclast-like cells (OCs) was used as a model to determine the physiological role of l-CaD and its phosphorylation in osteoclastogenesis. Upon RANKL treatment, RAW264.7 cells undergo cell-cell fusion into multinucleate, and TRAP-positive large OCs with a concomitant increase of l-CaD expression. Using gain- and loss-of-function in OC precursor cells followed by RANKL induction, we showed that the expression of l-CaD in response to RANKL activation is an important event for osteoclastogenesis, and bone resorption. To determine the effect of l-CaD phosphorylation in osteoclastogenesis, three decoy peptides of l-CaD were used with, respectively, Ser-to-Ala mutations at the Erk- and Pak1-mediated phosphorylation sites, and Ser-to-Asp mutation at the Erk-mediated phosphorylation sites. Both the former two peptides competed with the C-terminal segment of l-CaD for F-actin binding and accelerated formation of podosome-like structures in RANKL-induced OCs, while the third peptide did not significantly affect the F-actin binding of l-CaD, and decreased the formation of podosome-like structures in OCs. With the experiments using dephosphorylated and phosphorylated l-CaD mutants, we further showed that dephosphorylated l-CaD mutant facilitated RANKL-induced TRAP activity with an increased cell fusion index, whereas phosphorylated l-CaD decreased the TRAP activity and cell fusion. Our findings suggested that both the level of l-CaD expression and the extent of l-CaD phosphorylation play a role in RANKL-induced osteoclast differentiation.
Collapse
Affiliation(s)
- Ying-Ming Liou
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chu-Lung Chan
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Renjian Huang
- Boston Biomedical Research Institute, Watertown, Massachusetts
| | | |
Collapse
|
26
|
Kim CJ, Shin SH, Kim BJ, Kim CH, Kim JH, Kang HM, Park BS, Kim IR. The Effects of Kaempferol-Inhibited Autophagy on Osteoclast Formation. Int J Mol Sci 2018; 19:ijms19010125. [PMID: 29301320 PMCID: PMC5796074 DOI: 10.3390/ijms19010125] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 12/24/2022] Open
Abstract
Kaempferol, a flavonoid compound, is derived from the rhizome of Kaempferia galanga L., which is used in traditional medicine in Asia. Autophagy has pleiotropic functions that are involved in cell growth, survival, nutrient supply under starvation, defense against pathogens, and antigen presentation. There are many studies dealing with the inhibitory effects of natural flavonoids in bone resorption. However, no studies have explained the relationship between the autophagic and inhibitory processes of osteoclastogenesis by natural flavonoids. The present study was undertaken to investigate the inhibitory effects of osteoclastogenesis through the autophagy inhibition process stimulated by kaempferol in murin macrophage (RAW 264.7) cells. The cytotoxic effect of Kaempferol was investigated by MTT assay. The osteoclast differentiation and autophagic process were confirmed via tartrate-resistant acid phosphatase (TRAP) staining, pit formation assay, western blot, and real-time PCR. Kaempferol controlled the expression of autophagy-related factors and in particular, it strongly inhibited the expression of p62/SQSTM1. In the western blot and real time-PCR analysis, when autophagy was suppressed with the application of 3-Methyladenine (3-MA) only, osteoclast and apoptosis related factors were not significantly affected. However, we found that after cells were treated with kaempferol, these factors inhibited autophagy and activated apoptosis. Therefore, we presume that kaempferol-inhibited autophagy activated apoptosis by degradation of p62/SQSTM1. Further study of the p62/SQSTM1 gene as a target in the autophagy mechanism, may help to delineate the potential role of kaempferol in the treatment of bone metabolism disorders.
Collapse
Affiliation(s)
- Chang-Ju Kim
- Department of Oral and Maxillofacial Surgery, Pusan National University Dental Hospital, 20, Geumo-ro, Mulgeum-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea.
| | - Sang-Hun Shin
- Department of Oral and Maxillofacial Surgery, Pusan National University Dental Hospital, 20, Geumo-ro, Mulgeum-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea.
| | - Bok-Joo Kim
- Department of Oral and Maxillofacial Surgery, Medical center, Dong-A University, 26, Daesingongwon-ro, Seo-gu, Busan 49201, Korea.
| | - Chul-Hoon Kim
- Department of Oral and Maxillofacial Surgery, Medical center, Dong-A University, 26, Daesingongwon-ro, Seo-gu, Busan 49201, Korea.
| | - Jung-Han Kim
- Department of Oral and Maxillofacial Surgery, Medical center, Dong-A University, 26, Daesingongwon-ro, Seo-gu, Busan 49201, Korea.
| | - Hae-Mi Kang
- BK21 PLUS Project, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea.
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea.
| | - Bong-Soo Park
- BK21 PLUS Project, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea.
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea.
| | - In-Ryoung Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea.
| |
Collapse
|
27
|
Yu H. Sphingosine-1-Phosphate Receptor 2 Regulates Proinflammatory Cytokine Production and Osteoclastogenesis. PLoS One 2016; 11:e0156303. [PMID: 27224249 PMCID: PMC4880337 DOI: 10.1371/journal.pone.0156303] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/12/2016] [Indexed: 02/06/2023] Open
Abstract
Sphingosine-1-phosphate receptor 2 (S1PR2) couples with the Gi, Gq, and G12/13 group of proteins, which modulate an array of cellular signaling pathways and affect immune responses to multiple stimuli. In this study, we demonstrated that knockdown of S1PR2 by a specific S1PR2 shRNA lentiviral vector significantly inhibited IL-1β, IL-6, and TNF-α protein levels induced by oral pathogen Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) in murine bone marrow-derived monocytes and macrophages (BMMs) compared with controls. In addition, knockdown of S1PR2 by the S1PR2 shRNA lentiviral vector suppressed p-PI3K, p-ERK, p-JNK, p-p38, and p-NF-κBp65 protein expressions induced by A. actinomycetemcomitans. Furthermore, bone marrow cells treated with the S1PR2 shRNA lentiviral vector inhibited osteoclastogenesis induced by RANKL compared with controls. The S1PR2 shRNA suppressed the mRNA levels of six osteoclastogenic factors including nuclear factor of activated T-cells cytoplasmic calcineurin-dependent 1 (NFATc1), cathepsin K (Ctsk), acid phosphatase 5 (Acp5), osteoclast-associated receptor (Oscar), dendritic cells specific transmembrane protein (Dcstamp), and osteoclast stimulatory transmembrane protein (Ocstamp) in bone marrow cells. We conclude that S1PR2 plays an essential role in modulating proinflammatory cytokine production and osteoclastogenesis. Blocking S1PR2 signaling might be a novel therapeutic strategy to treat inflammatory bone loss diseases.
Collapse
Affiliation(s)
- Hong Yu
- Department of Oral Health Sciences, Center for Oral Health Research, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
28
|
Park SH, Kim JY, Cheon YH, Baek JM, Ahn SJ, Yoon KH, Lee MS, Oh J. Protocatechuic Acid Attenuates Osteoclastogenesis by Downregulating JNK/c-Fos/NFATc1 Signaling and Prevents Inflammatory Bone Loss in Mice. Phytother Res 2016; 30:604-12. [DOI: 10.1002/ptr.5565] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Sun-Hyang Park
- Department of Anatomy, School of Medicine; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| | - Ju-Young Kim
- Imaging Science-based Lung and Bone Diseases Research Center; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| | - Yoon-Hee Cheon
- Center for Metabolic Function Regulation; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| | - Jong Min Baek
- Department of Anatomy, School of Medicine; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| | - Sung-Jun Ahn
- Department of Anatomy, School of Medicine; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| | - Kwon-Ha Yoon
- Imaging Science-based Lung and Bone Diseases Research Center; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
- Department of Radiology, School of Medicine; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| | - Myeung Su Lee
- Imaging Science-based Lung and Bone Diseases Research Center; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
- Division of Rheumatology, Department of Internal Medicine; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
- Institute for Skeletal Disease; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| | - Jaemin Oh
- Department of Anatomy, School of Medicine; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
- Imaging Science-based Lung and Bone Diseases Research Center; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
- Institute for Skeletal Disease; Wonkwang University; Iksan Jeonbuk 570-749 Republic of Korea
| |
Collapse
|
29
|
Destaing O, Petropoulos C, Albiges-Rizo C. Coupling between acto-adhesive machinery and ECM degradation in invadosomes. Cell Adh Migr 2015; 8:256-62. [PMID: 24727371 DOI: 10.4161/cam.28558] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Invadosomes have two main functions represented by their actin-rich and adhesive components and their polarized secretory pathways controlling the delivery of metalloproteases necessary to degrade extracellular matrix (ECM). Invadosomes include invadopodia and podosomes, which have subtle differences in molecular composition, dynamics, and structure. These differences could reflect different stages of invadosome maturation. This review will outline current knowledge on the coupling between the acto-adhesive machinery and the ECM degradation activity in invadosome diversity. Multiple works support that these two functions are not automatically linked but seem to be finely regulated to allow different functions of invadosomes. We will explore the paradigmatic aspect of invadosomes, which are able to interact with ECM to degrade it so as to better control their own dynamics. Understanding the fine-tuning between these two functions could serve to understand the link between the different types of invadosomes from invadopodia to podosomes.
Collapse
Affiliation(s)
- Olivier Destaing
- Institut Albert Bonniot; Université Joseph Fourier; Grenoble, France
| | | | | |
Collapse
|
30
|
Frese S, Ruebner M, Suhr F, Konou TM, Tappe KA, Toigo M, Jung HH, Henke C, Steigleder R, Strissel PL, Huebner H, Beckmann MW, van der Keylen P, Schoser B, Schiffer T, Frese L, Bloch W, Strick R. Long-Term Endurance Exercise in Humans Stimulates Cell Fusion of Myoblasts along with Fusogenic Endogenous Retroviral Genes In Vivo. PLoS One 2015; 10:e0132099. [PMID: 26154387 PMCID: PMC4495930 DOI: 10.1371/journal.pone.0132099] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/10/2015] [Indexed: 11/21/2022] Open
Abstract
Myogenesis is defined as growth, differentiation and repair of muscles where cell fusion of myoblasts to multinucleated myofibers is one major characteristic. Other cell fusion events in humans are found with bone resorbing osteoclasts and placental syncytiotrophoblasts. No unifying gene regulation for natural cell fusions has been found. We analyzed skeletal muscle biopsies of competitive cyclists for muscle-specific attributes and expression of human endogenous retrovirus (ERV) envelope genes due to their involvement in cell fusion of osteoclasts and syncytiotrophoblasts. Comparing muscle biopsies from post- with the pre-competitive seasons a significant 2.25-fold increase of myonuclei/mm fiber, a 2.38-fold decrease of fiber area/nucleus and a 3.1-fold decrease of satellite cells (SCs) occurred. We propose that during the pre-competitive season SC proliferation occurred following with increased cell fusion during the competitive season. Expression of twenty-two envelope genes of muscle biopsies demonstrated a significant increase of putative muscle-cell fusogenic genes Syncytin-1 and Syncytin-3, but also for the non-fusogenic erv3. Immunohistochemistry analyses showed that Syncytin-1 mainly localized to the sarcolemma of myofibers positive for myosin heavy-chain isotypes. Cellular receptors SLC1A4 and SLC1A5 of Syncytin-1 showed significant decrease of expression in post-competitive muscles compared with the pre-competitive season, but only SLC1A4 protein expression localized throughout the myofiber. Erv3 protein was strongly expressed throughout the myofiber, whereas envK1-7 localized to SC nuclei and myonuclei. Syncytin-1 transcription factors, PPARγ and RXRα, showed no protein expression in the myofiber, whereas the pCREB-Ser133 activator of Syncytin-1 was enriched to SC nuclei and myonuclei. Syncytin-1, Syncytin-3, SLC1A4 and PAX7 gene regulations along with MyoD1 and myogenin were verified during proliferating or actively-fusing human primary myoblast cell cultures, resembling muscle biopsies of cyclists. Myoblast treatment with anti-Synycytin-1 abrogated cell fusion in vitro. Our findings support functional roles for ERV envelope proteins, especially Syncytin-1, contributing to cell fusion of myotubes.
Collapse
Affiliation(s)
- Sebastian Frese
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Muengersdorf, Cologne, Germany
- University Hospital Zurich, Department of Neurology, Frauenklinikstrasse, Zurich, Switzerland
- Institute of Human Movement Sciences and Sport, Exercise Physiology, ETH Zurich, Winterthurerstrasse, Zurich, Switzerland
| | - Matthias Ruebner
- Friedrich-Alexander University Erlangen-Nürnberg, University-Clinic Erlangen, Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Erlangen, Universitaetsstrasse, Erlangen, Germany
| | - Frank Suhr
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Muengersdorf, Cologne, Germany
| | - Thierry M. Konou
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Muengersdorf, Cologne, Germany
| | - Kim A. Tappe
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Muengersdorf, Cologne, Germany
| | - Marco Toigo
- Institute of Human Movement Sciences and Sport, Exercise Physiology, ETH Zurich, Winterthurerstrasse, Zurich, Switzerland
- University of Zurich, Balgrist University Hospital, Department of Orthopaedics, Forchstrasse, Zurich, Switzerland
| | - Hans H. Jung
- University Hospital Zurich, Department of Neurology, Frauenklinikstrasse, Zurich, Switzerland
| | - Christine Henke
- Friedrich-Alexander University Erlangen-Nürnberg, University-Clinic Erlangen, Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Erlangen, Universitaetsstrasse, Erlangen, Germany
| | - Ruth Steigleder
- Friedrich-Alexander University Erlangen-Nürnberg, University-Clinic Erlangen, Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Erlangen, Universitaetsstrasse, Erlangen, Germany
| | - Pamela L. Strissel
- Friedrich-Alexander University Erlangen-Nürnberg, University-Clinic Erlangen, Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Erlangen, Universitaetsstrasse, Erlangen, Germany
| | - Hanna Huebner
- Friedrich-Alexander University Erlangen-Nürnberg, University-Clinic Erlangen, Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Erlangen, Universitaetsstrasse, Erlangen, Germany
| | - Matthias W. Beckmann
- Friedrich-Alexander University Erlangen-Nürnberg, University-Clinic Erlangen, Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Erlangen, Universitaetsstrasse, Erlangen, Germany
| | - Piet van der Keylen
- Institute of Anatomy, Friedrich-Alexander University of Erlangen-Nürnberg, Krankenhausstrasse, Erlangen, Germany
| | - Benedikt Schoser
- Ludwig Maximilian University Munich, Department of Neurology, Friedrich Baur Institute, Ziemssenstrasse, Munich, Germany
| | - Thorsten Schiffer
- German Sport University Cologne, Outpatient Clinic for Sports Traumatology and Public Health Consultation, Am Sportpark Muengersdorf, Cologne, Germany
| | - Laura Frese
- University Hospital and University Zurich, Division of Surgical Research, Raemistrasse, Zurich, Switzerland
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Muengersdorf, Cologne, Germany
- The German Research Centre of Elite Sport, German Sport University Cologne, Am Sportpark Muengersdorf, Cologne, Germany
| | - Reiner Strick
- Friedrich-Alexander University Erlangen-Nürnberg, University-Clinic Erlangen, Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Erlangen, Universitaetsstrasse, Erlangen, Germany
- * E-mail:
| |
Collapse
|
31
|
Yu H, Herbert BA, Valerio M, Yarborough L, Hsu LC, Argraves KM. FTY720 inhibited proinflammatory cytokine release and osteoclastogenesis induced by Aggregatibacter actinomycetemcomitans. Lipids Health Dis 2015; 14:66. [PMID: 26138336 PMCID: PMC4492085 DOI: 10.1186/s12944-015-0057-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/12/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Periodontitis is a bacteria-driven inflammatory bone loss disease. Previous studies showed that the oral pathogen Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) stimulated the generation of sphingosine 1 phosphate (S1P). In addition, S1P signaling regulated the migration of osteoclast precursors and affected osteoclastogenesis. Furthermore, treatment with FTY720 (also called fingolimod, a modulator of multiple S1P receptors) alleviated osteoporosis and suppressed arthritis in animals. This study determined the effect of FTY720 on proinflammatory cytokine production and osteoclastogenesis in murine bone marrow cells with or without A. actinomycetemcomitans stimulation. METHODS Murine bone marrow-derived monocytes and macrophages (BMMs) were treated with vehicle ethanol or FTY720, and were either unstimulated or stimulated for 0.5 to 6 h with A. actinomycetemcomitans. The protein levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in the media of BMMs were quantified by enzyme-linked immunosorbent assay (ELISA). Protein expressions, including phosphorylated phosphoinositide 3-kinase (p-PI3K), p-Akt, p-extracellular signal-regulated kinase (p-ERK), PI3K, Akt, and ERK were evaluated by Western blot. In addition, murine bone marrow-derived pre-osteoclasts were treated with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL) for three days. Then the cells were treated with either vehicle or FTY720 and were either unstimulated or stimulated with A. actinomycetemcomitans for 4 to 24 h. Control cells were treated with M-CSF alone with or without bacterial stimulation. Osteoclasts were stained by tartrate-resistant acid phosphatase (TRAP) staining. The mRNA levels of osteoclastogenic factors, including nuclear factor of activated T-cells cytoplasmic calcineurin-dependent 1 (Nfatc1), cathepsin K (Ctsk), acid phosphatase 5 (Acp5), osteoclast-associated receptor (Oscar), and RANKL were quantified by quantitative real-time polymerase chain reaction (PCR). RESULTS FTY720 dose-dependently inhibited IL-1β, IL-6, and TNF-α protein levels induced by A. actinomycetemcomitans in BMMs compared with controls. Additionally, FTY720 attenuated p-PI3K, p-Akt, and p-ERK expressions induced by A. actinomycetemcomitans. Furthermore, FTY720 suppressed osteoclastogenesis in bone marrow-derived pre-osteoclasts with or without bacterial stimulation and reduced the mRNA levels of Nfatc1, Ctsk, Acp5, and Oscar, but not RANKL in bone marrow-derived pre-osteoclasts. CONCLUSION FTY720 inhibited proinflammatory cytokine production and suppressed osteoclastogenesis, supporting FTY720 as a potential therapy for inflammatory bone loss diseases.
Collapse
Affiliation(s)
- Hong Yu
- Department of Oral Health Sciences and the Center for Oral Health Research, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
| | - Bethany A Herbert
- Department of Oral Health Sciences and the Center for Oral Health Research, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
| | - Michael Valerio
- Department of Oral Health Sciences and the Center for Oral Health Research, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
| | | | | | - Kelley M Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
| |
Collapse
|
32
|
Shimada-Sugawara M, Sakai E, Okamoto K, Fukuda M, Izumi T, Yoshida N, Tsukuba T. Rab27A regulates transport of cell surface receptors modulating multinucleation and lysosome-related organelles in osteoclasts. Sci Rep 2015; 5:9620. [PMID: 25882854 PMCID: PMC5381753 DOI: 10.1038/srep09620] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/10/2015] [Indexed: 11/21/2022] Open
Abstract
Rab27A regulates transport of lysosome-related organelles (LROs) and release of secretory granules in various types of cells. Here, we identified up-regulation of Rab27A during differentiation of osteoclasts (OCLs) from bone-marrow macrophages (BMMs), by DNA microarray analysis. Rab27A deficiency in OCLs, using small interfering RNA (siRNA) knockdown in RAW-D cell line or BMMs derived from ashen mice, which display genetic defects in Rab27A expression, induced multinucleated and giant cells. Upon stimulation with macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL), essential cytokines for OCL differentiation, phosphorylation levels of extracellular signal-regulated kinase (Erk), proto-oncogene tyrosine-protein kinase (Src), and p-38 were slightly enhanced in ashen BMMs than in wild-type BMMs. The cell surface level of c-fms, an M-CSF receptor, was slightly higher in ashen BMMs than in wild-type BMMs, and down-regulation of RANK, a RANKL receptor, was delayed. In addition to receptors, OCLs derived from ashen mice exhibited aberrant actin ring formation, abnormal subcellular localization of lysosome-associated membrane protein (LAMP2) and cathepsin K (CTSK), and marked reduction in resorbing activity. Thus, these findings suggest that Rab27A regulates normal transport of cell surface receptors modulating multinucleation and LROs in OCLs.
Collapse
Affiliation(s)
- Megumi Shimada-Sugawara
- 1] Division of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan [2] Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Eiko Sakai
- Division of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Kuniaki Okamoto
- Division of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Tetsuro Izumi
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Noriaki Yoshida
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Takayuki Tsukuba
- Division of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| |
Collapse
|
33
|
Bauer NB, Khassawna TE, Goldmann F, Stirn M, Ledieu D, Schlewitz G, Govindarajan P, Zahner D, Weisweiler D, Schliefke N, Böcker W, Schnettler R, Heiss C, Moritz A. Characterization of bone turnover and energy metabolism in a rat model of primary and secondary osteoporosis. ACTA ACUST UNITED AC 2015; 67:287-96. [DOI: 10.1016/j.etp.2015.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/08/2015] [Indexed: 01/09/2023]
|
34
|
Lamari F, Mochel F, Saudubray JM. An overview of inborn errors of complex lipid biosynthesis and remodelling. J Inherit Metab Dis 2015; 38:3-18. [PMID: 25238787 DOI: 10.1007/s10545-014-9764-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/08/2014] [Accepted: 08/14/2014] [Indexed: 01/10/2023]
Abstract
In a review published in 2012, we delineated 14 inborn errors of metabolism (IEM) related to defects in biosynthesis of complex lipids, particularly phospholipids and sphingolipids (Lamari et al 2013). Given the numerous roles played by these molecules in membrane integrity, cell structure and function, this group of diseases is rapidly expanding as predicted. Almost 40 new diseases related to genetic defects in enzymes involved in the biosynthesis and remodelling of phospholipids, sphingolipids and complex fatty acids are now reported. While the clinical phenotype associated with these defects is currently difficult to outline, with only a few patients identified to date, it appears that all organs and systems may be affected - central and peripheral nervous system, eye, muscle, skin, bone, liver, immune system, etc. This chapter presents an introductive overview of this new group of IEM. More broadly, this special issue provides an update on other IEM involving complex lipids, namely dolichol and isoprenoids, glycolipids and congenital disorders of glycosylation, very long chain fatty acids and plasmalogens. Likewise, more than 100 IEM may actually lead to primary or secondary defects of complex lipids synthesis and remodelling. Because of the implication of several cellular compartments, this new group of disorders affecting the synthesis and remodelling of complex molecules challenges our current classification of IEM still largely based on cellular organelles--i.e. mitochondrial, lysosomal, peroxisomal disorders. While most of these new disorders have been identified by next generation sequencing, we wish to emphasize the promising role of lipidomics in deciphering their pathophysiology and identifying therapeutic targets.
Collapse
Affiliation(s)
- Foudil Lamari
- Bioclinic and Genetic Unit of Neurometabolic Diseases, Pitié-Salpêtrière Hospital, (APHP), Paris, 75013, France
| | | | | |
Collapse
|
35
|
Verma SK, Leikina E, Melikov K, Chernomordik LV. Late stages of the synchronized macrophage fusion in osteoclast formation depend on dynamin. Biochem J 2014; 464:293-300. [PMID: 25336256 PMCID: PMC6335963 DOI: 10.1042/bj20141233] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Macrophage fusion that leads to osteoclast formation is one of the most important examples of cell-cell fusion in development, tissue homoeostasis and immune response. Protein machinery that fuses macrophages remains to be identified. In the present study, we explored the fusion stage of osteoclast formation for RAW macrophage-like murine cells and for macrophages derived from human monocytes. To uncouple fusion from the preceding differentiation processes, we accumulated fusion-committed cells in the presence of LPC (lysophosphatidylcholine) that reversibly blocks membrane merger. After 16 h, we removed LPC and observed cell fusion events that would normally develop within 16 h develop instead within 30-90 min. Thus, whereas osteoclastogenesis, generally, takes several days, our approach allowed us to focus on an hour in which we observe robust fusion between the cells. Complementing syncytium formation assay with a novel membrane merger assay let us study the synchronized fusion events downstream of a local merger between two plasma membranes, but before expansion of nascent membrane connections and complete unification of the cells. We found that the expansion of membrane connections detected as a growth of multinucleated osteoclasts depends on dynamin activity. In contrast, a merger between the plasma membranes of the two cells was not affected by inhibitors of dynamin GTPase. Thus dynamin that was recently found to control late stages of myoblast fusion also controls late stages of macrophage fusion, revealing an intriguing conserved mechanistic motif shared by diverse cell-cell fusion processes.
Collapse
Affiliation(s)
- Santosh K. Verma
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10/Room 10D05, 10 Center Dr., Bethesda, MD 20892-1855, U.S.A
| | - Evgenia Leikina
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10/Room 10D05, 10 Center Dr., Bethesda, MD 20892-1855, U.S.A
| | - Kamran Melikov
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10/Room 10D05, 10 Center Dr., Bethesda, MD 20892-1855, U.S.A
| | - Leonid V. Chernomordik
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10/Room 10D05, 10 Center Dr., Bethesda, MD 20892-1855, U.S.A
| |
Collapse
|
36
|
Li RF, Chen G, Ren JG, Zhang W, Wu ZX, Liu B, Zhao Y, Zhao YF. The adaptor protein p62 is involved in RANKL-induced autophagy and osteoclastogenesis. J Histochem Cytochem 2014; 62:879-88. [PMID: 25163928 DOI: 10.1369/0022155414551367] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Previous studies have implicated autophagy in osteoclast differentiation. The aim of this study was to investigate the potential role of p62, a characterized adaptor protein for autophagy, in RANKL-induced osteoclastogenesis. Real-time quantitative PCR and western blot analyses were used to evaluate the expression levels of autophagy-related markers during RANKL-induced osteoclastogenesis in mouse macrophage-like RAW264.7 cells. Meanwhile, the potential relationship between p62/LC3 localization and F-actin ring formation was tested using double-labeling immunofluorescence. Then, the expression of p62 in RAW264.7 cells was knocked down using small-interfering RNA (siRNA), followed by detecting its influence on RANKL-induced autophagy activation, osteoclast differentiation, and F-actin ring formation. The data showed that several key autophagy-related markers including p62 were significantly altered during RANKL-induced osteoclast differentiation. In addition, the expression and localization of p62 showed negative correlation with LC3 accumulation and F-actin ring formation, as demonstrated by western blot and immunofluorescence analyses, respectively. Importantly, the knockdown of p62 obviously attenuated RANKL-induced expression of autophagy- and osteoclastogenesis-related genes, formation of TRAP-positive multinuclear cells, accumulation of LC3, as well as formation of F-actin ring. Our study indicates that p62 may play essential roles in RANKL-induced autophagy and osteoclastogenesis, which may help to develop a novel therapeutic strategy against osteoclastogenesis-related diseases.
Collapse
Affiliation(s)
- Rui-Fang Li
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology (RFL, GC, JGR, WZ, ZXW, BL, YZ, YFZ) Wuhan University, Wuhan, ChinaDepartment of Oral and Maxillofacial Surgery, School & Hospital of Stomatology (GC, ZXW, BL, YFZ) Wuhan University, Wuhan, ChinaDepartment of Prosthodontics, School & Hospital of Stomatology (YZ) Wuhan University, Wuhan, China
| | - Gang Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology (RFL, GC, JGR, WZ, ZXW, BL, YZ, YFZ) Wuhan University, Wuhan, ChinaDepartment of Oral and Maxillofacial Surgery, School & Hospital of Stomatology (GC, ZXW, BL, YFZ) Wuhan University, Wuhan, ChinaDepartment of Prosthodontics, School & Hospital of Stomatology (YZ) Wuhan University, Wuhan, China
| | - Jian-Gang Ren
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology (RFL, GC, JGR, WZ, ZXW, BL, YZ, YFZ) Wuhan University, Wuhan, ChinaDepartment of Oral and Maxillofacial Surgery, School & Hospital of Stomatology (GC, ZXW, BL, YFZ) Wuhan University, Wuhan, ChinaDepartment of Prosthodontics, School & Hospital of Stomatology (YZ) Wuhan University, Wuhan, China
| | - Wei Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology (RFL, GC, JGR, WZ, ZXW, BL, YZ, YFZ) Wuhan University, Wuhan, ChinaDepartment of Oral and Maxillofacial Surgery, School & Hospital of Stomatology (GC, ZXW, BL, YFZ) Wuhan University, Wuhan, ChinaDepartment of Prosthodontics, School & Hospital of Stomatology (YZ) Wuhan University, Wuhan, China
| | - Zhong-Xing Wu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology (RFL, GC, JGR, WZ, ZXW, BL, YZ, YFZ) Wuhan University, Wuhan, ChinaDepartment of Oral and Maxillofacial Surgery, School & Hospital of Stomatology (GC, ZXW, BL, YFZ) Wuhan University, Wuhan, ChinaDepartment of Prosthodontics, School & Hospital of Stomatology (YZ) Wuhan University, Wuhan, China
| | - Bing Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology (RFL, GC, JGR, WZ, ZXW, BL, YZ, YFZ) Wuhan University, Wuhan, ChinaDepartment of Oral and Maxillofacial Surgery, School & Hospital of Stomatology (GC, ZXW, BL, YFZ) Wuhan University, Wuhan, ChinaDepartment of Prosthodontics, School & Hospital of Stomatology (YZ) Wuhan University, Wuhan, China
| | - Yi Zhao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology (RFL, GC, JGR, WZ, ZXW, BL, YZ, YFZ) Wuhan University, Wuhan, ChinaDepartment of Oral and Maxillofacial Surgery, School & Hospital of Stomatology (GC, ZXW, BL, YFZ) Wuhan University, Wuhan, ChinaDepartment of Prosthodontics, School & Hospital of Stomatology (YZ) Wuhan University, Wuhan, China
| | - Yi-Fang Zhao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology (RFL, GC, JGR, WZ, ZXW, BL, YZ, YFZ) Wuhan University, Wuhan, ChinaDepartment of Oral and Maxillofacial Surgery, School & Hospital of Stomatology (GC, ZXW, BL, YFZ) Wuhan University, Wuhan, ChinaDepartment of Prosthodontics, School & Hospital of Stomatology (YZ) Wuhan University, Wuhan, China
| |
Collapse
|