1
|
Vigers T, Vanderlinden LA, Johnson RK, Carry PM, Yang I, DeFelice BC, Kaizer AM, Pyle L, Rewers M, Fiehn O, Norris JM, Kechris K. A Mediation Approach to Discovering Causal Relationships between the Metabolome and DNA Methylation in Type 1 Diabetes. Metabolites 2021; 11:metabo11080542. [PMID: 34436483 PMCID: PMC8399445 DOI: 10.3390/metabo11080542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Environmental factors including viruses, diet, and the metabolome have been linked with the appearance of islet autoimmunity (IA) that precedes development of type 1 diabetes (T1D). We measured global DNA methylation (DNAm) and untargeted metabolomics prior to IA and at the time of seroconversion to IA in 92 IA cases and 91 controls from the Diabetes Autoimmunity Study in the Young (DAISY). Causal mediation models were used to identify seven DNAm probe-metabolite pairs in which the metabolite measured at IA mediated the protective effect of the DNAm probe measured prior to IA against IA risk. These pairs included five DNAm probes mediated by histidine (a metabolite known to affect T1D risk), one probe (cg01604946) mediated by phostidyl choline p-32:0 or o-32:1, and one probe (cg00390143) mediated by sphingomyelin d34:2. The top 100 DNAm probes were over-represented in six reactome pathways at the FDR <0.1 level (q = 0.071), including transport of small molecules and inositol phosphate metabolism. While the causal pathways in our mediation models require further investigation to better understand the biological mechanisms, we identified seven methylation sites that may improve our understanding of epigenetic protection against T1D as mediated by the metabolome.
Collapse
Affiliation(s)
- Tim Vigers
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, CO 80045, USA; (A.M.K.); (L.P.); (K.K.)
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO 80045, USA; (P.M.C.); (J.M.N.)
- Correspondence:
| | - Lauren A. Vanderlinden
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO 80045, USA; (L.A.V.); (M.R.)
| | - Randi K. Johnson
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado, Aurora, CO 80045, USA; (R.K.J.); (I.Y.)
| | - Patrick M. Carry
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO 80045, USA; (P.M.C.); (J.M.N.)
| | - Ivana Yang
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado, Aurora, CO 80045, USA; (R.K.J.); (I.Y.)
| | - Brian C. DeFelice
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA; (B.C.D.); (O.F.)
| | - Alexander M. Kaizer
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, CO 80045, USA; (A.M.K.); (L.P.); (K.K.)
| | - Laura Pyle
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, CO 80045, USA; (A.M.K.); (L.P.); (K.K.)
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO 80045, USA; (P.M.C.); (J.M.N.)
| | - Marian Rewers
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO 80045, USA; (L.A.V.); (M.R.)
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA; (B.C.D.); (O.F.)
| | - Jill M. Norris
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO 80045, USA; (P.M.C.); (J.M.N.)
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO 80045, USA; (L.A.V.); (M.R.)
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, CO 80045, USA; (A.M.K.); (L.P.); (K.K.)
| |
Collapse
|
2
|
Putnam HM. Avenues of reef-building coral acclimatization in response to rapid environmental change. J Exp Biol 2021; 224:224/Suppl_1/jeb239319. [DOI: 10.1242/jeb.239319] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT
The swiftly changing climate presents a challenge to organismal fitness by creating a mismatch between the current environment and phenotypes adapted to historic conditions. Acclimatory mechanisms may be especially crucial for sessile benthic marine taxa, such as reef-building corals, where climate change factors including ocean acidification and increasing temperature elicit strong negative physiological responses such as bleaching, disease and mortality. Here, within the context of multiple stressors threatening marine organisms, I describe the wealth of metaorganism response mechanisms to rapid ocean change and the ontogenetic shifts in organism interactions with the environment that can generate plasticity. I then highlight the need to consider the interactions of rapid and evolutionary responses in an adaptive (epi)genetic continuum. Building on the definitions of these mechanisms and continuum, I also present how the interplay of the microbiome, epigenetics and parental effects creates additional avenues for rapid acclimatization. To consider under what conditions epigenetic inheritance has a more substantial role, I propose investigation into the offset of timing of gametogenesis leading to different environmental integration times between eggs and sperm and the consequences of this for gamete epigenetic compatibility. Collectively, non-genetic, yet heritable phenotypic plasticity will have significant ecological and evolutionary implications for sessile marine organism persistence under rapid climate change. As such, reef-building corals present ideal and time-sensitive models for further development of our understanding of adaptive feedback loops in a multi-player (epi)genetic continuum.
Collapse
Affiliation(s)
- Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
3
|
Torres ERS, Hall R, Bobe G, Choi J, Impey S, Pelz C, Lindner JR, Stevens JF, Raber J. Integrated Metabolomics-DNA Methylation Analysis Reveals Significant Long-Term Tissue-Dependent Directional Alterations in Aminoacyl-tRNA Biosynthesis in the Left Ventricle of the Heart and Hippocampus Following Proton Irradiation. Front Mol Biosci 2019; 6:77. [PMID: 31552266 PMCID: PMC6746933 DOI: 10.3389/fmolb.2019.00077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
In this study, an untargeted metabolomics approach was used to assess the effects of proton irradiation (1 Gy of 150 MeV) on the metabolome and DNA methylation pattern in the murine hippocampus and left ventricle of the heart 22 weeks following exposure using an integrated metabolomics-DNA methylation analysis. The integrated metabolomics-DNA methylation analysis in both tissues revealed significant alterations in aminoacyl-tRNA biosynthesis, but the direction of change was tissue-dependent. Individual and total amino acid synthesis were downregulated in the left ventricle of proton-irradiated mice but were upregulated in the hippocampus of proton-irradiated mice. Amino acid tRNA synthetase methylation was mostly downregulated in the hippocampus of proton-irradiated mice, whereas no consistent methylation pattern was observed for amino acid tRNA synthetases in the left ventricle of proton-irradiated mice. Thus, proton irradiation causes long-term changes in the left ventricle and hippocampus in part through methylation-based epigenetic modifications. Integrated analysis of metabolomics and DNA methylation is a powerful approach to obtain converging evidence of pathways significantly affected. This in turn might identify biomarkers of the radiation response, help identify therapeutic targets, and assess the efficacy of mitigators directed at those targets to minimize, or even prevent detrimental long-term effects of proton irradiation on the heart and the brain.
Collapse
Affiliation(s)
- Eileen Ruth S Torres
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Reed Hall
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Animal & Rangeland Sciences, Oregon State University, Corvallis, OR, United States
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Soren Impey
- Oregon Stem Cell Center and Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States
| | - Carl Pelz
- Oregon Stem Cell Center and Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States
| | - Jonathan R Lindner
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, United States.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States.,Division of Neuroscience ONPRC, Departments of Neurology and Radiation Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
4
|
Normalization of Epigenetic Change in the Genome by Peptide Bioregulator (Ala–Glu–Asp–Gly) in Pulmonary Tuberculosis. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9699-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Liu L, Shi T, Houk KN, Zhao YL. Understanding the R882H mutation effects of DNA methyltransferase DNMT3A: a combination of molecular dynamics simulations and QM/MM calculations. RSC Adv 2019; 9:31425-31434. [PMID: 35527972 PMCID: PMC9072302 DOI: 10.1039/c9ra06791d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/17/2019] [Indexed: 01/15/2023] Open
Abstract
The AML-related high-frequent R882H mutation of DNA (cytosine-5)-methyltransferase 3A (DNMT3A), a key enzyme forde novoepigenetic methylation in human beings, was characterized by a disturbing conformation ofS-adenosylmethionine (SAM).
Collapse
Affiliation(s)
- Lanxuan Liu
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- USA
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism
- Joint International Research Laboratory of Metabolic and Developmental Sciences
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| |
Collapse
|
6
|
Declerck K, Vanden Berghe W. Back to the future: Epigenetic clock plasticity towards healthy aging. Mech Ageing Dev 2018; 174:18-29. [PMID: 29337038 DOI: 10.1016/j.mad.2018.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/22/2022]
Abstract
Aging is the most important risk factor for major human lifestyle diseases, including cancer, neurological and cardiometabolic disorders. Due to the complex interplay between genetics, lifestyle and environmental factors, some individuals seem to age faster than others, whereas centenarians seem to have a slower aging process. Therefore, a biochemical biomarker reflecting the relative biological age would be helpful to predict an individual's health status and aging disease risk. Although it is already known for years that cumulative epigenetic changes occur upon aging, DNA methylation patterns were only recently used to construct an epigenetic clock predictor for biological age, which is a measure of how well your body functions compared to your chronological age. Moreover, the epigenetic DNA methylation clock signature is increasingly applied as a biomarker to estimate aging disease susceptibility and mortality risk. Finally, the epigenetic clock signature could be used as a lifestyle management tool to monitor healthy aging, to evaluate preventive interventions against chronic aging disorders and to extend healthy lifespan. Dissecting the mechanism of the epigenetic aging clock will yield valuable insights into the aging process and how it can be manipulated to improve health span.
Collapse
Affiliation(s)
- Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Belgium
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Belgium.
| |
Collapse
|
7
|
Wen S, Wang J, Liu P, Li Y, Lu W, Hu Y, Liu J, He Z, Huang P. Novel combination of histone methylation modulators with therapeutic synergy against acute myeloid leukemia in vitro and in vivo. Cancer Lett 2017; 413:35-45. [PMID: 29069576 DOI: 10.1016/j.canlet.2017.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with rapid disease progression and often becomes lethal without treatment. Development of effective new therapies is essential to improve the clinical outcome of AML patients. Enhancer of zeste homolog 2 (EZH2) and lysine specific demethylase 1 (LSD1) play important roles in epigenetic regulation and their altered expressions have been observed in cancer. Although EZH2 and LSD1 have opposite histone methylation functions, we found that both enzymes were paradoxically up-regulated in AML cells. Importantly, a combined inhibition of EZH2 and LSD1 resulted in a synergistic activity against AML in vitro and in vivo. Such synergy was mechanistically correlated with up-regulation of H3K4me1/2 and H3K9Ac and down-regulation of H3K27me3, leading to a decrease of anti-apoptotic protein Bcl-2. These epigenetic alterations also compromised the mitochondrial respiration capacity and glycolytic activity and resulted in ATP depletion, a key event contributing to the potent cytotoxic effect of the drug combination. Taken together, our work identified a novel therapeutic approach against AML by combining two small molecules that inhibit different histone methylation-modulating proteins with apparently opposite enzyme activities. Such a new drug combination strategy likely has significant clinical implications since epigenetic modulators are currently in clinical trials.
Collapse
Affiliation(s)
- Shijun Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jiankang Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Panpan Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Yiqing Li
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Wenhua Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Yumin Hu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Jinyun Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhiyuan He
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Peng Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Department of Molecular Pathology, Unit 951, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Mitochondrial health, the epigenome and healthspan. Clin Sci (Lond) 2017; 130:1285-305. [PMID: 27358026 DOI: 10.1042/cs20160002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
Food nutrients and metabolic supply-demand dynamics constitute environmental factors that interact with our genome influencing health and disease states. These gene-environment interactions converge at the metabolic-epigenome-genome axis to regulate gene expression and phenotypic outcomes. Mounting evidence indicates that nutrients and lifestyle strongly influence genome-metabolic functional interactions determining disease via altered epigenetic regulation. The mitochondrial network is a central player of the metabolic-epigenome-genome axis, regulating the level of key metabolites [NAD(+), AcCoA (acetyl CoA), ATP] acting as substrates/cofactors for acetyl transferases, kinases (e.g. protein kinase A) and deacetylases (e.g. sirtuins, SIRTs). The chromatin, an assembly of DNA and nucleoproteins, regulates the transcriptional process, acting at the epigenomic interface between metabolism and the genome. Within this framework, we review existing evidence showing that preservation of mitochondrial network function is directly involved in decreasing the rate of damage accumulation thus slowing aging and improving healthspan.
Collapse
|
9
|
A Tox21 Approach to Altered Epigenetic Landscapes: Assessing Epigenetic Toxicity Pathways Leading to Altered Gene Expression and Oncogenic Transformation In Vitro. Int J Mol Sci 2017; 18:ijms18061179. [PMID: 28587163 PMCID: PMC5486002 DOI: 10.3390/ijms18061179] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
An emerging vision for toxicity testing in the 21st century foresees in vitro assays assuming the leading role in testing for chemical hazards, including testing for carcinogenicity. Toxicity will be determined by monitoring key steps in functionally validated molecular pathways, using tests designed to reveal chemically-induced perturbations that lead to adverse phenotypic endpoints in cultured human cells. Risk assessments would subsequently be derived from the causal in vitro endpoints and concentration vs. effect data extrapolated to human in vivo concentrations. Much direct experimental evidence now shows that disruption of epigenetic processes by chemicals is a carcinogenic mode of action that leads to altered gene functions playing causal roles in cancer initiation and progression. In assessing chemical safety, it would therefore be advantageous to consider an emerging class of carcinogens, the epigenotoxicants, with the ability to change chromatin and/or DNA marks by direct or indirect effects on the activities of enzymes (writers, erasers/editors, remodelers and readers) that convey the epigenetic information. Evidence is reviewed supporting a strategy for in vitro hazard identification of carcinogens that induce toxicity through disturbance of functional epigenetic pathways in human somatic cells, leading to inactivated tumour suppressor genes and carcinogenesis. In the context of human cell transformation models, these in vitro pathway measurements ensure high biological relevance to the apical endpoint of cancer. Four causal mechanisms participating in pathways to persistent epigenetic gene silencing were considered: covalent histone modification, nucleosome remodeling, non-coding RNA interaction and DNA methylation. Within these four interacting mechanisms, 25 epigenetic toxicity pathway components (SET1, MLL1, KDM5, G9A, SUV39H1, SETDB1, EZH2, JMJD3, CBX7, CBX8, BMI, SUZ12, HP1, MPP8, DNMT1, DNMT3A, DNMT3B, TET1, MeCP2, SETDB2, BAZ2A, UHRF1, CTCF, HOTAIR and ANRIL) were found to have experimental evidence showing that functional perturbations played “driver” roles in human cellular transformation. Measurement of epigenotoxicants presents challenges for short-term carcinogenicity testing, especially in the high-throughput modes emphasized in the Tox21 chemicals testing approach. There is need to develop and validate in vitro tests to detect both, locus-specific, and genome-wide, epigenetic alterations with causal links to oncogenic cellular phenotypes. Some recent examples of cell-based high throughput chemical screening assays are presented that have been applied or have shown potential for application to epigenetic endpoints.
Collapse
|
10
|
Apolipoprotein E4 and Insulin Resistance Interact to Impair Cognition and Alter the Epigenome and Metabolome. Sci Rep 2017; 7:43701. [PMID: 28272510 PMCID: PMC5341123 DOI: 10.1038/srep43701] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023] Open
Abstract
Apolipoprotein E4 (E4) and type 2 diabetes are major risk factors for cognitive decline and late onset Alzheimer's disease (AD). E4-associated phenotypes and insulin resistance (IR) share several features and appear to interact in driving cognitive dysfunction. However, shared mechanisms that could explain their overlapping pathophysiology have yet to be found. We hypothesized that, compared to E3 mice, E4 mice would be more susceptible to the harmful cognitive effects of high fat diet (HFD)-induced IR due to apoE isoform-specific differences in brain metabolism. While both E3 and E4 mice fed HFD displayed impairments in peripheral metabolism and cognition, deficits in hippocampal-dependent spatial learning and memory were exaggerated in E4 mice. Combining genome-wide measures of DNA hydroxymethylation with comprehensive untargeted metabolomics, we identified novel alterations in purine metabolism, glutamate metabolism, and the pentose phosphate pathway. Finally, in E4 mice, the metabolic and cognitive deficiencies caused by HFD were rescued by switching to a low fat diet for one month, suggesting a functional role was associated with reversal of the same metabolic pathways described above. These results suggest a susceptibility of E4 carriers to metabolic impairments brought on by IR, and may guide development of novel therapies for cognitive decline and dementia.
Collapse
|
11
|
Bezawork-Geleta A, Rohlena J, Dong L, Pacak K, Neuzil J. Mitochondrial Complex II: At the Crossroads. Trends Biochem Sci 2017; 42:312-325. [PMID: 28185716 DOI: 10.1016/j.tibs.2017.01.003] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 02/06/2023]
Abstract
Mitochondrial complex II (CII), also called succinate dehydrogenase (SDH), is a central purveyor of the reprogramming of metabolic and respiratory adaptation in response to various intrinsic and extrinsic stimuli and abnormalities. In this review we discuss recent findings regarding SDH biogenesis, which requires four known assembly factors, and modulation of its enzymatic activity by acetylation, succinylation, phosphorylation, and proteolysis. We further focus on the emerging role of both genetic and epigenetic aberrations leading to SDH dysfunction associated with various clinical manifestations. This review also covers the recent discovery of the role of SDH in inflammation-linked pathologies. Conceivably, SDH is a potential target for several hard-to-treat conditions, including cancer, that remains to be fully exploited.
Collapse
Affiliation(s)
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
| | - Lanfeng Dong
- School of Medical Science, Griffith University, Southport, Australia
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jiri Neuzil
- School of Medical Science, Griffith University, Southport, Australia; Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia.
| |
Collapse
|
12
|
Chiacchiera F, Rossi A, Jammula S, Zanotti M, Pasini D. PRC2 preserves intestinal progenitors and restricts secretory lineage commitment. EMBO J 2016; 35:2301-2314. [PMID: 27585866 DOI: 10.15252/embj.201694550] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/10/2016] [Indexed: 11/09/2022] Open
Abstract
Chromatin modifications shape cell heterogeneity by activating and repressing defined sets of genes involved in cell proliferation, differentiation and development. Polycomb-repressive complexes (PRCs) act synergistically during development and differentiation by maintaining transcriptional repression of common genes. PRC2 exerts this activity by catalysing H3K27 trimethylation. Here, we show that in the intestinal epithelium PRC2 is required to sustain progenitor cell proliferation and the correct balance between secretory and absorptive lineage differentiation programs. Using genetic models, we show that PRC2 activity is largely dispensable for intestinal stem cell maintenance but is strictly required for radiation-induced regeneration by preventing Cdkn2a transcription. Combining these models with genomewide molecular analysis, we further demonstrate that preferential accumulation of secretory cells does not result from impaired proliferation of progenitor cells induced by Cdkn2a activation but rather from direct regulation of transcription factors responsible for secretory lineage commitment. Overall, our data uncover a dual role of PRC2 in intestinal homeostasis highlighting the importance of this repressive layer in controlling cell plasticity and lineage choices in adult tissues.
Collapse
Affiliation(s)
- Fulvio Chiacchiera
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Alessandra Rossi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - SriGanesh Jammula
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Marika Zanotti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Diego Pasini
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| |
Collapse
|
13
|
Loyau T, Hennequet-Antier C, Coustham V, Berri C, Leduc M, Crochet S, Sannier M, Duclos MJ, Mignon-Grasteau S, Tesseraud S, Brionne A, Métayer-Coustard S, Moroldo M, Lecardonnel J, Martin P, Lagarrigue S, Yahav S, Collin A. Thermal manipulation of the chicken embryo triggers differential gene expression in response to a later heat challenge. BMC Genomics 2016; 17:329. [PMID: 27142519 PMCID: PMC4855354 DOI: 10.1186/s12864-016-2661-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/25/2016] [Indexed: 12/18/2022] Open
Abstract
Background Meat type chickens have limited capacities to cope with high environmental temperatures, this sometimes leading to mortality on farms and subsequent economic losses. A strategy to alleviate this problem is to enhance adaptive capacities to face heat exposure using thermal manipulation (TM) during embryogenesis. This strategy was shown to improve thermotolerance during their life span. The aim of this study was to determine the effects of TM (39.5 °C, 12 h/24 vs 37.8 °C from d7 to d16 of embryogenesis) and of a subsequent heat challenge (32 °C for 5 h) applied on d34 on gene expression in the Pectoralis major muscle (PM). A chicken gene expression microarray (8 × 60 K) was used to compare muscle gene expression profiles of Control (C characterized by relatively high body temperatures, Tb) and TM chickens (characterized by a relatively low Tb) reared at 21 °C and at 32 °C (CHC and TMHC, respectively) in a dye-swap design with four comparisons and 8 broilers per treatment. Real-time quantitative PCR (RT-qPCR) was subsequently performed to validate differential expression in each comparison. Gene ontology, clustering and network building strategies were then used to identify pathways affected by TM and heat challenge. Results Among the genes differentially expressed (DE) in the PM (1.5 % of total probes), 28 were found to be differentially expressed between C and TM, 128 between CHC and C, and 759 between TMHC and TM. No DE gene was found between TMHC and CHC broilers. The majority of DE genes analyzed by RT-qPCR were validated. In the TM/C comparison, DE genes were involved in energy metabolism and mitochondrial function, cell proliferation, vascularization and muscle growth; when comparing heat-exposed chickens to their own controls, TM broilers developed more specific pathways than C, especially involving genes related to metabolism, stress response, vascularization, anti-apoptotic and epigenetic processes. Conclusions This study improved the understanding of the long-term effects of TM on PM muscle. TM broilers displaying low Tb may have lower metabolic intensity in the muscle, resulting in decreased metabolic heat production, whereas modifications in vascularization may enhance heat loss. These specific changes could in part explain the better adaptation of TM broilers to heat. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2661-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Marco Moroldo
- CRB GADIE, INRA, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | | | - Patrice Martin
- GABI, INRA, Plateforme de Microgénomique Iso Cell Express (ICE), 78350, Jouy-en-Josas, France
| | | | - Shlomo Yahav
- Institute of Animal Science, The Volcani Center, Bet Dagan, P.O. Box 6, 50250, Israel
| | | |
Collapse
|
14
|
Wijenayake S, Storey KB. The role of DNA methylation during anoxia tolerance in a freshwater turtle (Trachemys scripta elegans). J Comp Physiol B 2016; 186:333-42. [PMID: 26843075 DOI: 10.1007/s00360-016-0960-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/05/2016] [Accepted: 01/15/2016] [Indexed: 11/24/2022]
Abstract
Oxygen deprivation is a lethal stress that only a few animals can tolerate for extended periods. This study focuses on analyzing the role of DNA methylation in aiding natural anoxia tolerance in a champion vertebrate anaerobe, the red-eared slider turtle (Trachemys scripta elegans). We examined the relative expression and total enzymatic activity of four DNA methyltransferases (DNMT1, DNMT2, DNMT3a and DNMT3b), two methyl-binding domain proteins (MBD1 and MBD2), and relative genomic levels of 5-methylcytosine under control, 5 h anoxic, and 20 h anoxic conditions in liver, heart, and white skeletal muscle (n = 4, p < 0.05). In liver, protein expression of DNMT1, DNMT2, MBD1, and MBD2 rose significantly by two- to fourfold after 5 h anoxic submergence compared to normoxic-control conditions. In heart, 5 h anoxia submergence resulted in a 1.4-fold increase in DNMT3a levels and a significant decrease in MBD1 and MBD2 levels to ~30 % of control values. In white muscle, DNMT3a and DNMT3b increased threefold and MBD1 levels increased by 50 % in response to 5 h anoxia. Total DNMT activity rose by 0.6-2.0-fold in liver and white muscle and likewise global 5mC levels significantly increased in liver and white muscle under 5 and 20 h anoxia. The results demonstrate an overall increase in DNA methylation, DNMT protein expression and enzymatic activity in response to 5 and 20 h anoxia in liver and white muscle indicating a potential downregulation of gene expression via this epigenetic mechanism during oxygen deprivation.
Collapse
Affiliation(s)
- Sanoji Wijenayake
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Department of Chemistry, Canada Research Chair in Molecular Physiology, Institute of Biochemistry, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
15
|
Baardman J, Licht I, de Winther MPJ, Van den Bossche J. Metabolic-epigenetic crosstalk in macrophage activation. Epigenomics 2015; 7:1155-64. [PMID: 26585710 DOI: 10.2217/epi.15.71] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Epigenetic enzymes are emerging as crucial controllers of macrophages, innate immune cells that determine the outcome of many inflammatory diseases. Recent studies demonstrate that the activity of particular chromatin-modifying enzymes is regulated by the availability of specific metabolites like acetyl-coenzyme A, S-adenosylmethionine, α-ketoglutarate, nicotinamide adenine dinucleotide and polyamines. In this way chromatin-modifying enzymes could sense the macrophage's metabolic status and translate this into gene expression and phenotypic changes. Importantly, distinct macrophage activation subsets display particular metabolic pathways. IFNγ/lipopolysaccharide-activated macrophages (MIFNγ/LPS or M1) display high glycolysis, which directly drives their inflammatory phenotype. In contrast, oxidative mitochondrial metabolism and enhanced polyamine production are hallmarks and requirements for IL-4-induced macrophage activation (MIL-4 or M2). Here we report how epigenetics could serve as a bridge between altered macrophage metabolism, macrophage activation and disease.
Collapse
Affiliation(s)
- Jeroen Baardman
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Iris Licht
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Menno P J de Winther
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Jan Van den Bossche
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Abstract
The molecular signatures of epigenetic regulation and chromatin architectures are fundamental to genetically determined biological processes. Covalent and post-translational chemical modification of the chromatin template can sensitize the genome to changing environmental conditions to establish diverse functional states. Recent interest and research focus surrounds the direct connections between metabolism and chromatin dynamics, which now represents an important conceptual challenge to explain many aspects of metabolic dysfunction. Several components of the epigenetic machinery require intermediates of cellular metabolism for enzymatic function. Furthermore, changes to intracellular metabolism can alter the expression of specific histone methyltransferases and acetyltransferases conferring widespread variations in epigenetic modification patterns. Specific epigenetic influences of dietary glucose and lipid consumption, as well as undernutrition, are observed across numerous organs and pathways associated with metabolism. Studies have started to define the chromatin-dependent mechanisms underlying persistent and pathophysiological changes induced by altered metabolism. Importantly, numerous recent studies demonstrate that gene regulation underlying phenotypic determinants of adult metabolic health is influenced by maternal and early postnatal diet. These emerging concepts open new perspectives to combat the rising global epidemic of metabolic disorders.
Collapse
Affiliation(s)
- Samuel T. Keating
- From the Epigenetics in Human Health and Disease Laboratory (S.T.K., A.E.-O.) and Epigenomics Profiling Facility (S.T.K., A.E.-O.), Baker IDI Heart & Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Department of Pathology, The University of Melbourne, Victoria, Australia (A.E.-O.); and Central Clinical School, Department of Medicine, Monash University, Melbourne, Victoria, Australia (A.E.-O.)
| | - Assam El-Osta
- From the Epigenetics in Human Health and Disease Laboratory (S.T.K., A.E.-O.) and Epigenomics Profiling Facility (S.T.K., A.E.-O.), Baker IDI Heart & Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia; Department of Pathology, The University of Melbourne, Victoria, Australia (A.E.-O.); and Central Clinical School, Department of Medicine, Monash University, Melbourne, Victoria, Australia (A.E.-O.)
| |
Collapse
|
17
|
Flanagan JM, Brook MN, Orr N, Tomczyk K, Coulson P, Fletcher O, Jones ME, Schoemaker MJ, Ashworth A, Swerdlow A, Brown R, Garcia-Closas M. Temporal stability and determinants of white blood cell DNA methylation in the breakthrough generations study. Cancer Epidemiol Biomarkers Prev 2014; 24:221-9. [PMID: 25371448 DOI: 10.1158/1055-9965.epi-14-0767] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Epigenome-wide association studies (EWAS) using measurements of blood DNA methylation are performed to identify associations of methylation changes with environmental and lifestyle exposures and disease risk. However, little is known about the variation of methylation markers in the population and their stability over time, both important factors in the design and interpretation of EWAS. We aimed to identify stable variable methylated probes (VMP), i.e., markers that are variable in the population, yet stable over time. METHODS We estimated the intraclass correlation coefficient (ICC) for each probe on the Illumina 450K methylation array in paired samples collected approximately 6 years apart from 92 participants in the Breakthrough Generations Study. We also evaluated relationships with age, reproductive and hormonal history, weight, alcohol intake, and smoking. RESULTS Approximately 17% of probes had an ICC > 0.50 and were considered stable VMPs (stable-VMPs). Stable-VMPs were enriched for probes located in "shores" bordering CpG islands, and at approximately 1.3 kb downstream from the transcription start site in the transition between the unmethylated promoter and methylated gene body. Both cross-sectional and longitudinal data analyses provided strong evidence for associations between changes in methylation levels and aging. Smoking-related probes at 2q37.1 and AHRR were stable-VMPs and related to time since quitting. We also observed associations between methylation and weight changes. CONCLUSION Our results provide support for the use of white blood cell DNA methylation as a biomarker of exposure in EWAS. IMPACT Larger studies, preferably with repeated measures over time, will be required to establish associations between specific probes and exposures.
Collapse
Affiliation(s)
- James M Flanagan
- Epigenetics Unit, Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
| | - Mark N Brook
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Nick Orr
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Katarzyna Tomczyk
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Penny Coulson
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Olivia Fletcher
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Michael E Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Minouk J Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Alan Ashworth
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom. Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom
| | - Robert Brown
- Epigenetics Unit, Department of Surgery and Cancer, Imperial College London, London, United Kingdom. Division of Medicine, The Institute of Cancer Research, London, United Kingdom
| | - Montserrat Garcia-Closas
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom. Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
18
|
Andreoli F, Del Rio A. Physicochemical modifications of histones and their impact on epigenomics. Drug Discov Today 2014; 19:1372-9. [PMID: 24853949 DOI: 10.1016/j.drudis.2014.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/28/2014] [Accepted: 05/12/2014] [Indexed: 01/06/2023]
Abstract
The study of histone post-translational modifications (PTMs) has made extraordinary progress over the past few years and many epigenetic modifications have been identified and found to be associated with fundamental biological processes and pathological conditions. Most histone-modifying enzymes produce specific covalent modifications on histone tails that, taken together, elicit complex and concerted processes. An even higher level of complexity is generated by the action of small molecules that are able to modulate pharmacologically epigenetic enzymes and interfere with these biochemical mechanisms. In this article, we provide an overview of histone PTMs by reviewing and discussing them in terms of their physicochemical properties, emphasizing these concepts in view of recent research efforts to elucidate epigenetic mechanisms and devise future epigenetic drugs.
Collapse
Affiliation(s)
- Federico Andreoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Via S. Giacomo 14, Bologna 40126, Italy
| | - Alberto Del Rio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Via S. Giacomo 14, Bologna 40126, Italy; Institute of Organic Synthesis and Photoreactivity, National Research Council, Via P. Gobetti, 101, Bologna 40129, Italy.
| |
Collapse
|
19
|
Abel L, El-Baghdadi J, Bousfiha AA, Casanova JL, Schurr E. Human genetics of tuberculosis: a long and winding road. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130428. [PMID: 24821915 PMCID: PMC4024222 DOI: 10.1098/rstb.2013.0428] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Only a small fraction of individuals exposed to Mycobacterium tuberculosis develop clinical tuberculosis (TB). Over the past century, epidemiological studies have shown that human genetic factors contribute significantly to this interindividual variability, and molecular progress has been made over the past decade for at least two of the three key TB-related phenotypes: (i) a major locus controlling resistance to infection with M. tuberculosis has been identified, and (ii) proof of principle that severe TB of childhood can result from single-gene inborn errors of interferon-γ immunity has been provided; genetic association studies with pulmonary TB in adulthood have met with more limited success. Future genetic studies of these three phenotypes could consider subgroups of subjects defined on the basis of individual (e.g. age at TB onset) or environmental (e.g. pathogen strain) factors. Progress may also be facilitated by further methodological advances in human genetics. Identification of the human genetic variants controlling the various stages and forms of TB is critical for understanding TB pathogenesis. These findings should have major implications for TB control, in the definition of improved prevention strategies, the optimization of vaccines and clinical trials and the development of novel treatments aiming to restore deficient immune responses.
Collapse
Affiliation(s)
- Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, , 75015 Paris, France
| | | | | | | | | |
Collapse
|
20
|
Gu HF, Gu T, Hilding A, Zhu Y, Kärvestedt L, Ostenson CG, Lai M, Kutsukake M, Frystyk J, Tamura K, Brismar K. Evaluation of IGFBP-7 DNA methylation changes and serum protein variation in Swedish subjects with and without type 2 diabetes. Clin Epigenetics 2013; 5:20. [PMID: 24180466 PMCID: PMC3817812 DOI: 10.1186/1868-7083-5-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/05/2013] [Indexed: 12/16/2022] Open
Abstract
Background Insulin-like growth factor-binding protein 7 (IGFBP-7) is able to interact with insulin-like growth factor 1 (IGF-1) as well as insulin. Previous studies have suggested that serum IGFBP-7 levels may be associated with insulin resistance in type 2 diabetes (T2D). This study aimed to evaluate IGFBP-7 serum protein and IGFBP7 DNA methylation levels in the subjects with and without T2D. Results A total of 340 Swedish subjects including 100 newly diagnosed T2D patients (50 women/50 men), 100 age-matched nondiabetic control subjects (50/50) and 140 treated T2D patients (54/86) were studied. Serum IGFBP-7 levels were measured with a novel ELISA. IGF1, IGFBP-1, and insulin were determined by in-house radioimmunoassays. DNA methylation levels in the IGFBP7 gene were analyzed with a bisulfite-pyrosequencing technique. Serum IGFBP-7 protein levels were similar among nondiabetic subjects, newly diagnosed, and treated T2D patients and were not correlated with IGFBP7 DNA methylation. However, IGFBP7 DNA methylation was increased in men with newly diagnosed T2D compared with nondiabetic controls (17.6% vs. 12.5%, P < 0.01). Serum IGFBP-7 levels correlated (r = 0.331, P = 0.019) with serum IGFBP-1 levels, a marker of insulin production, in men but not women with newly diagnosed T2D. Conclusions This study demonstrates for the first time that IGFBP7 DNA methylation levels are increased in Swedish men with newly diagnosed T2D. The correlation between IGFBP-7 and IGFBP-1 suggests that low IGFBP-7 may be associated with insulin resistance in T2D.
Collapse
Affiliation(s)
- Harvest F Gu
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm SE-171 76, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Posavec M, Timinszky G, Buschbeck M. Macro domains as metabolite sensors on chromatin. Cell Mol Life Sci 2013; 70:1509-24. [PMID: 23455074 PMCID: PMC11113152 DOI: 10.1007/s00018-013-1294-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/30/2022]
Abstract
How metabolism and epigenetics are molecularly linked and regulate each other is poorly understood. In this review, we will discuss the role of direct metabolite-binding to chromatin components and modifiers as a possible regulatory mechanism. We will focus on globular macro domains, which are evolutionarily highly conserved protein folds that can recognize NAD(+)-derived metabolites. Macro domains are found in histone variants, histone modifiers, and a chromatin remodeler among other proteins. Here we summarize the macro domain-containing chromatin proteins and the enzymes that generate relevant metabolites. Focusing on the histone variant macroH2A, we further discuss possible implications of metabolite binding for chromatin function.
Collapse
Affiliation(s)
- Melanija Posavec
- Institute for Predictive and Personalized Medicine of Cancer (IMPPC), Crta. Can Ruti, Cami de les Escoles, 08916 Badalona, Barcelona Spain
| | - Gyula Timinszky
- Butenandt Institute of Physiological Chemistry, Ludwig Maximilian University of Munich, Butenandtstrasse 5, 81377 Munich, Germany
| | - Marcus Buschbeck
- Institute for Predictive and Personalized Medicine of Cancer (IMPPC), Crta. Can Ruti, Cami de les Escoles, 08916 Badalona, Barcelona Spain
| |
Collapse
|