1
|
Pedersen RTA, Snoberger A, Pyrpassopoulos S, Safer D, Drubin DG, Ostap EM. Endocytic myosin-1 is a force-insensitive, power-generating motor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533689. [PMID: 36993306 PMCID: PMC10055380 DOI: 10.1101/2023.03.21.533689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Myosins are required for clathrin-mediated endocytosis, but their precise molecular roles in this process are not known. This is, in part, because the biophysical properties of the relevant motors have not been investigated. Myosins have diverse mechanochemical activities, ranging from powerful contractility against mechanical loads to force-sensitive anchoring. To better understand the essential molecular contribution of myosin to endocytosis, we studied the in vitro force-dependent kinetics of the Saccharomyces cerevisiae endocytic type I myosin called Myo5, a motor whose role in clathrin-mediated endocytosis has been meticulously studied in vivo. We report that Myo5 is a low-duty-ratio motor that is activated ∼10-fold by phosphorylation, and that its working stroke and actin-detachment kinetics are relatively force-insensitive. Strikingly, the in vitro mechanochemistry of Myo5 is more like that of cardiac myosin than like that of slow anchoring myosin-1s found on endosomal membranes. We therefore propose that Myo5 generates power to augment actin assembly-based forces during endocytosis in cells. Summary Pedersen, Snoberger et al. measure the force-sensitivity of the yeast endocytic the myosin-1 called Myo5 and find that it is more likely to generate power than to serve as a force-sensitive anchor in cells. Implications for Myo5's role in clathrin-mediated endocytosis are discussed.
Collapse
Affiliation(s)
- Ross TA Pedersen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
- Present address: Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
- Equal Contribution
| | - Aaron Snoberger
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Equal Contribution
| | - Serapion Pyrpassopoulos
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel Safer
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - E Michael Ostap
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
2
|
Yang C, Colosi P, Hugelier S, Zabezhinsky D, Lakadamyali M, Svitkina T. Actin polymerization promotes invagination of flat clathrin-coated lattices in mammalian cells by pushing at lattice edges. Nat Commun 2022; 13:6127. [PMID: 36253374 PMCID: PMC9576739 DOI: 10.1038/s41467-022-33852-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) requires energy input from actin polymerization in mechanically challenging conditions. The roles of actin in CME are poorly understood due to inadequate knowledge of actin organization at clathrin-coated structures (CCSs). Using platinum replica electron microscopy of mammalian cells, we show that Arp2/3 complex-dependent branched actin networks, which often emerge from microtubule tips, assemble along the CCS perimeter, lack interaction with the apical clathrin lattice, and have barbed ends oriented toward the CCS. This structure is hardly compatible with the widely held "apical pulling" model describing actin functions in CME. Arp2/3 complex inhibition or epsin knockout produce large flat non-dynamic CCSs, which split into invaginating subdomains upon recovery from Arp2/3 inhibition. Moreover, epsin localization to CCSs depends on Arp2/3 activity. We propose an "edge pushing" model for CME, wherein branched actin polymerization promotes severing and invagination of flat CCSs in an epsin-dependent manner by pushing at the CCS boundary, thus releasing forces opposing the intrinsic curvature of clathrin lattices.
Collapse
Affiliation(s)
- Changsong Yang
- grid.25879.310000 0004 1936 8972Department of Biology, University of Pennsylvania, Philadelphia, PA USA
| | - Patricia Colosi
- grid.25879.310000 0004 1936 8972Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Siewert Hugelier
- grid.25879.310000 0004 1936 8972Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Daniel Zabezhinsky
- grid.25879.310000 0004 1936 8972Department of Biology, University of Pennsylvania, Philadelphia, PA USA
| | - Melike Lakadamyali
- grid.25879.310000 0004 1936 8972Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Tatyana Svitkina
- grid.25879.310000 0004 1936 8972Department of Biology, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
3
|
Skruzny M. The endocytic protein machinery as an actin-driven membrane-remodeling machine. Eur J Cell Biol 2022; 101:151267. [PMID: 35970066 DOI: 10.1016/j.ejcb.2022.151267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
In clathrin-mediated endocytosis, a principal membrane trafficking route of all eukaryotic cells, forces are applied to invaginate the plasma membrane and form endocytic vesicles. These forces are provided by specific endocytic proteins and the polymerizing actin cytoskeleton. One of the best-studied endocytic systems is endocytosis in yeast, known for its simplicity, experimental amenability, and overall similarity to human endocytosis. Importantly, the yeast endocytic protein machinery generates and transmits tremendous force to bend the plasma membrane, making this system beneficial for mechanistic studies of cellular force-driven membrane reshaping. This review summarizes important protein players, molecular functions, applied forces, and open questions and perspectives of this robust, actin-powered membrane-remodeling protein machine.
Collapse
Affiliation(s)
- Michal Skruzny
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
4
|
Tyler JJ, Smaczynska-de Rooij II, Abugharsa L, Palmer JS, Hancock LP, Allwood EG, Ayscough KR. Phosphorylation of the WH2 domain in yeast Las17/WASP regulates G-actin binding and protein function during endocytosis. Sci Rep 2021; 11:9718. [PMID: 33958621 PMCID: PMC8102491 DOI: 10.1038/s41598-021-88826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
Actin nucleation is the key rate limiting step in the process of actin polymerization, and tight regulation of this process is critical to ensure actin filaments form only at specific times and at defined regions of the cell. WH2 domains are short sequence motifs found in many different actin binding proteins including WASP family proteins which regulate the actin nucleating complex Arp2/3. In this study we reveal a phosphorylation site, Serine 554, within the WH2 domain of the yeast WASP homologue Las17. Both phosphorylation and a phospho-mimetic mutation reduce actin monomer binding affinity while an alanine mutation, generated to mimic the non-phosphorylated state, increases actin binding affinity. The effect of these mutations on the Las17-dependent process of endocytosis in vivo was analysed and leads us to propose that switching of Las17 phosphorylation states may allow progression through distinct phases of endocytosis from site assembly through to the final scission stage. While the study is focused on Las17, the sole WASP family protein in yeast, our results have broad implications for our understanding of how a key residue in this conserved motif can underpin the many different actin regulatory roles with which WH2 domains have been associated.
Collapse
Affiliation(s)
- J J Tyler
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK
| | - I I Smaczynska-de Rooij
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK
| | - L Abugharsa
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK
| | - J S Palmer
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK
| | - L P Hancock
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK
| | - E G Allwood
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK
| | - K R Ayscough
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
5
|
Chen X, Qi L, Su H, He Y, Li N, Gao Q, Li H, Xu T, Lu L, Xu Z, Tang J. Prenatal hypoxia attenuated contraction of offspring coronary artery associated with decreased PKCβ Ser 660 phosphorylation and intracellular calcium. Life Sci 2020; 261:118364. [PMID: 32866516 DOI: 10.1016/j.lfs.2020.118364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 01/15/2023]
Abstract
AIMS Prenatal hypoxia (PH) could affect peripheral vascular tone of the offspring, thus increasing the risk of cardiovascular diseases in adult. However, it's still unknown whether functions of coronary arteries (COA) in adult offspring would be influenced by PH. The present study aimed at effects of PH on vascular tone of COA and its related mechanisms. METHODS Coronary arteries of adult offspring exposed to hypoxic or normoxic circumstances during gestational day 5 to 21 were collected. Wire myograph system, whole-cell patch clamp technique, IonOptix MyoCam system, PCR, and western blot were used to detect vascular function of adult offspring COA. KEY FINDINGS PH significantly attenuated serotonin- and phorbol 12, 13-dibutyrate (PDBu)-induced constriction. Iberiotoxin potentiated PDBu-induced constriction and the effect was augmented by PH, however, no significant differences were found in whole-cell BKCa channel currents and its protein expression. Nifedipine inhibited PDBu-mediated constriction and the inhibitory effect was reduced in PH group, and whole-cell calcium channel current was decreased in offspring COA. Besides, PH reduced the capability of calcium release from the endoplasmic reticulum in COA. The phosphorylated PKCβ protein expression at Ser660 site, not Thr641 site, was significantly decreased in PH offspring. Chronic hypoxia during pregnancy attenuated PDBu-mediated constriction in offspring COA, presumably through decreased phosphorylated PKCβ at serine660 sites and decreased intracellular calcium-related weaker PKC activation. SIGNIFICANCE The findings provided new information on the influence of prenatal hypoxia on COA, and suggested potential use of PKCβ-serine660 for early prevention of coronary heart diseases in developmental origins.
Collapse
Affiliation(s)
- Xueyi Chen
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China; School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China
| | - Linglu Qi
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongyu Su
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yun He
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Na Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qinqin Gao
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huan Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ting Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Likui Lu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Jiaqi Tang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Studying the Fate of Tumor Extracellular Vesicles at High Spatiotemporal Resolution Using the Zebrafish Embryo. Dev Cell 2019; 48:554-572.e7. [PMID: 30745140 DOI: 10.1016/j.devcel.2019.01.014] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/19/2018] [Accepted: 01/10/2019] [Indexed: 01/08/2023]
Abstract
Tumor extracellular vesicles (EVs) mediate the communication between tumor and stromal cells mostly to the benefit of tumor progression. Notably, tumor EVs travel in the bloodstream, reach distant organs, and locally modify the microenvironment. However, visualizing these events in vivo still faces major hurdles. Here, we describe an approach for tracking circulating tumor EVs in a living organism: we combine chemical and genetically encoded probes with the zebrafish embryo as an animal model. We provide a first description of tumor EVs' hemodynamic behavior and document their intravascular arrest. We show that circulating tumor EVs are rapidly taken up by endothelial cells and blood patrolling macrophages and subsequently stored in degradative compartments. Finally, we demonstrate that tumor EVs activate macrophages and promote metastatic outgrowth. Overall, our study proves the usefulness and prospects of zebrafish embryo to track tumor EVs and dissect their role in metastatic niches formation in vivo.
Collapse
|
7
|
Zhu YH, Hyun J, Pan YZ, Hopper JE, Rizo J, Wu JQ. Roles of the fission yeast UNC-13/Munc13 protein Ync13 in late stages of cytokinesis. Mol Biol Cell 2018; 29:2259-2279. [PMID: 30044717 PMCID: PMC6249806 DOI: 10.1091/mbc.e18-04-0225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cytokinesis is a complicated yet conserved step of the cell-division cycle that requires the coordination of multiple proteins and cellular processes. Here we describe a previously uncharacterized protein, Ync13, and its roles during fission yeast cytokinesis. Ync13 is a member of the UNC-13/Munc13 protein family, whose animal homologues are essential priming factors for soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex assembly during exocytosis in various cell types, but no roles in cytokinesis have been reported. We find that Ync13 binds to lipids in vitro and dynamically localizes to the plasma membrane at cell tips during interphase and at the division site during cytokinesis. Deletion of Ync13 leads to defective septation and exocytosis, uneven distribution of cell-wall enzymes and components of cell-wall integrity pathway along the division site and massive cell lysis during cell separation. Interestingly, loss of Ync13 compromises endocytic site selection at the division plane. Collectively, we find that Ync13 has a novel function as an UNC-13/Munc13 protein in coordinating exocytosis, endocytosis, and cell-wall integrity during fission yeast cytokinesis.
Collapse
Affiliation(s)
- Yi-Hua Zhu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Joanne Hyun
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Yun-Zu Pan
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - James E Hopper
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
8
|
Woodman S, Trousdale C, Conover J, Kim K. Yeast membrane lipid imbalance leads to trafficking defects toward the Golgi. Cell Biol Int 2018; 42:890-902. [PMID: 29500884 DOI: 10.1002/cbin.10956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/24/2018] [Indexed: 12/19/2022]
Abstract
Protein recycling is an essential cellular process involving endocytosis, intracellular trafficking, and exocytosis. In mammalian systems membrane lipids, including cholesterol, sphingolipids, and phospholipids, play a pivotal role in protein recycling. To address this role in budding yeast, Saccharomyces cerevisiae, we utilized GFP-Snc1, a v-SNARE protein serving as a fluorescent marker for faithfully reporting the recycling pathway. Here we demonstrate results that display moderate to significant GFP-Snc1 recycling defects upon overexpression or inactivation of phospholipid, ergosterol, and sphingolipid biosynthesis enzymes, indicating that the homeostasis of membrane lipid levels is prerequisite for proper protein recycling. By using a truncated version of GFP-Snc1 that cannot be recycled from the plasma membrane, we determined that abnormalities in Snc1 localization in membrane lipid overexpression or underexpression mutants are not due to defects in the synthetic/secretory pathway, but rather in the intracellular trafficking pathway. We found that membrane lipid imbalance resulted in an accumulation of the late endosome marker Vps10-GFP, indicating trafficking from the endosomes to the Golgi may be being hindered, preventing recycling to the plasma membrane. To elucidate the possible mechanism for this trafficking hindrance, we stained the actin cytoskeleton, then quantified the percentage of cells with visible actin cables. Compared to wild-type cells, membrane lipid mutant cells exhibited lower levels of actin cables, indicating the actin cytoskeleton is disrupted upon membrane lipid imbalance. Taken together, our results show that impairment of proper recycling may be due to disruption of the actin cytoskeleton, which causes trafficking hindrance between the endosomes and Golgi.
Collapse
Affiliation(s)
- Sara Woodman
- Missouri State University, 901 S National Ave., Springfield, Missouri
| | - Christopher Trousdale
- Missouri State University, 901 S National Ave., Springfield, Missouri.,Washington University in St. Louis, 1 Brookings Dr., St. Louis, Missouri
| | - Justin Conover
- Missouri State University, 901 S National Ave., Springfield, Missouri.,Iowa State University, Ames, Iowa
| | - Kyoungtae Kim
- Missouri State University, 901 S National Ave., Springfield, Missouri.,Iowa State University, Ames, Iowa
| |
Collapse
|
9
|
Picco A, Kukulski W, Manenschijn HE, Specht T, Briggs JAG, Kaksonen M. The contributions of the actin machinery to endocytic membrane bending and vesicle formation. Mol Biol Cell 2018; 29:1346-1358. [PMID: 29851558 PMCID: PMC5994895 DOI: 10.1091/mbc.e17-11-0688] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Branched and cross-linked actin networks mediate cellular processes that move and shape membranes. To understand how actin contributes during the different stages of endocytic membrane reshaping, we analyzed deletion mutants of yeast actin network components using a hybrid imaging approach that combines live imaging with correlative microscopy. We could thus temporally dissect the effects of different actin network perturbations, revealing distinct stages of actin-based membrane reshaping. Our data show that initiation of membrane bending requires the actin network to be physically linked to the plasma membrane and to be optimally cross-linked. Once initiated, the membrane invagination process is driven by nucleation and polymerization of new actin filaments, independent of the degree of cross-linking and unaffected by a surplus of actin network components. A key transition occurs 2 s before scission, when the filament nucleation rate drops. From that time point on, invagination growth and vesicle scission are driven by an expansion of the actin network without a proportional increase of net actin amounts. The expansion is sensitive to the amount of filamentous actin and its cross-linking. Our results suggest that the mechanism by which actin reshapes the membrane changes during the progress of endocytosis, possibly adapting to varying force requirements.
Collapse
Affiliation(s)
- Andrea Picco
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Wanda Kukulski
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Hetty E Manenschijn
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Tanja Specht
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - John A G Briggs
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Marko Kaksonen
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
10
|
Encinar Del Dedo J, Idrissi FZ, Fernandez-Golbano IM, Garcia P, Rebollo E, Krzyzanowski MK, Grötsch H, Geli MI. ORP-Mediated ER Contact with Endocytic Sites Facilitates Actin Polymerization. Dev Cell 2017; 43:588-602.e6. [PMID: 29173820 DOI: 10.1016/j.devcel.2017.10.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 09/11/2017] [Accepted: 10/27/2017] [Indexed: 11/18/2022]
Abstract
Oxysterol binding protein-related proteins (ORPs) are conserved lipid binding polypeptides, enriched at ER contacts sites. ORPs promote non-vesicular lipid transport and work as lipid sensors in the context of many cellular tasks, but the determinants of their distinct localization and function are not understood. Here, we demonstrate that the yeast endocytic invaginations associate with the ER and that this association specifically requires the ORPs Osh2 and Osh3, which bridge the endocytic myosin-I Myo5 to the ER integral-membrane VAMP-associated protein (VAP) Scs2. Disruption of the ER contact with endocytic sites using ORP, VAP, myosin-I, or reticulon mutants delays and weakens actin polymerization and interferes with vesicle scission. Finally, we provide evidence suggesting that ORP-dependent sterol transfer facilitates actin polymerization at endocytic sites.
Collapse
Affiliation(s)
- Javier Encinar Del Dedo
- Institute for Molecular Biology of Barcelona (CSIC), Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Fatima-Zahra Idrissi
- Institute for Molecular Biology of Barcelona (CSIC), Baldiri Reixac 15, 08028 Barcelona, Spain
| | | | - Patricia Garcia
- Institute for Molecular Biology of Barcelona (CSIC), Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Elena Rebollo
- Institute for Molecular Biology of Barcelona (CSIC), Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Marek K Krzyzanowski
- Institute for Molecular Biology of Barcelona (CSIC), Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Helga Grötsch
- Institute for Molecular Biology of Barcelona (CSIC), Baldiri Reixac 15, 08028 Barcelona, Spain
| | - Maria Isabel Geli
- Institute for Molecular Biology of Barcelona (CSIC), Baldiri Reixac 15, 08028 Barcelona, Spain.
| |
Collapse
|
11
|
Abstract
Clathrin-mediated endocytosis is an essential cellular process that involves the concerted assembly and disassembly of many different proteins at the plasma membrane. In yeast, live-cell imaging has shown that the spatiotemporal dynamics of these proteins is highly stereotypical. Recent work has focused on determining how the timing and functions of endocytic proteins are regulated. In this Cell Science at a Glance article and accompanying poster, we review our current knowledge of the timeline of endocytic site maturation and discuss recent works focusing on how phosphorylation, ubiquitylation and lipids regulate various aspects of the process.
Collapse
Affiliation(s)
- Rebecca Lu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
12
|
Lara-Rojas F, Bartnicki-García S, Mouriño-Pérez RR. Localization and role of MYO-1, an endocytic protein in hyphae of Neurospora crassa. Fungal Genet Biol 2016; 88:24-34. [DOI: 10.1016/j.fgb.2016.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
|
13
|
Abstract
Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed.
Collapse
Affiliation(s)
- Bruce L Goode
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Julian A Eskin
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Beverly Wendland
- The Johns Hopkins University, Department of Biology, Baltimore, Maryland 21218
| |
Collapse
|
14
|
Membrane trafficking in the yeast Saccharomyces cerevisiae model. Int J Mol Sci 2015; 16:1509-25. [PMID: 25584613 PMCID: PMC4307317 DOI: 10.3390/ijms16011509] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/19/2014] [Indexed: 11/29/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secretory pathway was the first trafficking pathway clearly understood mainly thanks to the work done in the laboratory of Randy Schekman in the 1980s. They have isolated yeast sec mutants unable to secrete an extracellular enzyme and these SEC genes were identified as encoding key effectors of the secretory machinery. For this work, the 2013 Nobel Prize in Physiology and Medicine has been awarded to Randy Schekman; the prize is shared with James Rothman and Thomas Südhof. Here, we present the different trafficking pathways of yeast S. cerevisiae. At the Golgi apparatus newly synthesized proteins are sorted between those transported to the plasma membrane (PM), or the external medium, via the exocytosis or secretory pathway (SEC), and those targeted to the vacuole either through endosomes (vacuolar protein sorting or VPS pathway) or directly (alkaline phosphatase or ALP pathway). Plasma membrane proteins can be internalized by endocytosis (END) and transported to endosomes where they are sorted between those targeted for vacuolar degradation and those redirected to the Golgi (recycling or RCY pathway). Studies in yeast S. cerevisiae allowed the identification of most of the known effectors, protein complexes, and trafficking pathways in eukaryotic cells, and most of them are conserved among eukaryotes.
Collapse
|
15
|
Takeuchi J, Ohkubo A, Yuasa H. A ring-flippable sugar as a stimuli-responsive component of liposomes. Chem Asian J 2015; 10:586-94. [PMID: 25573604 DOI: 10.1002/asia.201403271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 11/07/2022]
Abstract
For the development of a liposome that takes in and out a drug in response to stimuli, 2,4-diaminoxylose (Xyl), which allows stimuli-responsive conformational switches between (4)C1 and (1)C4, was incorporated into a lipid structure: Xyl derivatives with C8 and C16 methylene chains at the 1,3-positions (C8Xyl and C16Xyl) were synthesized. (1)H NMR spectroscopy indicates that the addition of Zn(2+) and then H(+) induces conformational switches from the chair ((4)C1) to the reverse chair ((1)C4) and (1)C4-to-(4)C1, respectively, at Xyl; this leads to transformation of the lipids between linear and bent structures. Osmotic pressure and electron microscopy studies demonstrate that C8Xyl in water forms spherical solid aggregates (C8Xyl-Zn), which are converted into liposomes (C8Xyl+Zn) upon the addition of Zn(2+), and C16Xyl forms liposomes regardless of the presence of Zn(2+). The aggregates of C8Xyl±Zn incorporated a fluorophore and only C8Xyl+Zn released the content upon the addition of HCl. This study shows that Xyl could be a stimuli-responsive component of a liposome.
Collapse
Affiliation(s)
- Junji Takeuchi
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259J2-10, Nagatsutacho, Midoriku, Yokohama 226-8501 (Japan)
| | | | | |
Collapse
|
16
|
Frolov VA, Escalada A, Akimov SA, Shnyrova AV. Geometry of membrane fission. Chem Phys Lipids 2015; 185:129-40. [DOI: 10.1016/j.chemphyslip.2014.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 11/24/2022]
|
17
|
Abstract
Correlative fluorescence and electron microscopy (CFEM) is a multimodal technique that combines dynamic and localization information from fluorescence methods with ultrastructural data from electron microscopy, to give new information about how cellular components change relative to the spatiotemporal dynamics within their environment. In this review, we will discuss some of the basic techniques and tools of the trade for utilizing this attractive research method, which is becoming a very powerful tool for biology labs. The information obtained from correlative methods has proven to be invaluable in creating consensus between the two types of microscopy, extending the capability of each, and cutting the time and expense associated with using each method separately for comparative analysis. The realization of the advantages of these methods in cell biology has led to rapid improvement in the protocols and has ushered in a new generation of instruments to reach the next level of correlation--integration.
Collapse
Affiliation(s)
- Randall T Schirra
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | |
Collapse
|