1
|
Babaei Khorzoughi S, Tavakoli M, Mortazavi M, Jafarnejad Z, Malekpour A, Kopaiee Malek T, Kargar F. A review of recombinant HER3 affibodies with an effective diagnostic view of cancer cells. J Drug Target 2024:1-24. [PMID: 39485069 DOI: 10.1080/1061186x.2024.2420202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
One of the most common causes of cancer-related death in women worldwide is breast cancer(Edited)Restore original. Factors such as increased expression of HER family members can contribute to its development. Elevated HER3 expression, especially when combined with other tyrosine kinase receptors such as HER2, plays a significant role in activating cancer pathways crucial for cell survival and proliferation in breast cancer. Detecting high HER3 levels is essential for effective cancer treatment. Affibody proteins, a class including antibodies, are utilized to detect elevated HER3 receptor expression due to their specific high binding affinity. Affibodies, a new type of non-immune probe, show promise in therapy, diagnostics, and biotechnology due to their exceptional specificity and high target protein affinity. The innovative design of these recombinant affibodies not only enhances the accuracy of HER3 detection but also facilitates the development of targeted therapeutic strategies. By employing advanced engineering techniques, these affibodies can be optimized for improved stability and binding efficacy, making them ideal candidates for clinical applications. Additionally, the versatility of affibody-based systems allows for potential integration with imaging technologies, enabling real-time monitoring of HER3 expression and therapeutic response. This multifaceted approach could ultimately lead to more personalized treatment options for patients with HER3-positive breast cancers, thereby improving overall patient management and outcomes in this challenging disease landscape. This study presents recombinant affibodies tailored to bind to HER3 for cancer cell identification, along with novel methods for producing a range of affibody molecules.
Collapse
Affiliation(s)
- Sahar Babaei Khorzoughi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mehrnoosh Tavakoli
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Zahra Jafarnejad
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | | | - Tara Kopaiee Malek
- Department of Cell and Molecular biology, Faculty of science, Azad University of Damghan
| | - Farzane Kargar
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Ek M, Nilvebrant J, Nygren PÅ, Ståhl S, Lindberg H, Löfblom J. An anti-sortilin affibody-peptide fusion inhibits sortilin-mediated progranulin degradation. Front Immunol 2024; 15:1437886. [PMID: 39185427 PMCID: PMC11342335 DOI: 10.3389/fimmu.2024.1437886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Heterozygous loss-of-function mutations in the GRN gene are a common cause of frontotemporal dementia. Such mutations lead to decreased plasma and cerebrospinal fluid levels of progranulin (PGRN), a neurotrophic factor with lysosomal functions. Sortilin is a negative regulator of extracellular PGRN levels and has shown promise as a therapeutic target for frontotemporal dementia, enabling increased extracellular PGRN levels through inhibition of sortilin-mediated PGRN degradation. Here we report the development of a high-affinity sortilin-binding affibody-peptide fusion construct capable of increasing extracellular PGRN levels in vitro. By genetic fusion of a sortilin-binding affibody generated through phage display and a peptide derived from the progranulin C-terminus, an affinity protein (A3-PGRNC15*) with 185-pM affinity for sortilin was obtained. Treating PGRN-secreting and sortilin-expressing human glioblastoma U-251 cells with the fusion protein increased extracellular PGRN levels up to 2.5-fold, with an EC50 value of 1.3 nM. Our results introduce A3-PGRNC15* as a promising new agent with therapeutic potential for the treatment of frontotemporal dementia. Furthermore, the work highlights means to increase binding affinity through synergistic contribution from two orthogonal polypeptide units.
Collapse
Affiliation(s)
| | | | | | | | | | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
3
|
Maejima A, Suzuki S, Makabe K, Kumagai I, Asano R. Incorporation of a repeated polypeptide sequence in therapeutic antibodies as a universal masking procedure: A case study of T cell-engaging bispecific antibodies. N Biotechnol 2023; 77:80-89. [PMID: 37467927 DOI: 10.1016/j.nbt.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/06/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Prodrug design is a promising approach for reducing the off-target effects of therapeutic antibodies, particularly bispecific antibodies (bsAbs) that recruit T cells for activation; this design uses masking sequences that inhibit antibody binding until they reach the tumor microenvironment, where they are removed. In this study, we propose PAS, a polypeptide sequence composed of repeated Pro, Ala, and Ser residues, as a universal masking sequence. PAS has no specificity, but can inhibit antibody binding through steric hindrance caused by its large fluid dynamic radius and disordered structure; additionally, its length can be adjusted. We fused PAS to the N-terminus of an anti-CD3 single-chain variable fragment (scFv) and a bsAb, that targets both the epidermal growth factor receptor and CD3, via a recognition sequence cleaved by cancer-related proteases. PAS integration inhibited anti-CD3 scFv binding with higher efficacy than the epitope sequence, and the extent of inhibition was proportional to the length of the PAS sequence. For masked bsAbs, T cell-binding ability, cancer growth inhibition effects, and T cell activation effects were also reduced depending on the length of PAS and were fully restored upon removing PAS sequences using protease. The masking procedure using PAS was successfully applied to another scFv. The provision to adjust the masking effects of PAS by tuning its length, makes PAS fusion a valuable tool for the universal design of prodrug antibodies.
Collapse
Affiliation(s)
- Atsushi Maejima
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Saori Suzuki
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Koki Makabe
- Graduate School of Science and Engineering, Faculty of Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan
| | - Izumi Kumagai
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1, Harumi-cho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
4
|
Xu K, Han J, Yang L, Cao L, Li S, Hong Z. Tumor Site-Specific Cleavage Improves the Antitumor Efficacy of Antibody-Drug Conjugates. Int J Mol Sci 2023; 24:11011. [PMID: 37446189 DOI: 10.3390/ijms241311011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Antibody-drug conjugates (ADCs) play important roles in tumor therapy. However, traditional ADCs are limited by the extremely large molecular weight of the antibody molecules, which results in low permeability into solid tumors. The use of small ADCs may be expected to alleviate this problem, but this switch brings the new limitation of a greatly shortened blood circulation half-life. Here, we propose a new cleavable ADC design with excellent tumor tissue permeability and a long circulation half-life by fusing the small ADC ZHER2-MMAE with the Fc domain of the antibody for circulation half-life extension, and inserting a digestion sequence between them to release the small ADC inside tumors for better tumor penetration. The experimental results showed that the designed molecule Fc-U-ZHER2-MMAE has a significantly increased blood circulation half-life (7.1 h, 59-fold longer) compared to the small ADC ZHER2-MMAE, and significantly improved drug accumulation ability at tumor sites compared to the conventional full-length antibody-coupled ADC Herceptin-MMAE. These combined effects led to Fc-U-ZHER2-MMAE having significantly enhanced tumor treatment ability, as shown in mouse models of NCI-N87 gastric cancer and SK-OV-3 ovarian cancer, where Fc-U-ZHER2-MMAE treatment achieved complete regression of tumors in all or a portion of animals with no obvious side effects and an MTD exceeding 90 mg/kg. These data demonstrate the therapeutic advantages of this cleavable ADC strategy, which could provide a new approach for ADC design.
Collapse
Affiliation(s)
- Keyuan Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiani Han
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Liu Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Li Cao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Mestre Borras A, Dahlsson Leitao C, Ståhl S, Löfblom J. Generation of an anti-idiotypic affibody-based masking domain for conditional activation of EGFR-targeting. N Biotechnol 2023; 73:9-18. [PMID: 36526248 DOI: 10.1016/j.nbt.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Conditional activation of engineered affinity proteins by proteolytic processing is an interesting approach for a wide range of applications. We have generated an anti-idiotypic masking domain with specificity for the binding surface of an EGFR-targeting affibody molecule using an in-house developed staphylococcal display method. The masking domain could specifically abrogate EGFR-binding on cancer cells when fused to the EGFR-targeting affibody molecule via a linker comprising a protease cleavage site. EGFR-binding was restored by proteolytic cleavage of the linker region resulting in release of the masking domain. A saturation mutagenesis study provided detailed information on the interaction between the EGFR-targeting affibody molecule and the masking domain. Introducing an anti-idiotypic masking affibody domain is a viable approach for blocking EGFR-binding and allows for conditional activation by proteolytic processing. The results warrant further studies evaluating the therapeutic and diagnostic applicability both in vitro and in vivo.
Collapse
Affiliation(s)
- Anna Mestre Borras
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Charles Dahlsson Leitao
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Stefan Ståhl
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
6
|
Dahlsson Leitao C, Ståhl S, Löfblom J. Bacterial Cell Display for Selection of Affibody Molecules. Methods Mol Biol 2023; 2681:99-112. [PMID: 37405645 DOI: 10.1007/978-1-0716-3279-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
This review describes the principles for generation of affibody molecules using bacterial display on the Gram-negative Escherichia coli and the Gram-positive Staphylococcus carnosus, respectively. Affibody molecules are small and robust alternative scaffold proteins that have been explored for therapeutic, diagnostic, and biotechnological applications. They typically exhibit high-stability, affinity, and specificity with high modularity of functional domains. Due to the small size of the scaffold, affibody molecules are rapidly excreted through renal filtration and can efficiently extravasate from blood and penetrate tissues. Preclinical and clinical studies have demonstrated that affibody molecules are promising and safe complements to antibodies for in vivo diagnostic imaging and therapy. Sorting of affibody libraries displayed on bacteria using fluorescence-activated cell sorting is an effective and straightforward methodology and has been used successfully to generate novel affibody molecules with high affinity for a diverse range of molecular targets.
Collapse
Affiliation(s)
| | - Stefan Ståhl
- Department of Protein Science, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, KTH - Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
7
|
Zhao Y, Xie YQ, Van Herck S, Nassiri S, Gao M, Guo Y, Tang L. Switchable immune modulator for tumor-specific activation of anticancer immunity. SCIENCE ADVANCES 2021; 7:eabg7291. [PMID: 34516776 PMCID: PMC8442900 DOI: 10.1126/sciadv.abg7291] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Immune stimulatory antibodies and cytokines elicit potent antitumor immunity. However, the dose-limiting systemic toxicity greatly hinders their clinical applications. Here, we demonstrate a chemical approach, termed “switchable” immune modulator (Sw-IM), to limit the systemic exposure and therefore ameliorate their toxicities. Sw-IM is a biomacromolecular therapeutic reversibly masked by biocompatible polymers through chemical linkers that are responsive to tumor-specific stimuli, such as high reducing potential and acidic pH. Sw-IMs stay inert (switch off) in the circulation and healthy tissues but get reactivated (switch on) selectively in tumor via responsive removal of the polymer masks, thus focusing the immune boosting activities in the tumor microenvironment. Sw-IMs applied to anti–4-1BB agonistic antibody and IL-15 cytokine led to equivalent antitumor efficacy to the parental IMs with markedly reduced toxicities. Sw-IM provides a highly modular and generic approach to improve the therapeutic window and clinical applicability of potent IMs in mono- and combinational immunotherapies.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Materials Science & Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Yu-Qing Xie
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Simon Van Herck
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Sina Nassiri
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Min Gao
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Yugang Guo
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Materials Science & Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Li Tang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Materials Science & Engineering, EPFL, 1015 Lausanne, Switzerland
- Corresponding author.
| |
Collapse
|
8
|
Lucchi R, Bentanachs J, Oller-Salvia B. The Masking Game: Design of Activatable Antibodies and Mimetics for Selective Therapeutics and Cell Control. ACS CENTRAL SCIENCE 2021; 7:724-738. [PMID: 34079893 PMCID: PMC8161478 DOI: 10.1021/acscentsci.0c01448] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 05/04/2023]
Abstract
The high selectivity and affinity of antibody binding have made antibodies all-pervasive tools in therapy, diagnosis, and basic science. A plethora of chemogenetic approaches has been devised to make antibodies responsive to stimuli ranging from light to enzymatic activity, temperature, pH, ions, and effector molecules. Within a single decade, the field of activatable antibodies has yielded marketed therapeutics capable of engaging antigens that could not be targeted with traditional antibodies, as well as new tools to control intracellular protein location and investigate biological processes. Many opportunities remain untapped, waiting for more efficient and generally applicable masking strategies to be developed at the interface between chemistry and biotechnology.
Collapse
Affiliation(s)
- Roberta Lucchi
- Grup d’Enginyeria
de Materials, Institut Químic de
Sarrià (IQS), Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Jordi Bentanachs
- Grup d’Enginyeria
de Materials, Institut Químic de
Sarrià (IQS), Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Benjamí Oller-Salvia
- Grup d’Enginyeria
de Materials, Institut Químic de
Sarrià (IQS), Universitat Ramon Llull, 08017 Barcelona, Spain
| |
Collapse
|
9
|
Trang VH, Zhang X, Yumul RC, Zeng W, Stone IJ, Wo SW, Dominguez MM, Cochran JH, Simmons JK, Ryan MC, Lyon RP, Senter PD, Levengood MR. A coiled-coil masking domain for selective activation of therapeutic antibodies. Nat Biotechnol 2019; 37:761-765. [PMID: 31133742 DOI: 10.1038/s41587-019-0135-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/16/2019] [Indexed: 11/09/2022]
Abstract
The use of monoclonal antibodies in cancer therapy is limited by their cross-reactivity to healthy tissue. Tumor targeting has been improved by generating masked antibodies that are selectively activated in the tumor microenvironment, but each such antibody necessitates a custom design. Here, we present a generalizable approach for masking the binding domains of antibodies with a heterodimeric coiled-coil domain that sterically occludes the complementarity-determining regions. On exposure to tumor-associated proteases, such as matrix metalloproteinases 2 and 9, the coiled-coil peptides are cleaved and antigen binding is restored. We test multiple coiled-coil formats and show that the optimized masking domain is broadly applicable to antibodies of interest. Our approach prevents anti-CD3-associated cytokine release in mice and substantially improves circulation half-life by protecting the antibody from an antigen sink. When applied to antibody-drug conjugates, our masked antibodies are preferentially unmasked at the tumor site and have increased anti-tumor efficacy compared with unmasked antibodies in mouse models of cancer.
Collapse
Affiliation(s)
- Vivian H Trang
- Department of Protein Sciences, Seattle Genetics Inc., Bothell, WA, USA
| | - Xinqun Zhang
- Department of Protein Sciences, Seattle Genetics Inc., Bothell, WA, USA
| | - Roma C Yumul
- Department of Nonclinical Science, Seattle Genetics Inc., Bothell, WA, USA
| | - Weiping Zeng
- Department of Nonclinical Science, Seattle Genetics Inc., Bothell, WA, USA
| | - Ivan J Stone
- Department of Nonclinical Science, Seattle Genetics Inc., Bothell, WA, USA
| | - Serena W Wo
- Department of Protein Sciences, Seattle Genetics Inc., Bothell, WA, USA
| | | | - Julia H Cochran
- Department of Protein Sciences, Seattle Genetics Inc., Bothell, WA, USA
| | - Jessica K Simmons
- Department of Nonclinical Science, Seattle Genetics Inc., Bothell, WA, USA
| | - Maureen C Ryan
- Department of Antibody Discovery, Seattle Genetics Inc., Bothell, WA, USA
| | - Robert P Lyon
- Department of Protein Sciences, Seattle Genetics Inc., Bothell, WA, USA
| | - Peter D Senter
- Department of Chemistry, Seattle Genetics Inc., Bothell, WA, USA
| | | |
Collapse
|
10
|
Dudani JS, Warren AD, Bhatia SN. Harnessing Protease Activity to Improve Cancer Care. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050549] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jaideep S. Dudani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;, ,
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrew D. Warren
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;, ,
- Harvard–MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;, ,
- Harvard–MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
11
|
Löfblom J, Rosenstein R, Nguyen MT, Ståhl S, Götz F. Staphylococcus carnosus: from starter culture to protein engineering platform. Appl Microbiol Biotechnol 2017; 101:8293-8307. [PMID: 28971248 PMCID: PMC5694512 DOI: 10.1007/s00253-017-8528-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 02/04/2023]
Abstract
Since the 1950s, Staphylococcus carnosus is used as a starter culture for sausage fermentation where it contributes to food safety, flavor, and a controlled fermentation process. The long experience with S. carnosus has shown that it is a harmless and "food grade" species. This was confirmed by the genome sequence of S. carnosus TM300 that lacks genes involved in pathogenicity. Since the development of a cloning system in TM300, numerous genes have been cloned, expressed, and characterized and in particular, virulence genes that could be functionally validated in this non-pathogenic strain. A secretion system was developed for production and secretion of industrially important proteins and later modified to also enable display of heterologous proteins on the surface. The display system has been employed for various purposes, such as development of live bacterial delivery vehicles as well as microbial biocatalysts or bioadsorbents for potential environmental or biosensor applications. Recently, this surface display system has been utilized for display of peptide and protein libraries for profiling of protease substrates and for generation of various affinity proteins, e.g., Affibody molecules and scFv antibodies. In addition, by display of fragmented antigen-encoding genes, the surface expression system has been successfully used for epitope mapping of antibodies. Reviews on specific applications of S. carnosus have been published earlier, but here we provide a more extensive overview, covering a broad range of areas from food fermentation to sophisticated methods for protein-based drug discovery, which are all based on S. carnosus.
Collapse
Affiliation(s)
- John Löfblom
- Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology, AlbaNova University Center, Roslagstullsbacken 21, 106 91, Stockholm, Sweden
| | - Ralf Rosenstein
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine and Infection Medicine (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Minh-Thu Nguyen
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine and Infection Medicine (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Stefan Ståhl
- Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology, AlbaNova University Center, Roslagstullsbacken 21, 106 91, Stockholm, Sweden.
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine and Infection Medicine (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
| |
Collapse
|
12
|
De A, Kuppusamy G, Karri VVSR. Affibody molecules for molecular imaging and targeted drug delivery in the management of breast cancer. Int J Biol Macromol 2017; 107:906-919. [PMID: 28935537 DOI: 10.1016/j.ijbiomac.2017.09.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 09/09/2017] [Accepted: 09/17/2017] [Indexed: 12/29/2022]
Abstract
Breast cancer is one of the leading reasons for the morbidity and mortality of cancer related death globally. The modern therapies are basically the combination of the breast-preserving surgeries or ablation with or without node biopsy or destroying the carcinoma cells adjuvant with chemotherapy, radiotherapy, hormonal or biological therapies depending upon the nature of the receptor of the cancerous cells, nature of the lymph node, as well as the tendency of the recurrence. For decade's carcinoma management suffered by the limitation of imagining, targeting and penetrability problem associated with management and cure of this deadly disease leads to unwanted chemo-toxicity and side effects. Alike other antibody mimetics, affibodies are designed with the combinatorial protein engineering approaches which are small and robust protein scaffolds retaining the favorable folding and stability. Affibody is one of the significantly important tools for imaging and diagnosis of the affinity specific over expressed proteins in the breast cancer management. The review summarizes the various affibody strategies uses in the management of breast cancer.
Collapse
Affiliation(s)
- Anindita De
- JSS College of Pharmacy, Ootacamund, Jagadguru Sri Shivarathreeshwara University, Mysuru, Karnataka, India.
| | - Gowthamarajan Kuppusamy
- JSS College of Pharmacy, Ootacamund, Jagadguru Sri Shivarathreeshwara University, Mysuru, Karnataka, India.
| | | |
Collapse
|
13
|
Ståhl S, Gräslund T, Eriksson Karlström A, Frejd FY, Nygren PÅ, Löfblom J. Affibody Molecules in Biotechnological and Medical Applications. Trends Biotechnol 2017; 35:691-712. [PMID: 28514998 DOI: 10.1016/j.tibtech.2017.04.007] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023]
Abstract
Affibody molecules are small (6.5-kDa) affinity proteins based on a three-helix bundle domain framework. Since their introduction 20 years ago as an alternative to antibodies for biotechnological applications, the first therapeutic affibody molecules have now entered clinical development and more than 400 studies have been published in which affibody molecules have been developed and used in a variety of contexts. In this review, we focus primarily on efforts over the past 5 years to explore the potential of affibody molecules for medical applications in oncology, neurodegenerative, and inflammation disorders, including molecular imaging, receptor signal blocking, and delivery of toxic payloads. In addition, we describe recent examples of biotechnological applications, in which affibody molecules have been exploited as modular affinity fusion partners.
Collapse
Affiliation(s)
- Stefan Ståhl
- Division of Protein Technology, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden.
| | - Torbjörn Gräslund
- Division of Protein Technology, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | | | - Fredrik Y Frejd
- Unit of Biomedical Radiation Sciences, Uppsala University, SE-751 85 Uppsala, Sweden; Affibody AB, Gunnar Asplunds Allé 24, SE-171 69 Solna, Sweden
| | - Per-Åke Nygren
- Division of Protein Technology, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - John Löfblom
- Division of Protein Technology, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| |
Collapse
|
14
|
Chen B, Dai W, He B, Zhang H, Wang X, Wang Y, Zhang Q. Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment. Theranostics 2017; 7:538-558. [PMID: 28255348 PMCID: PMC5327631 DOI: 10.7150/thno.16684] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
The development of traditional tumor-targeted drug delivery systems based on EPR effect and receptor-mediated endocytosis is very challenging probably because of the biological complexity of tumors as well as the limitations in the design of the functional nano-sized delivery systems. Recently, multistage drug delivery systems (Ms-DDS) triggered by various specific tumor microenvironment stimuli have emerged for tumor therapy and imaging. In response to the differences in the physiological blood circulation, tumor microenvironment, and intracellular environment, Ms-DDS can change their physicochemical properties (such as size, hydrophobicity, or zeta potential) to achieve deeper tumor penetration, enhanced cellular uptake, timely drug release, as well as effective endosomal escape. Based on these mechanisms, Ms-DDS could deliver maximum quantity of drugs to the therapeutic targets including tumor tissues, cells, and subcellular organelles and eventually exhibit the highest therapeutic efficacy. In this review, we expatiate on various responsive modes triggered by the tumor microenvironment stimuli, introduce recent advances in multistage nanoparticle systems, especially the multi-stimuli responsive delivery systems, and discuss their functions, effects, and prospects.
Collapse
Affiliation(s)
- Binlong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiguang Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| |
Collapse
|
15
|
Yang Y, Guo Q, Chen X, Zhang J, Guo H, Qian W, Hou S, Dai J, Li B, Guo Y, Wang H. Preclinical studies of a Pro-antibody-drug conjugate designed to selectively target EGFR-overexpressing tumors with improved therapeutic efficacy. MAbs 2016; 8:405-13. [PMID: 26760045 DOI: 10.1080/19420862.2015.1127491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Antibody-drug conjugates (ADCs) have exhibited potent clinical benefits in cancer therapy. However, development of ADCs against epidermal growth factor receptor (EGFR) has limitations because of wide expression of EGFR in both normal and tumor tissues. Previously, we developed an anti-EGFR protease-activated antibody (pro-antibody), termed as PanP, which remains inert against EGFR until activated by tumor-specific protease. Herein, we for the first time report a new class of pro-antibody-drug conjugate (PDC) against EGFR, denoted as PanP-DM1. It has been designed to selectively target the EGFR-overexpressing tumor cells and exert greater anti-tumor activity compared with PanP. Our data showed that PanP-DM1 also could be selectively activated by tumor-specific protease 'uPA'. Furthermore, activated PanP-DM1 was potently cytotoxic against EGFR-overexpressing tumor cell lines in vitro. Crucially, our data indicated that PanP-DM1 was significantly more effective in eradicating EGFR-overexpressing tumors in vivo. Additionally, toxicity was preliminarily evaluated in mice as measured by body weight loss. In summary, our study suggests that PanP-DM1, a novel pro-antibody-drug conjugate, has cancer-selectivity, efficacy and safety profile that supports its potential use for EGFR-overexpressing tumors.
Collapse
Affiliation(s)
- Yun Yang
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,b School of Basic Medical Sciences, Xinxiang Medical University , Xinxiang , China.,c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China
| | - Qingcheng Guo
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China
| | - Xi Chen
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China
| | - Junjie Zhang
- c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China.,f School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Huaizu Guo
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China.,d Zhangjiang Biotechnology Co. Ltd , Shanghai , China
| | - Weizhu Qian
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China.,d Zhangjiang Biotechnology Co. Ltd , Shanghai , China
| | - Sheng Hou
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China
| | - Jianxin Dai
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China
| | - Bohua Li
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China
| | - Yajun Guo
- c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China.,e School of Pharmacy, Liaocheng University , Liaocheng , China.,f School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Hao Wang
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,c State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China.,e School of Pharmacy, Liaocheng University , Liaocheng , China
| |
Collapse
|
16
|
Sandersjöö L, Jonsson A, Löfblom J. Protease substrate profiling using bacterial display of self-blocking affinity proteins and flow-cytometric sorting. Biotechnol J 2016; 12. [DOI: 10.1002/biot.201600365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Lisa Sandersjöö
- Division of Protein Technology, School of Biotechnology, KTH - Royal Institute of Technology; AlbaNova University Center; Stockholm Sweden
| | - Andreas Jonsson
- Division of Protein Technology, School of Biotechnology, KTH - Royal Institute of Technology; AlbaNova University Center; Stockholm Sweden
| | - John Löfblom
- Division of Protein Technology, School of Biotechnology, KTH - Royal Institute of Technology; AlbaNova University Center; Stockholm Sweden
| |
Collapse
|
17
|
Ghisaidoobe ABT, Chung SJ. Functionalized protein nanocages as a platform of targeted therapy and immunodetection. Nanomedicine (Lond) 2015; 10:3579-95. [PMID: 26651131 DOI: 10.2217/nnm.15.175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To improve the therapeutic/diagnostic potentials of drugs and/or imaging contrast agents, various targeted delivery systems are actively being developed. Especially protein nanocages, hollow and highly symmetrical nanometer-sized cage structures that are self-assembled from multiple protein subunits, are emerging as powerful targeted delivery tools. Their natural abundance, biocompatibility, low toxicity, well defined size and high symmetry are a few of the favorable characteristics which render protein nanocages as near ideal carriers for pharmaceuticals and/or imaging probes. This review aims to highlight current progress in the development and application of protein nanocages in targeted drug delivery approaches with an emphasis on the use of antibodies as targeting motifs to achieve high selectivity toward specific targets.
Collapse
Affiliation(s)
| | - Sang J Chung
- Department of Chemistry, Dongguk University, Seoul 100-715, Republic of Korea
| |
Collapse
|
18
|
Liu H, Seijsing J, Frejd FY, Tolmachev V, Gräslund T. Target-specific cytotoxic effects on HER2-expressing cells by the tripartite fusion toxin ZHER2:2891-ABD-PE38X8, including a targeting affibody molecule and a half-life extension domain. Int J Oncol 2015; 47:601-9. [PMID: 26046132 DOI: 10.3892/ijo.2015.3027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/02/2015] [Indexed: 11/06/2022] Open
Abstract
Development of cancer treatment regimens including immunotoxins is partly hampered by their immunogenicity. Recently, deimmunized versions of toxins have been described, potentially being better suited for translation to the clinic. In this study, a recombinant tripartite fusion toxin consisting of a deimmunized version of exotoxin A from Pseudomonas aeruginosa (PE38) genetically fused to an affibody molecule specifically interacting with the human epidermal growth factor receptor 2 (HER2), and also an albumin binding domain (ABD) for half-life extension, has been produced and characterized in terms of functionality of the three moieties. Biosensor based assays showed that the fusion toxin was able to interact with human and mouse serum albumin, but not with bovine serum albumin and that it interacted with HER2 (KD=5 nM). Interestingly, a complex of the fusion toxin and human serum albumin also interacted with HER2 but with a somewhat weaker affinity (KD=12 nM). The IC50-values of the fusion toxin ranged from 6 to 300 pM on SKOV-3, SKBR-3 and A549 cells and was lower for cells with higher surface densities of HER2. The fusion toxin was found specific for HER2 as shown by blocking available HER2 receptors with free affibody molecule before subjecting the cells to the toxin. Analysis of contact time showed that 10 min was sufficient to kill 50% of the cells. In conclusion, all three regions of the fusion toxin were found to be functional.
Collapse
Affiliation(s)
- Hao Liu
- School of Biotechnology, Division of Protein Technology, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Johan Seijsing
- School of Biotechnology, Division of Protein Technology, KTH - Royal Institute of Technology, Stockholm, Sweden
| | | | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Torbjörn Gräslund
- School of Biotechnology, Division of Protein Technology, KTH - Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|