1
|
Pan D, Di X, Yan B, Su X. Advances in the Study of Non-Coding RNA in the Signaling Pathway of Pulmonary Fibrosis. Int J Gen Med 2024; 17:1419-1431. [PMID: 38617054 PMCID: PMC11016256 DOI: 10.2147/ijgm.s455707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
Pulmonary fibrosis is a group of chronic, progressive, and irreversible interstitial lung diseases, which are common to most end-stage lung diseases and are one of the most difficult diseases of the respiratory system. In recent years, due to the frequent occurrence of air pollution and smog, the incidence of pulmonary fibrosis in China has increased year by year, the morbidity and mortality rates of pulmonary fibrosis have gradually increased and the age of the disease tends to be younger. However, the pathogenesis of pulmonary fibrosis is not yet fully understood and is needed to further explore new drug targets. Studies have shown that non-coding RNAs play an important role in regulating the process of pulmonary fibrosis, non-coding RNAs and their specifically expressed can promote or inhibit the process. Here, we review the role of some in the regulation of pulmonary fibrosis signaling pathways and provide new ideas for the clinical diagnosis and treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Dengyun Pan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xin Di
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bingdi Yan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiaomin Su
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
2
|
Chen H, Fan Y, Jing H, Tang S, Zhou J. Emerging role of lncRNAs in renal fibrosis. Arch Biochem Biophys 2020; 692:108530. [PMID: 32768395 DOI: 10.1016/j.abb.2020.108530] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Fibrosis is the final common pathological feature of a wide variety of chronic kidney disease (CKD). However, an understanding of the mechanisms underlying the development of renal fibrosis remains challenging and controversial. As the current focus of molecular research, noncoding RNAs (ncRNAs), mainly microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular noncoding RNAs (circRNAs), have powerful and abundant biological functions, which essentially makes them mediators of the physiological and pathological processes of various system diseases. The role of ncRNAs in renal fibrosis has also received great attention in recent years, but most research has mainly focused on miRNAs. In fact, although a large number of studies of lncRNAs have emerged recently, the role these molecules play in renal fibrosis haven't been fully understood till now. Thus, this review discusses the discovery of lncRNAs and their biological functions in different types of renal fibrosis, as well as the imminent applications of these findings in clinical use. Undoubtedly, in the future, further understanding of the function of all types of lncRNAs will reveal large breakthroughs in the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Hongtao Chen
- Department of Anesthesiology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510060, China
| | - Youling Fan
- Department of Anesthesiology, Panyu Central Hospital, Guangzhou, Guangdong Province, 511400, China
| | - Huan Jing
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Simin Tang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
3
|
Li Y, Ma Q, Li P, Wang J, Wang M, Fan Y, Wang T, Wang C, Wang T, Zhao B. Proteomics reveals different pathological processes of adipose tissue, liver, and skeletal muscle under insulin resistance. J Cell Physiol 2020; 235:6441-6461. [PMID: 32115712 DOI: 10.1002/jcp.29658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes mellitus is the most common type of diabetes, and insulin resistance (IR) is its core pathological mechanism. Proteomics is an ingenious and promising Omics technology that can comprehensively describe the global protein expression profiling of body or specific tissue, and is widely applied to the study of molecular mechanisms of diseases. In this paper, we focused on insulin target organs: adipose tissue, liver, and skeletal muscle, and analyzed the different pathological processes of IR in these three tissues based on proteomics research. By literature studies, we proposed that the main pathological processes of IR among target organs were diverse, which showed unique characteristics and focuses. We further summarized the differential proteins in target organs which were verified to be related to IR, and discussed the proteins that may play key roles in the emphasized pathological processes, aiming at discovering potentially specific differential proteins of IR, and providing new ideas for pathological mechanism research of IR.
Collapse
Affiliation(s)
- Yaqi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Quantao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pengfei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingkang Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Min Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Integrated analysis of non-coding RNAs for the identification of promising biomarkers in interstitial lung diseases. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
5
|
Liu G, Thannickal VJ. The Lung Likes the Little Fella miR-29. Am J Respir Cell Mol Biol 2017; 57:637-638. [PMID: 29192829 DOI: 10.1165/rcmb.2017-0266ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Gang Liu
- 1 Department of Medicine University of Alabama at Birmingham Birmingham, Alabama
| | - Victor J Thannickal
- 1 Department of Medicine University of Alabama at Birmingham Birmingham, Alabama
| |
Collapse
|
6
|
Potential contribution of alveolar epithelial type I cells to pulmonary fibrosis. Biosci Rep 2017; 37:BSR20171301. [PMID: 29026006 PMCID: PMC5696455 DOI: 10.1042/bsr20171301] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
Pulmonary fibrosis (PF) is characterized by inflammation and fibrosis of the interstitium and destruction of alveolar histoarchitecture ultimately leading to a fatal impairment of lung function. Different concepts describe either a dominant role of inflammatory pathways or a disturbed remodeling of resident cells of the lung parenchyma during fibrogenesis. Further, a combination of both the mechanisms has been postulated. The present review emphasizes the particular involvement of alveolar epithelial type I cells in all these processes, their contribution to innate immune/inflammatory functions and maintenance of proper alveolar barrier functions. Amongst the different inflammatory and repair events the purinergic receptor P2X7, an ATP-gated cationic channel that regulates not only apoptosis, necrosis, autophagy, and NLPR3 inflammosome activation, but also the turnover of diverse tight junction (TJ) and water channel proteins, seems to be essential for the stability of alveolar barrier integrity and for the interaction with protective factors during lung injury.
Collapse
|
7
|
Cui H, Banerjee S, Xie N, Ge J, Liu RM, Matalon S, Thannickal VJ, Liu G. MicroRNA-27a-3p Is a Negative Regulator of Lung Fibrosis by Targeting Myofibroblast Differentiation. Am J Respir Cell Mol Biol 2017; 54:843-52. [PMID: 26600197 DOI: 10.1165/rcmb.2015-0205oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although microRNAs (miRs) have been well recognized to play an important role in the pathogenesis of organ fibrosis, there is a lack of evidence as to whether miRs directly regulate the differentiation of myofibroblasts, the putative effector cells during pathological fibrogenesis. In this study, we found that levels of miR-27a-3p were up-regulated in transforming growth factor-β1-treated human lung fibroblasts in a Smad2/3-dependent manner and in fibroblasts isolated from lungs of mice with experimental pulmonary fibrosis. However, both basal and transforming growth factor-β1-induced expression of miR-27a-3p were reduced in lung fibroblasts from patients with idiopathic pulmonary fibrosis compared with that from normal control subjects. Overexpression of miR-27a-3p inhibited, whereas knockdown of miR-27a-3p enhanced, the differentiation of lung fibroblasts into myofibroblasts. We found that miR-27a-3p directly targeted the phenotypic marker of myofibroblasts, α-smooth muscle actin, and two key Smad transcription factors, Smad2 and Smad4. More importantly, we found that therapeutic expression of miR-27a-3p in mouse lungs through lentiviral delivery diminished bleomycin-induced lung fibrosis. In conclusion, our data suggest that miR-27a-3p functions via a negative-feedback mechanism in inhibiting lung fibrosis. This study also indicates that targeting miR-27a-3p is a novel therapeutic approach to treat fibrotic organ disorders, including lung fibrosis.
Collapse
Affiliation(s)
- Huachun Cui
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Sami Banerjee
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Na Xie
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Jing Ge
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Rui-Ming Liu
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Sadis Matalon
- 2 Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor J Thannickal
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Gang Liu
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| |
Collapse
|
8
|
Cui H, Ge J, Xie N, Banerjee S, Zhou Y, Antony VB, Thannickal VJ, Liu G. miR-34a Inhibits Lung Fibrosis by Inducing Lung Fibroblast Senescence. Am J Respir Cell Mol Biol 2017; 56:168-178. [PMID: 27635790 DOI: 10.1165/rcmb.2016-0163oc] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cellular senescence has been implicated in diverse pathologies. However, there is conflicting evidence regarding the role of this process in tissue fibrosis. Although dysregulation of microRNAs is a key mechanism in the pathogenesis of lung fibrosis, it is unclear whether microRNAs function by regulating cellular senescence in the disease. In this study, we found that miR-34a demonstrated greater expression in the lungs of patients with idiopathic pulmonary fibrosis and in mice with experimental pulmonary fibrosis, with its primary localization in lung fibroblasts. More importantly, miR-34a was up-regulated significantly in both human and mouse lung myofibroblasts. We found that mice with miR-34a ablation developed more severe pulmonary fibrosis than did wild-type animals after fibrotic lung injury. Mechanistically, we found that miR-34a induced a senescent phenotype in lung fibroblasts because this microRNA increased senescence-associated β-galactosidase activity, enhanced expression of senescence markers, and decreased cell proliferative capacities. Consistently, we found that primary lung fibroblasts from fibrotic lungs of miR-34a-deficient mice had a diminished senescent phenotype and enhanced resistance to apoptosis as compared with those from wild-type animals. We also identified multiple miR-34a targets that likely mediated its activities in inducing senescence in lung fibroblasts. In conclusion, our data suggest that miR-34a functions through a negative feedback mechanism to restrain fibrotic response in the lungs by promoting senescence of pulmonary fibroblasts.
Collapse
Affiliation(s)
- Huachun Cui
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Jing Ge
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and.,2 Department of Geriatrics and Institute of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Xie
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Sami Banerjee
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Yong Zhou
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Veena B Antony
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Victor J Thannickal
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Gang Liu
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
9
|
Abstract
Despite major research efforts leading to the recent approval of pirfenidone and nintedanib, the dismal prognosis of idiopathic pulmonary fibrosis (IPF) remains unchanged. The elaboration of international diagnostic criteria and disease stratification models based on clinical, physiological, radiological, and histopathological features has improved the accuracy of IPF diagnosis and prediction of mortality risk. Nevertheless, given the marked heterogeneity in clinical phenotype and the considerable overlap of IPF with other fibrotic interstitial lung diseases (ILDs), about 10% of cases of pulmonary fibrosis remain unclassifiable. Moreover, currently available tools fail to detect early IPF, predict the highly variable course of the disease, and assess response to antifibrotic drugs. Recent advances in understanding the multiple interrelated pathogenic pathways underlying IPF have identified various molecular phenotypes resulting from complex interactions among genetic, epigenetic, transcriptional, post-transcriptional, metabolic, and environmental factors. These different disease endotypes appear to confer variable susceptibility to the condition, differing risks of rapid progression, and, possibly, altered responses to therapy. The development and validation of diagnostic and prognostic biomarkers are necessary to enable a more precise and earlier diagnosis of IPF and to improve prediction of future disease behaviour. The availability of approved antifibrotic therapies together with potential new drugs currently under evaluation also highlights the need for biomarkers able to predict and assess treatment responsiveness, thereby allowing individualised treatment based on risk of progression and drug response. This approach of disease stratification and personalised medicine is already used in the routine management of many cancers and provides a potential road map for guiding clinical care in IPF.
Collapse
Affiliation(s)
- Cécile Daccord
- Interstitial Lung Disease Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK; Respiratory Medicine Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Toby M Maher
- Interstitial Lung Disease Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK; NIHR Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK; Fibrosis Research Group, Imperial College, London, UK
| |
Collapse
|
10
|
Rangarajan S, Locy ML, Luckhardt TR, Thannickal VJ. Targeted Therapy for Idiopathic Pulmonary Fibrosis: Where To Now? Drugs 2016; 76:291-300. [PMID: 26729185 PMCID: PMC4939080 DOI: 10.1007/s40265-015-0523-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aging-associated, recalcitrant lung disease with historically limited therapeutic options. The recent approval of two drugs, pirfenidone and nintedanib, by the US Food and Drug Administration in 2014 has heralded a new era in its management. Both drugs have demonstrated efficacy in phase III clinical trials by retarding the rate of progression of IPF; neither drug appears to be able to completely arrest disease progression. Advances in the understanding of IPF pathobiology have led to an unprecedented expansion in the number of potential therapeutic targets. Drugs targeting several of these are under investigation in various stages of clinical development. Here, we provide a brief overview of the drugs that are currently approved and others in phase II clinical trials. Future therapeutic opportunities that target novel pathways, including some that are associated with the biology of aging, are examined. A multi-targeted approach, potentially with combination therapies, and identification of individual patients (or subsets of patients) who may respond more favourably to specific agents are likely to be more effective.
Collapse
Affiliation(s)
- Sunad Rangarajan
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 1900 University Blvd THT 422, Birmingham, AL, 35294-2180, USA
| | - Morgan L Locy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 1900 University Blvd THT 422, Birmingham, AL, 35294-2180, USA
| | - Tracy R Luckhardt
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 1900 University Blvd THT 422, Birmingham, AL, 35294-2180, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 1900 University Blvd THT 422, Birmingham, AL, 35294-2180, USA.
| |
Collapse
|
11
|
Xie N, Liu G. ncRNA-regulated immune response and its role in inflammatory lung diseases. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1076-87. [PMID: 26432871 DOI: 10.1152/ajplung.00286.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/29/2015] [Indexed: 02/08/2023] Open
Abstract
Despite the greatly expanded knowledge on the regulation of immune response by protein molecules, there is increasing understanding that noncoding RNAs (ncRNAs) are also an integral component of this regulatory network. Abnormal immune response serves a central role in the initiation, progression, and exacerbation of inflammatory lung diseases, such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, and acute respiratory distress syndrome/acute lung injury. Dysregulation of ncRNAs has been linked to various immunopathologies. In this review, we highlighted the role of ncRNAs in the regulation of innate and adaptive immunity and summarized recent findings that ncRNAs participate in the pathogenesis of inflammatory lung diseases via their regulation of pulmonary immunity. We also discussed therapeutic potentials for targeting ncRNAs to treat these lung disorders.
Collapse
Affiliation(s)
- Na Xie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|