1
|
Freuville L, Matthys C, Quinton L, Gillet JP. Venom-derived peptides for breaking through the glass ceiling of drug development. Front Chem 2024; 12:1465459. [PMID: 39398192 PMCID: PMC11468230 DOI: 10.3389/fchem.2024.1465459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024] Open
Abstract
Venoms are complex mixtures produced by animals and consist of hundreds of components including small molecules, peptides, and enzymes selected for effectiveness and efficacy over millions of years of evolution. With the development of venomics, which combines genomics, transcriptomics, and proteomics to study animal venoms and their effects deeply, researchers have identified molecules that selectively and effectively act against membrane targets, such as ion channels and G protein-coupled receptors. Due to their remarkable physico-chemical properties, these molecules represent a credible source of new lead compounds. Today, not less than 11 approved venom-derived drugs are on the market. In this review, we aimed to highlight the advances in the use of venom peptides in the treatment of diseases such as neurological disorders, cardiovascular diseases, or cancer. We report on the origin and activity of the peptides already approved and provide a comprehensive overview of those still in development.
Collapse
Affiliation(s)
- Lou Freuville
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Chloé Matthys
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
2
|
Dresler J, Herzig V, Vilcinskas A, Lüddecke T. Enlightening the toxinological dark matter of spider venom enzymes. NPJ BIODIVERSITY 2024; 3:25. [PMID: 39271930 PMCID: PMC11399385 DOI: 10.1038/s44185-024-00058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
Spiders produce highly adapted venoms featuring a complex mixture of biomolecules used mainly for hunting and defense. The most prominent components are peptidic neurotoxins, a major focus of research and drug development, whereas venom enzymes have been largely neglected. Nevertheless, investigation of venom enzymes not only reveals insights into their biological functions, but also provides templates for future industrial applications. Here we compared spider venom enzymes validated at protein level contained in the VenomZone database and from all publicly available proteo-transcriptomic spider venom datasets. We assigned reported enzymes to cellular processes and known venom functions, including toxicity, prey pre-digestion, venom preservation, venom component activation, and spreading factors. Our study unveiled extensive discrepancy between public databases and publications with regard to enzyme coverage, which impedes the development of novel spider venom enzyme-based applications. Uncovering the previously unrecognized abundance and diversity of venom enzymes will open new avenues for spider venom biodiscovery.
Collapse
Affiliation(s)
- Josephine Dresler
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany.
| | - Volker Herzig
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Andreas Vilcinskas
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Gießen, Germany
| | - Tim Lüddecke
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany.
| |
Collapse
|
3
|
Chary PS, Shaikh S, Rajana N, Bhavana V, Mehra NK. Unlocking nature's arsenal: Nanotechnology for targeted delivery of venom toxins in cancer therapy. BIOMATERIALS ADVANCES 2024; 162:213903. [PMID: 38824828 DOI: 10.1016/j.bioadv.2024.213903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/24/2024] [Accepted: 05/19/2024] [Indexed: 06/04/2024]
Abstract
AIM The aim of the present review is to shed light on the nanotechnological approaches adopted to overcome the shortcomings associated with the delivery of venom peptides which possess inherent anti-cancer properties. BACKGROUND Venom peptides although have been reported to demonstrate anti-cancer effects, they suffer from several disadvantages such as in vivo instability, off-target adverse effects, limited drug loading and low bioavailability. This review presents a comprehensive compilation of different classes of nanocarriers while underscoring their advantages, disadvantages and potential to carry such peptide molecules for in vivo delivery. It also discusses various nanotechnological aspects such as methods of fabrication, analytical tools to assess these nanoparticulate formulations, modulation of nanocarrier polymer properties to enhance loading capacity, stability and improve their suitability to carry toxic peptide drugs. CONCLUSION Nanotechnological approaches bear great potential in delivering venom peptide-based molecules as anticancer agents by enhancing their bioavailability, stability, efficacy as well as offering a spatiotemporal delivery approach. However, the challenges associated with toxicity and biocompatibility of nanocarriers must be duly addressed. PERSPECTIVES The everlasting quest for new breakthroughs for safer delivery of venom peptides in human subjects is fuelled by unmet clinical needs in the current landscape of chemotherapy. In addition, exhaustive efforts are required in obtaining and purifying the venom peptides followed by designing and optimizing scale up technologies.
Collapse
Affiliation(s)
- Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Samia Shaikh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Dersch L, Stahlhut A, Eichberg J, Paas A, Hardes K, Vilcinskas A, Lüddecke T. Engineering a wolf spider A-family toxin towards increased antimicrobial activity but low toxicity. Toxicon 2024; 247:107810. [PMID: 38880255 DOI: 10.1016/j.toxicon.2024.107810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
Spider-derived peptides with insecticidal, antimicrobial and/or cytolytic activities, also known as spider venom antimicrobial peptides (AMPs), can be found in the venoms of RTA-clade spiders. They show translational potential as therapeutic leads. A set of 52 AMPs has been described in the Chinese wolf spider (Lycosa shansia), and many have been shown to exhibit antibacterial effects. Here we explored the potential to enhance their antimicrobial activity using bioengineering. We generated a panel of artificial derivatives of an A-family peptide and screened their activity against selected microbial pathogens, vertebrate cells and insects. In several cases, we increased the antimicrobial activity of the derivatives while retaining the low cytotoxicity of the parental molecule. Furthermore, we injected the peptides into adult Drosophila suzukii and found no evidence of insecticidal effects, confirming the low levels of toxicity. Our data therefore suggest that spider venom linear peptides naturally defend the venom gland against microbial colonization and can be modified into more potent antimicrobial agents that could help to battle infectious diseases in the future.
Collapse
Affiliation(s)
- Ludwig Dersch
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany.
| | - Antonia Stahlhut
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Johanna Eichberg
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Anne Paas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Kornelia Hardes
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany; BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| |
Collapse
|
5
|
Fernando JC, Batucan JD, Peran JE, Salvador-Reyes LA, Villaraza AJL. The Wheel of Fortune: Helical Wheel Alanine Scanning of a Spider Venom Antimicrobial Peptide Reveals Residues Involved in Antimicrobial and Cytotoxic Activity. ChemMedChem 2024:e202400488. [PMID: 39128881 DOI: 10.1002/cmdc.202400488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
A preference for several amino acids is observed to occur at particular positions of cationic α-helical antimicrobial peptides (AMPs), which ensures the formation of amphipathic regions once they assume their correct secondary structure in membranes or membrane-mimicking environments and makes them active against pathogens. This study determined the effect of alanine mutations on the secondary structure and bioactivity of lyp1987 (GRLQAFLAKMKEIAAQTL-NH2), a cationic α-helical AMP obtained from the venom of Lycosa poonaensis which exhibits broad range activity against Gram-positive and Gram-negative bacteria with micromolar minimum inhibitory concentrations (MIC). CD spectroscopy revealed no significant difference in the secondary structure, with all alanine-substituted analogs exhibiting predominantly α-helical structure in buffered 2,2,2-trifluoroethanol solution. Alanine substitution at Glu12 and Thr17 increased the activity of lyp1987 against Gram-positive and -negative bacteria, while alanine substitution at Lys9 increased its selectivity against Gram-positive bacteria. Further investigation can be done to determine positions and substitutions that will give less cytotoxic analogs.
Collapse
Affiliation(s)
- Jomari C Fernando
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Metro Manila, Philippines
| | - Jeremiah D Batucan
- Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Metro Manila, Philippines
| | - Jacquelyn E Peran
- Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Metro Manila, Philippines
| | - Lilibeth A Salvador-Reyes
- Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Metro Manila, Philippines
| | - Aaron Joseph L Villaraza
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Metro Manila, Philippines
| |
Collapse
|
6
|
Dubovskii PV, Utkin YN. Specific Amino Acid Residues in the Three Loops of Snake Cytotoxins Determine Their Membrane Activity and Provide a Rationale for a New Classification of These Toxins. Toxins (Basel) 2024; 16:262. [PMID: 38922156 PMCID: PMC11209149 DOI: 10.3390/toxins16060262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Cytotoxins (CTs) are three-finger membrane-active toxins present mainly in cobra venom. Our analysis of the available CT amino acid sequences, literature data on their membrane activity, and conformational equilibria in aqueous solution and detergent micelles allowed us to identify specific amino acid residues which interfere with CT incorporation into membranes. They include Pro9, Ser28, and Asn/Asp45 within the N-terminal, central, and C-terminal loops, respectively. There is a hierarchy in the effect of these residues on membrane activity: Pro9 > Ser28 > Asn/Asp45. Taking into account all the possible combinations of special residues, we propose to divide CTs into eight groups. Group 1 includes toxins containing all of the above residues. Their representatives demonstrated the lowest membrane activity. Group 8 combines CTs that lack these residues. For the toxins from this group, the greatest membrane activity was observed. We predict that when solely membrane activity determines the cytotoxic effects, the activity of CTs from a group with a higher number should exceed that of CTs from a group with a lower number. This classification is supported by the available data on the cytotoxicity and membranotropic properties of CTs. We hypothesize that the special amino acid residues within the loops of the CT molecule may indicate their involvement in the interaction with non-lipid targets.
Collapse
Affiliation(s)
- Peter V. Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia;
| | | |
Collapse
|
7
|
Guo R, Guo G, Wang A, Xu G, Lai R, Jin H. Spider-Venom Peptides: Structure, Bioactivity, Strategy, and Research Applications. Molecules 2023; 29:35. [PMID: 38202621 PMCID: PMC10779620 DOI: 10.3390/molecules29010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Spiders (Araneae), having thrived for over 300 million years, exhibit remarkable diversity, with 47,000 described species and an estimated 150,000 species in existence. Evolving with intricate venom, spiders are nature's skilled predators. While only a small fraction of spiders pose a threat to humans, their venoms contain complex compounds, holding promise as drug leads. Spider venoms primarily serve to immobilize prey, achieved through neurotoxins targeting ion channels. Peptides constitute a major part of these venoms, displaying diverse pharmacological activities, and making them appealing for drug development. Moreover, spider-venom peptides have emerged as valuable tools for exploring human disease mechanisms. This review focuses on the roles of spider-venom peptides in spider survival strategies and their dual significance as pharmaceutical research tools. By integrating recent discoveries, it provides a comprehensive overview of these peptides, their targets, bioactivities, and their relevance in spider survival and medical research.
Collapse
Affiliation(s)
- Ruiyin Guo
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
| | - Gang Guo
- The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, China;
| | - Aili Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
| | - Gaochi Xu
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
| | - Ren Lai
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming-Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming 650107, China
| | - Hui Jin
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (R.G.)
| |
Collapse
|
8
|
Ramirez CAB, Mathews PD, Madrid RRM, Garcia ITS, Rigoni VLS, Mertins O. Antibacterial polypeptide-bioparticle for oral administration: Powder formulation, palatability and in vivo toxicity approach. BIOMATERIALS ADVANCES 2023; 153:213525. [PMID: 37352744 DOI: 10.1016/j.bioadv.2023.213525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
The upsurge of bacterial resistance to conventional antibiotics turned a well-recognized public health threat. The need of developing new biomaterials of effective practical use in order to tackle bacterial resistance became urgent. In this study, a submicrometric bioparticle of known antibacterial activity was produced in powder form with suitable texture and appealing characteristics for effective oral administration. Through complex coacervating a natural-source antimicrobial polypeptide with chitosan-N-arginine and alginate, the bioactive polypeptide was physically incorporated to the bioparticle whose structure positively responds to the pH variations found in gastrointestinal tract. The powder formulation presented high palatability that was evaluated using fish as in vivo animal model. A thorough survey of the fish intestinal tissues, following a systematic oral administration, revealed high penetration potential of the biomaterial through epithelial cells and deeper intestine layers. Despite, no cytotoxic effect was observed in analyzing the tissues through different histology methods. The absence of intestinal damage was corroborated by immune histochemistry, being the integrity of epithelial motor myosin Vb and related traffic proteins preserved. Hematology further endorsed absence of toxicity in blood cells whose morphology was evaluated in detail. The study evidenced the applicability potential of a new biomaterial of appealing and safe oral administration of antibacterial polypeptide.
Collapse
Affiliation(s)
- Carlos A B Ramirez
- Laboratory of Nano Bio Materials, Department of Biophysics, Paulista Medical Scholl, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil
| | - Patrick D Mathews
- Laboratory of Nano Bio Materials, Department of Biophysics, Paulista Medical Scholl, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil; Muséum National d'Histoire Naturelle, Sorbonne Université, CP26, 75231 Paris, France.
| | - Rafael R M Madrid
- Laboratory of Nano Bio Materials, Department of Biophysics, Paulista Medical Scholl, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil
| | - Irene T S Garcia
- Department of Physical-Chemistry, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| | - Vera L S Rigoni
- Laboratory of Nano Bio Materials, Department of Biophysics, Paulista Medical Scholl, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil
| | - Omar Mertins
- Laboratory of Nano Bio Materials, Department of Biophysics, Paulista Medical Scholl, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil.
| |
Collapse
|
9
|
Tsetlin V, Shelukhina I, Kozlov S, Kasheverov I. Fifty Years of Animal Toxin Research at the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS. Int J Mol Sci 2023; 24:13884. [PMID: 37762187 PMCID: PMC10530976 DOI: 10.3390/ijms241813884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
This review covers briefly the work carried out at our institute (IBCh), in many cases in collaboration with other Russian and foreign laboratories, for the last 50 years. It discusses the discoveries and studies of various animal toxins, including protein and peptide neurotoxins acting on the nicotinic acetylcholine receptors (nAChRs) and on other ion channels. Among the achievements are the determination of the primary structures of the α-bungarotoxin-like three-finger toxins (TFTs), covalently bound dimeric TFTs, glycosylated cytotoxin, inhibitory cystine knot toxins (ICK), modular ICKs, and such giant molecules as latrotoxins and peptide neurotoxins from the snake, as well as from other animal venoms. For a number of toxins, spatial structures were determined, mostly by 1H-NMR spectroscopy. Using this method in combination with molecular modeling, the molecular mechanisms of the interactions of several toxins with lipid membranes were established. In more detail are presented the results of recent years, among which are the discovery of α-bungarotoxin analogs distinguishing the two binding sites in the muscle-type nAChR, long-chain α-neurotoxins interacting with α9α10 nAChRs and with GABA-A receptors, and the strong antiviral effects of dimeric phospholipases A2. A summary of the toxins obtained from arthropod venoms includes only highly cited works describing the molecules' success story, which is associated with IBCh. In marine animals, versatile toxins in terms of structure and molecular targets were discovered, and careful work on α-conotoxins differing in specificity for individual nAChR subtypes gave information about their binding sites.
Collapse
Affiliation(s)
- Victor Tsetlin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia; (I.S.); (I.K.)
| | - Irina Shelukhina
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia; (I.S.); (I.K.)
| | - Sergey Kozlov
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia;
| | - Igor Kasheverov
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia; (I.S.); (I.K.)
| |
Collapse
|
10
|
Dubovskii PV, Ignatova AA, Alekseeva AS, Starkov VG, Boldyrev IA, Feofanov AV, Utkin YN. Membrane-Disrupting Activity of Cobra Cytotoxins Is Determined by Configuration of the N-Terminal Loop. Toxins (Basel) 2022; 15:6. [PMID: 36668826 PMCID: PMC9866941 DOI: 10.3390/toxins15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
In aqueous solutions, cobra cytotoxins (CTX), three-finger folded proteins, exhibit conformational equilibrium between conformers with either cis or trans peptide bonds in the N-terminal loop (loop-I). The equilibrium is shifted to the cis form in toxins with a pair of adjacent Pro residues in this loop. It is known that CTX with a single Pro residue in loop-I and a cis peptide bond do not interact with lipid membranes. Thus, if a cis peptide bond is present in loop-I, as in a Pro-Pro containing CTX, this should weaken its lipid interactions and likely cytotoxic activities. To test this, we have isolated seven CTX from Naja naja and N. haje cobra venoms. Antibacterial and cytotoxic activities of these CTX, as well as their capability to induce calcein leakage from phospholipid liposomes, were evaluated. We have found that CTX with a Pro-Pro peptide bond indeed exhibit attenuated membrane-perturbing activity in model membranes and lower cytotoxic/antibacterial activity compared to their counterparts with a single Pro residue in loop-I.
Collapse
Affiliation(s)
- Peter V. Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Anastasia A. Ignatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Anna S. Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Vladislav G. Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Ivan A. Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexey V. Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Bioengineering Department, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
11
|
Tan H, Wang J, Song Y, Liu S, Lu Z, Luo H, Tang X. Antibacterial Potential Analysis of Novel α-Helix Peptides in the Chinese Wolf Spider Lycosa sinensis. Pharmaceutics 2022; 14:pharmaceutics14112540. [PMID: 36432731 PMCID: PMC9698133 DOI: 10.3390/pharmaceutics14112540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The spider Lycosa sinensis represents a burrowing wolf spider (family Lycosidae) widely distributed in the cotton region of northern China, whose venom is rich in various bioactive peptides. In previous study, we used a combination strategy of peptidomic and transcriptomic analyses to systematically screen and identify potential antimicrobial peptides (AMPs) in Lycosa sinensis venom that matched the α-helix structures. In this work, the three peptides (LS-AMP-E1, LS-AMP-F1, and LS-AMP-G1) were subjected to sequence analysis of the physicochemical properties and helical wheel projection, and then six common clinical pathogenic bacteria (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) with multiple drug-resistance were isolated and cultured for the evaluation and analysis of antimicrobial activity of these peptides. The results showed that two peptides (LS-AMP-E1 and LS-AMP-F1) had different inhibitory activity against six clinical drug-resistant bacteria; they can effectively inhibit the formation of biofilm and have no obvious hemolytic effect. Moreover, both LS-AMP-E1 and LS-AMP-F1 exhibited varying degrees of synergistic therapeutic effects with traditional antibiotics (azithromycin, erythromycin, and doxycycline), significantly reducing the working concentration of antibiotics and AMPs. In terms of antimicrobial mechanisms, LS-AMP-E1 and LS-AMP-F1 destroyed the integrity of bacterial cell membranes in a short period of time and completely inhibited bacterial growth within 10 min of action. Meanwhile, high concentrations of Mg2+ effectively reduced the antibacterial activity of LS-AMP-E1 and LS-AMP-F1. Together, it suggested that the two peptides interact directly on bacterial cell membranes. Taken together, bioinformatic and functional analyses in the present work sheds light on the structure-function relationships of LS-AMPs, and facilitates the discovery and clinical application of novel AMPs.
Collapse
Affiliation(s)
- Huaxin Tan
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Junyao Wang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yuxin Song
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Sisi Liu
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ziyan Lu
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Haodang Luo
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang 421002, China
- Correspondence: (H.L.); (X.T.)
| | - Xing Tang
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
- Correspondence: (H.L.); (X.T.)
| |
Collapse
|
12
|
Wei Z, Xu J, Peng X, Yuan Z, Zhao C, Guo K, Zhang X, He Y, Zhang Z, Wu Y, Shen G, Qian K. Preparation and performance characteristics of spider venom peptide nanocapsules. PEST MANAGEMENT SCIENCE 2022; 78:4261-4267. [PMID: 35716064 DOI: 10.1002/ps.7045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 05/30/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND ω-hexatoxin-Hvn1b is an insecticidal toxin produced by the Tasmanian funnel-web spider (Hadronyche venenata), that can be exploited for development of novel bioinsecticides. Due to its larger size and low membrane permeability, this toxin usually has a slower mode of action compared to conventional small molecule insecticides. Nanoscale materials have unique optical, electrical, mechanical and biological properties, and show great application prospects for pesticide delivery. RESULTS The physical and chemical properties of nanocapsules were characterized using transmission electron microscopy, laser particle size analysis, Fourier transform infrared spectroscopy, contact angle testing and with a fluorescence spectrophotometer. The results indicated that the nanocapsules were spherical, with an average particle size of 197.70 nm, the encapsulation efficiency rate was 75.82% and the Zeta potential was -32.90 mV. Penetration experiments showed that the nanocapsules could promote protein passage through the intestinal tract of Spodoptera litura and reach the body fluid. Then we expressed ω-hexatoxin-Hvn1b by prokaryotic expression. Bioassay results showed that the oral toxicity of ω-hexatoxin-Hvn1b nanocapsules to S. litura was higher than that of the ω-hexatoxin-Hvn1b. CONCLUSION In this paper, we reported a construction method of spider venom peptide nanocapsules based on polylactic-co-glycolic acid by multiple emulsion for delivery of protein to improve the insecticidal effect and oral activity of ω-hexatoxin-Hv1a. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zheng Wei
- College of Plant Protection, Southwest University, Chongqing, People's Republic of China
| | - Junhu Xu
- College of Plant Protection, Southwest University, Chongqing, People's Republic of China
| | - Xinya Peng
- College of Plant Protection, Southwest University, Chongqing, People's Republic of China
| | - Zitong Yuan
- College of Plant Protection, Southwest University, Chongqing, People's Republic of China
| | - Chenchen Zhao
- College of Plant Protection, Southwest University, Chongqing, People's Republic of China
| | - Kunyan Guo
- College of Plant Protection, Southwest University, Chongqing, People's Republic of China
| | - Xuqian Zhang
- College of Plant Protection, Southwest University, Chongqing, People's Republic of China
| | - Ying He
- College of Plant Protection, Southwest University, Chongqing, People's Republic of China
| | - Zan Zhang
- College of Plant Protection, Southwest University, Chongqing, People's Republic of China
| | - Yan Wu
- The National Center for Nanoscience and Technology, Beijing, People's Republic of China
| | - Guangmao Shen
- College of Plant Protection, Southwest University, Chongqing, People's Republic of China
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing, People's Republic of China
| |
Collapse
|
13
|
de Moraes LFRN, Silva PSE, Pereira TCPL, Almeida Rodrigues TA, Farias Frihling BE, da Costa RA, Torquato HFV, Lima CS, Paredes-Gamero EJ, Migliolo L. First generation of multifunctional peptides derived from latarcin-3a from Lachesana tarabaevi spider toxin. Front Microbiol 2022; 13:965621. [PMID: 36212827 PMCID: PMC9532841 DOI: 10.3389/fmicb.2022.965621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
The need for discovering new compounds that can act selectively on pathogens is becoming increasingly evident, given the number of deaths worldwide due to bacterial infections or tumor cells. New multifunctional biotechnological tools are being sought, including compounds present in spider venoms, which have high biotechnological potential. The present work aims to perform the rational design and functional evaluation of synthetic peptides derived from Lachesana tarabaevi spider toxin, known as latarcin-3a. The antimicrobial activity was tested against Gram-positive and -negative bacteria, with minimum inhibitory concentrations (MIC) between 4 and 128 μg.ml−1. Anti-biofilm tests were then performed to obtain MICs, where the peptides demonstrated activity from 4 to 128 μg.ml−1. In vitro cell cytotoxicity assays were carried out from tumor cell lines, lineages C1498, Kasumi-1, K-562, Jurkat, MOLT4, and Raji. Erythrocyte integrity was evaluated in the presence of synthetic peptides analog, which did not promote hemolysis at 128 μg.ml−1. The peptide that showed the best antibacterial activity was Lt-MAP3 and the best antitumor was Lt-MAP2. In conclusion, rational design of multifunctional antimicrobial peptides may be promising alternative tools in the treatment of emerging diseases such as bacterial infections and tumor cells.
Collapse
Affiliation(s)
- Luiz Filipe Ramalho Nunes de Moraes
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Selkis Biotech, Startup, Laboratório de Artrópodes Peçonhentos, Campo Grande, MS, Brazil
| | - Patrícia Souza e Silva
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | | | | | - Breno Emanuel Farias Frihling
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Selkis Biotech, Startup, Laboratório de Artrópodes Peçonhentos, Campo Grande, MS, Brazil
| | - Rosiane Andrade da Costa
- Programa de Pós-Graduação em Ciências Genômica e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | | | - Cauê Santos Lima
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Edgar Julian Paredes-Gamero
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Ludovico Migliolo
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Selkis Biotech, Startup, Laboratório de Artrópodes Peçonhentos, Campo Grande, MS, Brazil
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- *Correspondence: Ludovico Migliolo,
| |
Collapse
|
14
|
Salinas-Restrepo C, Misas E, Estrada-Gómez S, Quintana-Castillo JC, Guzman F, Calderón JC, Giraldo MA, Segura C. Improving the Annotation of the Venom Gland Transcriptome of Pamphobeteus verdolaga, Prospecting Novel Bioactive Peptides. Toxins (Basel) 2022; 14:408. [PMID: 35737069 PMCID: PMC9228390 DOI: 10.3390/toxins14060408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Spider venoms constitute a trove of novel peptides with biotechnological interest. Paucity of next-generation-sequencing (NGS) data generation has led to a description of less than 1% of these peptides. Increasing evidence supports the underestimation of the assembled genes a single transcriptome assembler can predict. Here, the transcriptome of the venom gland of the spider Pamphobeteus verdolaga was re-assembled, using three free access algorithms, Trinity, SOAPdenovo-Trans, and SPAdes, to obtain a more complete annotation. Assembler's performance was evaluated by contig number, N50, read representation on the assembly, and BUSCO's terms retrieval against the arthropod dataset. Out of all the assembled sequences with all software, 39.26% were common between the three assemblers, and 27.88% were uniquely assembled by Trinity, while 27.65% were uniquely assembled by SPAdes. The non-redundant merging of all three assemblies' output permitted the annotation of 9232 sequences, which was 23% more when compared to each software and 28% more when compared to the previous P. verdolaga annotation; moreover, the description of 65 novel theraphotoxins was possible. In the generation of data for non-model organisms, as well as in the search for novel peptides with biotechnological interest, it is highly recommended to employ at least two different transcriptome assemblers.
Collapse
Affiliation(s)
- Cristian Salinas-Restrepo
- Grupo Toxinología, Alternativas Terapéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 050012, Colombia; (C.S.-R.); (S.E.-G.)
| | - Elizabeth Misas
- Corporación para Investigaciones Biológicas, Medellín 050012, Colombia;
| | - Sebastian Estrada-Gómez
- Grupo Toxinología, Alternativas Terapéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 050012, Colombia; (C.S.-R.); (S.E.-G.)
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Aven-ida Viel 1497, Santiago 7750000, Chile
| | | | - Fanny Guzman
- Núcleo Biotecnología Curauma (NBC), Pontifícia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile;
| | - Juan C. Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín 050012, Colombia;
| | - Marco A. Giraldo
- Biophysics Group, Institute of Physics, University of Antioquia, Medellín 050012, Colombia;
| | - Cesar Segura
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Medellín 050012, Colombia
| |
Collapse
|
15
|
Wadhwani P, Sekaran S, Strandberg E, Bürck J, Chugh A, Ulrich AS. Membrane Interactions of Latarcins: Antimicrobial Peptides from Spider Venom. Int J Mol Sci 2021; 22:ijms221810156. [PMID: 34576320 PMCID: PMC8470881 DOI: 10.3390/ijms221810156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/26/2022] Open
Abstract
A group of seven peptides from spider venom with diverse sequences constitute the latarcin family. They have been described as membrane-active antibiotics, but their lipid interactions have not yet been addressed. Using circular dichroism and solid-state 15N-NMR, we systematically characterized and compared the conformation and helix alignment of all seven peptides in their membrane-bound state. These structural results could be correlated with activity assays (antimicrobial, hemolysis, fluorescence vesicle leakage). Functional synergy was not observed amongst any of the latarcins. In the presence of lipids, all peptides fold into amphiphilic α-helices as expected, the helices being either surface-bound or tilted in the bilayer. The most tilted peptide, Ltc2a, possesses a novel kind of amphiphilic profile with a coiled-coil-like hydrophobic strip and is the most aggressive of all. It indiscriminately permeabilizes natural membranes (antimicrobial, hemolysis) as well as artificial lipid bilayers through the segregation of anionic lipids and possibly enhanced motional averaging. Ltc1, Ltc3a, Ltc4a, and Ltc5a are efficient and selective in killing bacteria but without causing significant bilayer disturbance. They act rather slowly or may even translocate towards intracellular targets, suggesting more subtle lipid interactions. Ltc6a and Ltc7, finally, do not show much antimicrobial action but can nonetheless perturb model bilayers.
Collapse
Affiliation(s)
- Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany; (P.W.); (E.S.); (J.B.)
| | - Saiguru Sekaran
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, Delhi 110016, India; (S.S.); (A.C.)
| | - Erik Strandberg
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany; (P.W.); (E.S.); (J.B.)
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany; (P.W.); (E.S.); (J.B.)
| | - Archana Chugh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, Delhi 110016, India; (S.S.); (A.C.)
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany; (P.W.); (E.S.); (J.B.)
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
- Correspondence:
| |
Collapse
|
16
|
Anti-biofilm and anti-inflammatory effects of Lycosin-II isolated from spiders against multi-drug resistant bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1864:183769. [PMID: 34506798 DOI: 10.1016/j.bbamem.2021.183769] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
Currently, multidrug-resistant bacteria are rapidly increasing worldwide because of the misuse or overuse of antibiotics. In particular, few options exist for treating infections caused by long-persisting oxacillin-resistant strains and recently proliferating carbapenem-resistant strains. Therefore, alternative treatments are urgently needed. The antimicrobial peptide (AMP) Lycosin-II is a peptide consisting of 21 amino acids isolated from the venom of the spider Lycosa singoriensis. Lycosin-II showed strong antibacterial activity and biofilm inhibition effects against gram-positive and gram-negative bacteria including oxacillin-resistant Staphylococcus aureus (S. aureus) and meropenem-resistant Pseudomonas aeruginosa (P. aeruginosa) isolated from patients. In addition, Lycosin-II was not cytotoxic against human foreskin fibroblast Hs27 or hemolytic against sheep red blood cells at the concentration of which exerted antibacterial activity. The mechanism of action of Lycosin-II involves binding to lipoteichoic acid and lipopolysaccharide of gram-positive and gram-negative bacterial membranes, respectively, to destroy the bacterial membrane. Moreover, Lycosin-II showed anti-inflammatory effects by inhibiting the expression of pro-inflammatory cytokines that are increased during bacterial infection in Hs27 cells. These results suggest that Lycosin-II can serve as a therapeutic agent against infections with multidrug-resistant strains.
Collapse
|
17
|
Kuhn-Nentwig L, Lischer HEL, Pekár S, Langenegger N, Albo MJ, Isaia M, Nentwig W. Linear Peptides-A Combinatorial Innovation in the Venom of Some Modern Spiders. Front Mol Biosci 2021; 8:705141. [PMID: 34295924 PMCID: PMC8290080 DOI: 10.3389/fmolb.2021.705141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/16/2021] [Indexed: 11/23/2022] Open
Abstract
In the venom of spiders, linear peptides (LPs), also called cytolytical or antimicrobial peptides, represent a largely neglected group of mostly membrane active substances that contribute in some spider species considerably to the killing power of spider venom. By next-generation sequencing venom gland transcriptome analysis, we investigated 48 spider species from 23 spider families and detected LPs in 20 species, belonging to five spider families (Ctenidae, Lycosidae, Oxyopidae, Pisauridae, and Zodariidae). The structural diversity is extraordinary high in some species: the lynx spider Oxyopes heterophthalmus contains 62 and the lycosid Pardosa palustris 60 different LPs. In total, we identified 524 linear peptide structures and some of them are in lycosids identical on amino acid level. LPs are mainly encoded in complex precursor structures in which, after the signal peptide and propeptide, 13 or more LPs (Hogna radiata) are connected by linkers. Besides Cupiennius species, also in Oxyopidae, posttranslational modifications of some precursor structures result in the formation of two-chain peptides. It is obvious that complex precursor structures represent a very suitable and fast method to produce a high number and a high diversity of bioactive LPs as economically as possible. At least in Lycosidae, Oxyopidae, and in the genus Cupiennius, LPs reach very high Transcripts Per Kilobase Million values, indicating functional importance within the envenomation process.
Collapse
Affiliation(s)
- Lucia Kuhn-Nentwig
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Heidi E. L. Lischer
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Maria J. Albo
- Departamento de Ecología y Evolución, Facultad de Ciencias, UdelaR, Montevideo, Uruguay
- Departamento de Ecología y Biología Evolutiva, Instituto de Investigaciones Biologicas Clemente Estable, Montevideo, Uruguay
| | - Marco Isaia
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, University of Torino, Torino, Italy
| | - Wolfgang Nentwig
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Kuhn-Nentwig L. Complex precursor structures of cytolytic cupiennins identified in spider venom gland transcriptomes. Sci Rep 2021; 11:4009. [PMID: 33597701 PMCID: PMC7889660 DOI: 10.1038/s41598-021-83624-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
Analysis of spider venom gland transcriptomes focuses on the identification of possible neurotoxins, proteins and enzymes. Here, the first comprehensive transcriptome analysis of cupiennins, small linear cationic peptides, also known as cytolytic or antimicrobial peptides, is reported from the venom gland transcriptome of Cupiennius salei by 454- and Illumina 3000 sequencing. Four transcript families with complex precursor structures are responsible for the expression of 179 linear peptides. Within the transcript families, after an anionic propeptide, cationic linear peptides are separated by anionic linkers, which are transcript family specific. The C-terminus of the transcript families is characterized by a linear peptide or truncated linkers with unknown function. A new identified posttranslational processing mechanism explains the presence of the two-chain CsTx-16 family in the venom. The high diversity of linear peptides in the venom of a spider and this unique synthesis process is at least genus specific as verified with Cupiennius getazi.
Collapse
Affiliation(s)
- Lucia Kuhn-Nentwig
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland.
| |
Collapse
|
19
|
Minutti-Zanella C, Gil-Leyva EJ, Vergara I. Immunomodulatory properties of molecules from animal venoms. Toxicon 2021; 191:54-68. [PMID: 33417946 DOI: 10.1016/j.toxicon.2020.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/02/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
The immune system can amplify or decrease the strength of its response when it is stimulated by chemical or biological substances that act as immunostimulators, immunosuppressants, or immunoadjuvants. Immunomodulation is a progressive approach to treat a diversity of pathologies with promising results, including autoimmune disorders and cancer. Animal venoms are a mixture of chemical compounds that include proteins, peptides, amines, salts, polypeptides, enzymes, among others, which produce the toxic effect. Since the discovery of captopril in the early 1980s, other components from snakes, spiders, scorpions, and marine animal venoms have been demonstrated to be useful for treating several human diseases. The valuable progress in fields such as venomics, molecular biology, biotechnology, immunology, and others has been crucial to understanding the interaction of toxins with the immune system and its application on immune pathologies. More in-depth knowledge of venoms' components and multi-disciplinary studies could facilitate their transformation into effective novel immunotherapies. This review addresses advances and research of molecules from venoms that have immunomodulatory properties.
Collapse
Affiliation(s)
- C Minutti-Zanella
- Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, ExHda. Sta. Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico
| | - E J Gil-Leyva
- Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, ExHda. Sta. Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico
| | - I Vergara
- Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, ExHda. Sta. Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico.
| |
Collapse
|
20
|
Davoodi S, Bolhassani A, Namazi F. In vivo delivery of a multiepitope peptide and Nef protein using novel cell-penetrating peptides for development of HIV-1 vaccine candidate. Biotechnol Lett 2021; 43:547-559. [PMID: 33386500 PMCID: PMC7775797 DOI: 10.1007/s10529-020-03060-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES A potent HIV vaccine should overcome some limitations such as polymorphism of human HLA, the diversity of HIV-1 virus, and the lack of an effective delivery system. In this study, a DNA construct encoding Nef60-84, Nef126-144, Vpr34-47, Vpr60-75, Gp16030-53, Gp160308-323, and P248-151 epitopes was designed using bioinformatics tools. The pcDNA3.1-nef-vpr-gp160-p24 and pcDNA3.1-nef constructs were prepared in large scale as endotoxin-free form. Moreover, the recombinant Nef-Vpr-Gp160-p24 polypeptide and Nef protein were generated inE. coli. These constructs were delivered using cell penetrating peptides (CPPs) in vivo, and immune responses were assessed for different modalities in BALB/c mice. RESULTS The recombinant DNA constructs were confirmed as the ~ 867 bp and ~ 648 bp bands related tonef-vpr-gp160-p24 andnef genes on agarose gel. Moreover, the purified Nef-Vpr-Gp160-p24 polypeptide and Nef protein showed the ~ 32 kDa and ~ 30 kDa bands on SDS-PAGE, respectively. The results of immune responses indicated that the heterologous prime/boost regimens using both Nef-Vpr-Gp160-P24 and Nef antigens induced significantly the secretion of IgG2a, IgG2b, IFN-γ and Granzyme B compared to other groups. The levels of Granzyme B in mice immunized with Nef antigen were higher than those immunized with Nef-Vpr-Gp160-P24 antigen. The CPPs showed the same potency with Montanide adjuvant for eliciting immune responses. CONCLUSIONS The heterologous prime/boost regimens for both antigens could significantly direct immune responses toward Th1 and CTL activity compared to other regimens. Comparing the efficiency of Nef-Vpr-Gp160-P24 and Nef constructs, the Nef-Vpr-Gp160-P24 constructs delivered by CPPs showed promising results as an HIV vaccine candidate.
Collapse
Affiliation(s)
- Saba Davoodi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Namazi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
21
|
Tang X, Yang J, Duan Z, Jiang L, Liu Z, Liang S. Molecular diversification of antimicrobial peptides from the wolf spider Lycosa sinensis venom based on peptidomic, transcriptomic, and bioinformatic analyses. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1274-1280. [PMID: 33090198 DOI: 10.1093/abbs/gmaa107] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
The venom of Lycosoidea spiders is a complex multicomponent mixture of neurotoxic peptides (main components) and antimicrobial peptides (AMPs) as minor components. In this study, we described the high-throughput identification and analysis of AMPs from Lycosa sinensis venom (named LS-AMPs) using a combination strategy that includes the following three different analysis approaches: (i) peptidomic analysis, namely reversed-phase high-performance liquid chromatography (RP-HPLC) separation plus top-down sequencing by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS); (ii) transcriptomic analysis, namely cDNA library construction plus DNA sequencing; (iii) bioinformatic analysis, namely analysis and prediction for molecular characters of LS-AMPs by the online biology databases. In total, 52 sequences of AMPs were identified from L. sinensis venom, and all AMPs can be categorized into eight different families according to phylogenetic analysis and sequence identity. This is the largest number of AMPs identified from a spider species so far. In the present study, we demonstrated molecular characteristics, such as complex precursor, N- and/or C-terminally truncated analogs, and C-terminal amidation of LS-AMPs from L. sinensis venom. This is a preliminary investigation on the molecular diversification of venom-derived AMPs from the wolf spider species (family Lycosidae), and a detailed investigation on the functional diversity of LS-AMPs will be preformed in the future.
Collapse
Affiliation(s)
- Xing Tang
- Human Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, Hengyang Normal University, Hengyang 421008, China
- College of Life Science and Environment, Hengyang Normal University, Hengyang 421008, China
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Jing Yang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education of China, Cancer Research Institute and School of Basic Medicine Science, Central South University, Changsha 410078, China
| | - Zhigui Duan
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Normal University, Changsha 410081, China
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Normal University, Changsha 410081, China
| | - Songping Liang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
22
|
Colella F, Scillitani G, Pierri CL. Sweet as honey, bitter as bile: Mitochondriotoxic peptides and other therapeutic proteins isolated from animal tissues, for dealing with mitochondrial apoptosis. Toxicology 2020; 447:152612. [PMID: 33171268 DOI: 10.1016/j.tox.2020.152612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria are subcellular organelles involved in cell metabolism and cell life-cycle. Their role in apoptosis regulation makes them an interesting target of new drugs for dealing with cancer or rare diseases. Several peptides and proteins isolated from animal and plant sources are known for their therapeutic properties and have been tested on cancer cell-lines and xenograft murine models, highlighting their ability in inducing cell-death by triggering mitochondrial apoptosis. Some of those molecules have been even approved as drugs. Conversely, many other bioactive compounds are still under investigation for their proapoptotic properties. In this review we report about a group of peptides, isolated from animal venoms, with potential therapeutic properties related to their ability in triggering mitochondrial apoptosis. This class of compounds is known with different names, such as mitochondriotoxins or mitocans.
Collapse
Affiliation(s)
- Francesco Colella
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | | | - Ciro Leonardo Pierri
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy; BROWSer S.r.l. (https://browser-bioinf.com/) c/o Department of Biosciences, Biotechnologies, Biopharmaceutics, University "Aldo Moro" of Bari, Via E. Orabona, 4, 70126, Bari, Italy.
| |
Collapse
|
23
|
Herzig V, Cristofori-Armstrong B, Israel MR, Nixon SA, Vetter I, King GF. Animal toxins - Nature's evolutionary-refined toolkit for basic research and drug discovery. Biochem Pharmacol 2020; 181:114096. [PMID: 32535105 PMCID: PMC7290223 DOI: 10.1016/j.bcp.2020.114096] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022]
Abstract
Venomous animals have evolved toxins that interfere with specific components of their victim's core physiological systems, thereby causing biological dysfunction that aids in prey capture, defense against predators, or other roles such as intraspecific competition. Many animal lineages evolved venom systems independently, highlighting the success of this strategy. Over the course of evolution, toxins with exceptional specificity and high potency for their intended molecular targets have prevailed, making venoms an invaluable and almost inexhaustible source of bioactive molecules, some of which have found use as pharmacological tools, human therapeutics, and bioinsecticides. Current biomedically-focused research on venoms is directed towards their use in delineating the physiological role of toxin molecular targets such as ion channels and receptors, studying or treating human diseases, targeting vectors of human diseases, and treating microbial and parasitic infections. We provide examples of each of these areas of venom research, highlighting the potential that venom molecules hold for basic research and drug development.
Collapse
Affiliation(s)
- Volker Herzig
- School of Science & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| | | | - Mathilde R Israel
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Samantha A Nixon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
24
|
Lopez SMM, Aguilar JS, Fernandez JBB, Lao AGJ, Estrella MRR, Devanadera MKP, Mayor ABR, Guevarra LA, Santiago-Bautista MR, Nuneza OM, Santiago L. The Venom of Philippine Tarantula (Theraphosidae) Contains Peptides with Pro-Oxidative and Nitrosative-Dependent Cytotoxic Activities against Breast Cancer Cells (MCF-7) In Vitro. Asian Pac J Cancer Prev 2020; 21:2423-2430. [PMID: 32856874 PMCID: PMC7771950 DOI: 10.31557/apjcp.2020.21.8.2423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Breast cancer is a multifactorial disease that affects women worldwide. Its progression is likely to be executed by oxidative stress wherein elevated levels of reactive oxygen and nitrogen species drive several breast cancer pathologies. Spider venom contains various pharmacological peptides which exhibit selective activity to abnormal expression of ion channels on cancer cell surface which can confer potent anti-cancer activities against this disease. Methods: Venom was extracted from a Philippine tarantula by electrostimulation and fractionated by reverse phase-high performance liquid chromatography (RP-HPLC). Venom fractions were collected and used for in vitro analyses such as cellular toxicity, morphological assessment, and oxidative stress levels. Results: The fractionation of crude spider venom generated several peaks which were predominantly detected spectrophotometrically and colorimetrically as peptides. Treatment of MCF-7 cell line of selected spider venom peptides induced production of several endogenous radicals such as hydroxyl radicals (•OH), nitric oxide radicals (•NO), superoxide anion radicals (•O2−) and lipid peroxides via malondialdehyde (MDA) reaction, which is comparable with the scavenging effects afforded by 400 µg/mL vitamin E and L-cysteine (p<0.05). Concomitantly, the free radicals produced decrease the mitochondrial membrane potential and metabolic activity as detected by rhodamine 123 and tetrazolium dye respectively (p>0.05). This is manifested by cytotoxicity in MCF-7 cells as seen by increase in membrane blebbing, cellular detachment, caspase activity and nuclear fragmentation. Conclusion: These data suggest that the Philippine tarantula venom contains peptide constituents exhibiting pro-oxidative and nitrosative-dependent cytotoxic activities against MCF-7 cells and can indicate mechanistic insights to further explore its potential application as prooxidants in cancer therapy.
Collapse
Affiliation(s)
- Simon Miguel M Lopez
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Jeremey S Aguilar
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | | | - Angelic Gayle J Lao
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Mitzi Rain R Estrella
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Mark Kevin P Devanadera
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila Philippines
| | - Anna Beatriz R Mayor
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila Philippines.,The Graduate School, University of Santo Tomas Manila, Philippines
| | - Leonardo A Guevarra
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila Philippines
| | - Myla R Santiago-Bautista
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila Philippines.,The Graduate School, University of Santo Tomas Manila, Philippines
| | - Olga M Nuneza
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, Iligan City, Philippines
| | - Librado Santiago
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines.,Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila Philippines.,The Graduate School, University of Santo Tomas Manila, Philippines
| |
Collapse
|
25
|
Neurotoxin Merging: A Strategy Deployed by the Venom of the Spider Cupiennius salei to Potentiate Toxicity on Insects. Toxins (Basel) 2020; 12:toxins12040250. [PMID: 32290562 PMCID: PMC7232441 DOI: 10.3390/toxins12040250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022] Open
Abstract
The venom of Cupiennius salei is composed of dozens of neurotoxins, with most of them supposed to act on ion channels. Some insecticidal monomeric neurotoxins contain an α-helical part besides their inhibitor cystine knot (ICK) motif (type 1). Other neurotoxins have, besides the ICK motif, an α-helical part of an open loop, resulting in a heterodimeric structure (type 2). Due to their low toxicity, it is difficult to understand the existence of type 2 peptides. Here, we show with the voltage clamp technique in oocytes of Xenopus laevis that a combined application of structural type 1 and type 2 neurotoxins has a much more pronounced cytolytic effect than each of the toxins alone. In biotests with Drosophila melanogaster, the combined effect of both neurotoxins was enhanced by 2 to 3 log units when compared to the components alone. Electrophysiological measurements of a type 2 peptide at 18 ion channel types, expressed in Xenopus laevis oocytes, showed no effect. Microscale thermophoresis data indicate a monomeric/heterodimeric peptide complex formation, thus a direct interaction between type 1 and type 2 peptides, leading to cell death. In conclusion, peptide mergers between both neurotoxins are the main cause for the high cytolytic activity of Cupiennius salei venom.
Collapse
|
26
|
Antibacterial activity of cardiotoxin-like basic polypeptide from cobra venom. Bioorg Med Chem Lett 2020; 30:126890. [DOI: 10.1016/j.bmcl.2019.126890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
|
27
|
Namazi F, Bolhassani A, Sadat SM, Irani S. Delivery of HIV-1 Polyepitope Constructs Using Cationic and Amphipathic Cell Penetrating Peptides into Mammalian Cells. Curr HIV Res 2020; 17:408-428. [DOI: 10.2174/1570162x17666191121114522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
Background:
An effective vaccine against human immunodeficiency virus 1 (HIV-1) is
an important global health priority. Despite many efforts in the development of the HIV-1 vaccine,
no effective vaccine has been approved yet. Recently, polyepitope vaccines including several immunogenic
and conserved epitopes of HIV-1 proteins have received special attention.
Methods:
In this study, HIV-1 Nef, Tat, Gp160 and P24 proteins were considered for selection of
immunodominant and conserved epitopes due to their critical roles in the viral life cycle and pathogenesis.
At first, the Nef60-84-Nef126-144-Tat29-49-Gp16030-53-Gp160308-323-P248-151 DNA construct was
designed using in silico studies. Then, the DNA construct was subcloned in pEGFP-N1 and pET-
24a (+) expression vectors and the rNef-Tat-Gp160-P24 polyepitope peptide was generated in E.coli
expression system for in vitro delivery using novel cell-penetrating peptides (CPPs), LDP-NLS and
CyLoP-1, in a non-covalent manner. Also, the HR9 and MPG CPPs were used to transfer the DNA
construct.
Results:
Our results showed that the recombinant polyepitope peptide generated in Rosetta strain
migrated as a clear band of ~31 kDa in SDS-PAGE. The SEM data confirmed the formation of stable
nanoparticles with a size below 250 nm. MTT assay revealed that the complexes did not represent
any considerable cytotoxic effect compared to untreated cells. The results of fluorescence microscopy,
flow cytometry and western blotting indicated that these CPPs successfully delivered polyepitope
constructs into HEK-293T cell line.
Conclusion:
These data suggested that these CPPs can be used as a promising approach for the development
of the HIV-1 vaccine.
Collapse
Affiliation(s)
- Fatemeh Namazi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Shiva Irani
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
28
|
Spider Venom: Components, Modes of Action, and Novel Strategies in Transcriptomic and Proteomic Analyses. Toxins (Basel) 2019; 11:toxins11100611. [PMID: 31652611 PMCID: PMC6832493 DOI: 10.3390/toxins11100611] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
This review gives an overview on the development of research on spider venoms with a focus on structure and function of venom components and techniques of analysis. Major venom component groups are small molecular mass compounds, antimicrobial (also called cytolytic, or cationic) peptides (only in some spider families), cysteine-rich (neurotoxic) peptides, and enzymes and proteins. Cysteine-rich peptides are reviewed with respect to various structural motifs, their targets (ion channels, membrane receptors), nomenclature, and molecular binding. We further describe the latest findings concerning the maturation of antimicrobial, and cysteine-rich peptides that are in most known cases expressed as propeptide-containing precursors. Today, venom research, increasingly employs transcriptomic and mass spectrometric techniques. Pros and cons of venom gland transcriptome analysis with Sanger, 454, and Illumina sequencing are discussed and an overview on so far published transcriptome studies is given. In this respect, we also discuss the only recently described cross contamination arising from multiplexing in Illumina sequencing and its possible impacts on venom studies. High throughput mass spectrometric analysis of venom proteomes (bottom-up, top-down) are reviewed.
Collapse
|
29
|
Anand P, Filipenko P, Huaman J, Lyudmer M, Hossain M, Santamaria C, Huang K, Ogunwobi OO, Holford M. Selective Inhibition of Liver Cancer Cells Using Venom Peptide. Mar Drugs 2019; 17:E587. [PMID: 31627357 PMCID: PMC6835663 DOI: 10.3390/md17100587] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022] Open
Abstract
Increasingly cancer is being viewed as a channelopathy because the passage of ions via ion channels and transporters mediate the regulation of tumor cell survival, death, and motility. As a result, a potential targeted therapy for cancer is to use venom peptides that are selective for ion channels and transporters overexpressed in tumor cells. Here we describe the selectivity and mechanism of action of terebrid snail venom peptide, Tv1, for treating the most common type of liver cancer, hepatocellular carcinoma (HCC). Tv1 inhibited the proliferation of murine HCC cells and significantly reduced tumor size in Tv1-treated syngeneic tumor-bearing mice. Tv1's mechanism of action involves binding to overexpressed transient receptor potential (TRP) channels leading to calcium dependent apoptosis resulting from down-regulation of cyclooxygenase-2 (COX-2). Our findings demonstrate the importance of modulating ion channels and the unique potential of venom peptides as tumor specific ligands in the quest for targeted cancer therapies.
Collapse
Affiliation(s)
- Prachi Anand
- Department of Chemistry and Biochemistry, Hunter College, Belfer Research Building 413 East 69th Street, New York, NY 10021, USA.
- American Museum of Natural History, Central Park West at 79th St, New York, NY 10024, USA.
- CUNY Graduate Center Chemistry, Biology, Biochemistry Programs, 365 5th Ave, New York, NY 10016, USA.
- Weill Cornell Medicine (Biochemistry Department), 1300 York Avenue, New York, NY 10065, USA.
| | - Petr Filipenko
- Department of Chemistry and Biochemistry, Hunter College, Belfer Research Building 413 East 69th Street, New York, NY 10021, USA.
| | - Jeannette Huaman
- Department of Chemistry and Biochemistry, Hunter College, Belfer Research Building 413 East 69th Street, New York, NY 10021, USA.
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
- Department of Biological Sciences, Hunter College, 695 Park Avenue, New York, NY 10065, USA.
| | - Michael Lyudmer
- Department of Chemistry and Biochemistry, Hunter College, Belfer Research Building 413 East 69th Street, New York, NY 10021, USA.
| | - Marouf Hossain
- Department of Chemistry and Biochemistry, Hunter College, Belfer Research Building 413 East 69th Street, New York, NY 10021, USA.
| | - Carolina Santamaria
- Department of Chemistry and Biochemistry, Hunter College, Belfer Research Building 413 East 69th Street, New York, NY 10021, USA.
| | - Kelly Huang
- Department of Chemistry and Biochemistry, Hunter College, Belfer Research Building 413 East 69th Street, New York, NY 10021, USA.
| | - Olorunseun O Ogunwobi
- Department of Chemistry and Biochemistry, Hunter College, Belfer Research Building 413 East 69th Street, New York, NY 10021, USA.
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
- Department of Biological Sciences, Hunter College, 695 Park Avenue, New York, NY 10065, USA.
| | - Mandë Holford
- Department of Chemistry and Biochemistry, Hunter College, Belfer Research Building 413 East 69th Street, New York, NY 10021, USA.
- American Museum of Natural History, Central Park West at 79th St, New York, NY 10024, USA.
- CUNY Graduate Center Chemistry, Biology, Biochemistry Programs, 365 5th Ave, New York, NY 10016, USA.
- Weill Cornell Medicine (Biochemistry Department), 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
30
|
Namazi F, Bolhassani A, Sadat SM, Irani S. In vitro Delivery of HIV-1 Nef Antigen by Histidine-rich nona-arginine and Latarcin 1 peptide. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2019. [DOI: 10.29252/jommid.7.4.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
31
|
Design and in vitro delivery of HIV-1 multi-epitope DNA and peptide constructs using novel cell-penetrating peptides. Biotechnol Lett 2019; 41:1283-1298. [PMID: 31531750 DOI: 10.1007/s10529-019-02734-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/15/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Developing an effective HIV vaccine that stimulates the humoral and cellular immune responses is still challenging because of the diversity of HIV-1 virus, polymorphism of human HLA and lack of a suitable delivery system. RESULTS Using bioinformatics tools, we designed a DNA construct encoding multiple epitopes. These epitopes were highly conserved within prevalent HIV-1 subtypes and interacted with prevalent class I and II HLAs in Iran and the world. The designed DNA construct included Nef60-84, Nef126-144, Vpr34-47, Vpr60-75, Gp16030-53, Gp160308-323 and P248-151 epitopes (i.e., nef-vpr-gp160-p24 DNA) which was cloned into pET-24a(+) and pEGFP-N1 vectors. The recombinant polyepitope peptide (rNef-Vpr-Gp160-P24; ~ 32 kDa) was successfully generated in E. coli expression system. The pEGFP-nef-vpr-gp160-p24 and rNef-Vpr-Gp160-P24 polyepitope peptide were delivered into HEK-293 T cells using cell-penetrating peptides (CPPs). The MPG and HR9 CPPs, as well as the novel LDP-NLS and CyLoP-1 CPPs, were utilized for DNA and peptide delivery into the cells, respectively. SEM results confirmed the formation of stable MPG/pEGFP-N1-nef-vpr-gp160-p24, HR9/pEGFP-N1-nef-vpr-gp160-p24, LDP-NLS/rNef-Vpr-Gp160-P24 and CyLoP-1/rNef-Vpr-Gp160-P24 nanoparticles with a diameter of < 200 nm through non-covalent bonds. MTT assay results indicated that these nanoparticles did not have any major toxicity in vitro. Fluorescence microscopy, flow cytometry and western blot data demonstrated that these CPPs could significantly deliver the DNA and peptide constructs into HEK-293 T cells. CONCLUSION The use of these CPPs can be considered as an approach in HIV vaccine development for in vitro and in vivo delivery of DNA and peptide constructs into mammalian cells.
Collapse
|
32
|
Dos Santos AP, de Araújo TG, Rádis-Baptista G. Nanoparticles Functionalized with Venom-Derived Peptides and Toxins for Pharmaceutical Applications. Curr Pharm Biotechnol 2019; 21:97-109. [PMID: 31223083 DOI: 10.2174/1389201020666190621104624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/17/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022]
Abstract
Venom-derived peptides display diverse biological and pharmacological activities, making them useful in drug discovery platforms and for a wide range of applications in medicine and pharmaceutical biotechnology. Due to their target specificities, venom peptides have the potential to be developed into biopharmaceuticals to treat various health conditions such as diabetes mellitus, hypertension, and chronic pain. Despite the high potential for drug development, several limitations preclude the direct use of peptides as therapeutics and hamper the process of converting venom peptides into pharmaceuticals. These limitations include, for instance, chemical instability, poor oral absorption, short halflife, and off-target cytotoxicity. One strategy to overcome these disadvantages relies on the formulation of bioactive peptides with nanocarriers. A range of biocompatible materials are now available that can serve as nanocarriers and can improve the bioavailability of therapeutic and venom-derived peptides for clinical and diagnostic application. Examples of isolated venom peptides and crude animal venoms that have been encapsulated and formulated with different types of nanomaterials with promising results are increasingly reported. Based on the current data, a wealth of information can be collected regarding the utilization of nanocarriers to encapsulate venom peptides and render them bioavailable for pharmaceutical use. Overall, nanomaterials arise as essential components in the preparation of biopharmaceuticals that are based on biological and pharmacological active venom-derived peptides.
Collapse
Affiliation(s)
- Ana P Dos Santos
- Program of Post-graduation in Pharmaceutical Sciences (FFEO/UFC), Federal University of Ceara, Ceara, Brazil
| | | | | |
Collapse
|
33
|
Wu T, Wang M, Wu W, Luo Q, Jiang L, Tao H, Deng M. Spider venom peptides as potential drug candidates due to their anticancer and antinociceptive activities. J Venom Anim Toxins Incl Trop Dis 2019; 25:e146318. [PMID: 31210759 PMCID: PMC6551028 DOI: 10.1590/1678-9199-jvatitd-14-63-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
Spider venoms are known to contain proteins and polypeptides that perform various
functions including antimicrobial, neurotoxic, analgesic, cytotoxic, necrotic,
and hemagglutinic activities. Currently, several classes of natural molecules
from spider venoms are potential sources of chemotherapeutics against tumor
cells. Some of the spider peptide toxins produce lethal effects on tumor cells
by regulating the cell cycle, activating caspase pathway or inactivating
mitochondria. Some of them also target the various types of ion channels
(including voltage-gated calcium channels, voltage-gated sodium channels, and
acid-sensing ion channels) among other pain-related targets. Herein we review
the structure and pharmacology of spider-venom peptides that are being used as
leads for the development of therapeutics against the pathophysiological
conditions including cancer and pain.
Collapse
Affiliation(s)
- Ting Wu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Meng Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wenfang Wu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Qianxuan Luo
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
34
|
Abstract
Membrane permeabilizing peptides (MPPs) are as ubiquitous as the lipid bilayer membranes they act upon. Produced by all forms of life, most membrane permeabilizing peptides are used offensively or defensively against the membranes of other organisms. Just as nature has found many uses for them, translational scientists have worked for decades to design or optimize membrane permeabilizing peptides for applications in the laboratory and in the clinic ranging from antibacterial and antiviral therapy and prophylaxis to anticancer therapeutics and drug delivery. Here, we review the field of membrane permeabilizing peptides. We discuss the diversity of their sources and structures, the systems and methods used to measure their activities, and the behaviors that are observed. We discuss the fact that "mechanism" is not a discrete or a static entity for an MPP but rather the result of a heterogeneous and dynamic ensemble of structural states that vary in response to many different experimental conditions. This has led to an almost complete lack of discrete three-dimensional active structures among the thousands of known MPPs and a lack of useful or predictive sequence-structure-function relationship rules. Ultimately, we discuss how it may be more useful to think of membrane permeabilizing peptides mechanisms as broad regions of a mechanistic landscape rather than discrete molecular processes.
Collapse
Affiliation(s)
- Shantanu Guha
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Jenisha Ghimire
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Eric Wu
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| |
Collapse
|
35
|
Saez NJ, Herzig V. Versatile spider venom peptides and their medical and agricultural applications. Toxicon 2018; 158:109-126. [PMID: 30543821 DOI: 10.1016/j.toxicon.2018.11.298] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
Abstract
Spiders have been evolving complex and diverse repertoires of peptides in their venoms with vast pharmacological activities for more than 300 million years. Spiders use their venoms for prey capture and defense, hence they contain peptides that target both prey (mainly arthropods) and predators (other arthropods or vertebrates). This includes peptides that potently and selectively modulate a range of targets such as ion channels, receptors and signaling pathways involved in physiological processes. The contribution of these targets in particular disease pathophysiologies makes spider venoms a valuable source of peptides with potential therapeutic use. In addition, peptides with insecticidal activities, used for prey capture, can be exploited for the development of novel bioinsecticides for agricultural use. Although we have already reviewed potential applications of spider venom peptides as therapeutics (in 2010) and as bioinsecticides (in 2012), a considerable number of research articles on both topics have been published since, warranting an updated review. Here we explore the most recent research on the use of spider venom peptides for both medical and agricultural applications.
Collapse
Affiliation(s)
- Natalie J Saez
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
36
|
Dubovskii PV, Efremov RG. The role of hydrophobic /hydrophilic balance in the activity of structurally flexible vs. rigid cytolytic polypeptides and analogs developed on their basis. Expert Rev Proteomics 2018; 15:873-886. [PMID: 30328726 DOI: 10.1080/14789450.2018.1537786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Being important representatives of various proteomes, membrane-active cationic peptides (CPs) are attractive objects as lead compounds in the design of new antibacterial, anticancer, antifungal, and antiviral molecules. Numerous CPs are found in insect and snake venoms, where many of them reveal cytolytic properties. Due to advances in omics technologies, the number of such peptides is growing dramatically. Areas covered: To understand structure-function relationships for CPs in a living cell, detailed analysis of their hydrophobic/hydrophilic properties is indispensable. We consider two structural classes of membrane-active CPs: latarcins (Ltc) from spider and cardiotoxins (CTXs) from snake venoms. While the former are void off disulfide bonds and conformationally flexible, the latter are structurally rigid and cross-linked with disulfide bonds. In order to elucidate structure-activity relationships behind their antibacterial, anticancer, and hemolytic effects, the properties of these polypeptides are considered on a side-by-side basis. Expert commentary: An ever-increasing number of venom-derived membrane-active polypeptides require new methods for identification of their functional propensities and sequence-based design of novel pharmacological substances. We address these issues considering a number of the designed peptides, based either on Ltc or CTX sequences. Experimental and computer modeling techniques required for these purposes are delineated.
Collapse
Affiliation(s)
- Peter V Dubovskii
- a Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Moscow , Russia
| | - Roman G Efremov
- a Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Russian Academy of Sciences , Moscow , Russia.,b Moscow Institute of Physics and Technology , Dolgoprudnyi , Russian Federation.,c National Research University Higher School of Economics , Moscow , Russia
| |
Collapse
|
37
|
Improving therapeutic potential of antibacterial spider venom peptides: coarse-grain molecular dynamics guided approach. Future Med Chem 2018; 10:2309-2322. [DOI: 10.4155/fmc-2018-0170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: Spider venom is a rich source of antibacterial peptides, whose hemolytic activity is often excessive. Methodology: How to get rid of it? Using latarcins from Lachesana tarabaevi and oxyopinin Oxt 4a from Oxyopes takobius spider venoms we performed coarse-grained molecular dynamics simulations of these peptides in the presence of lipid bilayers, mimicking erythrocyte membranes. This identified hemolytically active fragments within Oxt 4a and latarcins. Then, we synthesized five 20-residue peptides, containing different parts of the Oxt 4a and latarcin-1 sequence, carrying mutations within the identified regions. Conclusion: The antibacterial and hemolytic tests suggested that the three of the synthesized peptides demonstrated substantial decrease in hemolytic activity, retaining, or even exceeding antibacterial potential of the parent peptides.
Collapse
|
38
|
Khusro A, Aarti C, Barbabosa-Pliego A, Rivas-Cáceres RR, Cipriano-Salazar M. Venom as therapeutic weapon to combat dreadful diseases of 21 st century: A systematic review on cancer, TB, and HIV/AIDS. Microb Pathog 2018; 125:96-107. [PMID: 30195644 DOI: 10.1016/j.micpath.2018.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/26/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022]
Abstract
Cancer and infectious diseases are the preeminent causes of human morbidities and mortalities worldwide. At present, chemotherapy, radiotherapy, immunotherapy, and gene therapy are considered as predominant options in order to treat cancer. But these therapies provide inadequate consequences by affecting both the normal and tumor cells. On the other hand, tuberculosis (TB), and HIV (human immunodeficiency virus) infections are significant threats, causing over a million mortalities each year. The extensive applications of antibiotics have caused the microbes to acquire resistance to the existing antibiotics. With the emerging dilemma of drug resistant microbes, it has become imperative to identify novel therapeutic agents from natural sources as emphatic alternative approach. Over the past few decades, venoms derived from several reptiles, amphibians, and arthropods including snakes, scorpions, frogs, spiders, honey bees, wasps, beetles, caterpillars, ants, centipedes, and sponges have been identified as efficient therapeutics. Venoms constitute plethora of bioactive components, particularly peptides, enzymes, and other chemical entities, which exhibit a large array of anticancer and anti-pathogenic activities. This review highlights the panorama of bioactive components of animal venoms divulging the anticancer, anti-tubercular, and anti-HIV activities. In a nutshell, this context discloses the decisive role of animal venoms as alternative natural resources to combat these deadly diseases of 21st century, and propounding the plausible development of new therapeutic drugs in the present era.
Collapse
Affiliation(s)
- Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai, 600034, Tamil Nadu, India.
| | - Chirom Aarti
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai, 600034, Tamil Nadu, India
| | - Alberto Barbabosa-Pliego
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Raymundo Rene Rivas-Cáceres
- Universidad Autónoma de Ciudad Juárez, Ave. Plutarco Elías Calles No. 1210, FOVISSSTE Chamizal Cd, Juarez, C.P. 32310, Mexico
| | | |
Collapse
|
39
|
Langenegger N, Koua D, Schürch S, Heller M, Nentwig W, Kuhn-Nentwig L. Identification of a precursor processing protease from the spider Cupiennius salei essential for venom neurotoxin maturation. J Biol Chem 2018; 293:2079-2090. [PMID: 29269415 PMCID: PMC5808768 DOI: 10.1074/jbc.m117.810911] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/13/2017] [Indexed: 12/12/2022] Open
Abstract
Spider venom neurotoxins and cytolytic peptides are expressed as elongated precursor peptides, which are post-translationally processed by proteases to yield the active mature peptides. The recognition motifs for these processing proteases, first published more than 10 years ago, include the processing quadruplet motif (PQM) and the inverted processing quadruplet motif (iPQM). However, the identification of the relevant proteases was still pending. Here we describe the purification of a neurotoxin precursor processing protease from the venom of the spider Cupiennius salei The chymotrypsin-like serine protease is a 28-kDa heterodimer with optimum activity at venom's pH of 6.0. We designed multiple synthetic peptides mimicking the predicted cleavage sites of neurotoxin precursors. Using these peptides as substrates, we confirm the biochemical activity of the protease in propeptide removal from neurotoxin precursors by cleavage C-terminal of the PQM. Furthermore, the PQM protease also cleaves the iPQM relevant for heterodimerization of a subgroup of neurotoxins. An involvement in the maturing of cytolytic peptides is very likely, due to high similarity of present protease recognition motifs. Finally, bioinformatics analysis, identifying sequences of homolog proteins from 18 spiders of 9 families, demonstrate the wide distribution and importance of the isolated enzyme for spiders. In summary, we establish the first example of a PQM protease, essential for maturing of spider venom neurotoxins. In the future, the here described protease may be established as a powerful tool for production strategies of recombinant toxic peptides, adapted to the maturing of spider venom toxins.
Collapse
Affiliation(s)
- Nicolas Langenegger
- From the Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland
| | - Dominique Koua
- From the Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland
- the Institut National Polytechnique Félix Houphouet-Boigny, BP 1093 Yamoussoukro, Côte d'Ivoire
| | - Stefan Schürch
- the Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland, and
| | - Manfred Heller
- the Department of Clinical Research, Proteomics and Mass Spectrometry Core Facility, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Wolfgang Nentwig
- From the Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland
| | - Lucia Kuhn-Nentwig
- From the Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland,
| |
Collapse
|
40
|
Sala A, Cabassi CS, Santospirito D, Polverini E, Flisi S, Cavirani S, Taddei S. Novel Naja atra cardiotoxin 1 (CTX-1) derived antimicrobial peptides with broad spectrum activity. PLoS One 2018; 13:e0190778. [PMID: 29364903 PMCID: PMC5783354 DOI: 10.1371/journal.pone.0190778] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/20/2017] [Indexed: 11/20/2022] Open
Abstract
Naja atra subsp. atra cardiotoxin 1 (CTX-1), produced by Chinese cobra snakes, belonging to Elapidae family, is included in the three-finger toxin family and exerts high cytotoxicity and antimicrobial activity too. Using as template mainly the tip and the subsequent β-strand of the first "finger" of this toxin, different sequences of 20 amino acids linear peptides have been designed in order to avoid toxic effects but to maintain or even strengthen the partial antimicrobial activity already seen for the complete toxin. As a result, the sequence NCP-0 (Naja Cardiotoxin Peptide-0) was designed as ancestor and subsequently 4 other variant sequences of NCP-0 were developed. These synthesized variant sequences have shown microbicidal activity towards a panel of reference and field strains of Gram-positive and Gram-negative bacteria. The sequence named NCP-3, and its variants NCP-3a and NCP-3b, have shown the best antimicrobial activity, together with low cytotoxicity against eukaryotic cells and low hemolytic activity. Bactericidal activity has been demonstrated by minimum bactericidal concentration (MBC) assay at values below 10 μg/ml for most of the tested bacterial strains. This potent antimicrobial activity was confirmed even for unicellular fungi Candida albicans, Candida glabrata and Malassezia pachydermatis (MBC 50-6.3 μg/ml), and against the fast-growing mycobacteria Mycobacterium smegmatis and Mycobacterium fortuitum. Moreover, NCP-3 has shown virucidal activity on Bovine Herpesvirus 1 (BoHV1) belonging to Herpesviridae family. The bactericidal activity is maintained even in a high salt concentration medium (125 and 250 mM NaCl) and phosphate buffer with 20% Mueller Hinton (MH) medium against E. coli, methicillin resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa reference strains. Considering these in vitro obtained data, the search for active sequences within proteins presenting an intrinsic microbicidal activity could provide a new way for discovering a large number of novel and promising antimicrobial peptides families.
Collapse
Affiliation(s)
- Andrea Sala
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | | | - Eugenia Polverini
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Sara Flisi
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Sandro Cavirani
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Simone Taddei
- Department of Veterinary Science, University of Parma, Parma, Italy
| |
Collapse
|
41
|
Verdes A, Simpson D, Holford M. Are Fireworms Venomous? Evidence for the Convergent Evolution of Toxin Homologs in Three Species of Fireworms (Annelida, Amphinomidae). Genome Biol Evol 2018; 10:249-268. [PMID: 29293976 PMCID: PMC5778601 DOI: 10.1093/gbe/evx279] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2017] [Indexed: 12/14/2022] Open
Abstract
Amphinomids, more commonly known as fireworms, are a basal lineage of marine annelids characterized by the presence of defensive dorsal calcareous chaetae, which break off upon contact. It has long been hypothesized that amphinomids are venomous and use the chaetae to inject a toxic substance. However, studies investigating fireworm venom from a morphological or molecular perspective are scarce and no venom gland has been identified to date, nor any toxin characterized at the molecular level. To investigate this question, we analyzed the transcriptomes of three species of fireworms-Eurythoe complanata, Hermodice carunculata, and Paramphinome jeffreysii-following a venomics approach to identify putative venom compounds. Our venomics pipeline involved de novo transcriptome assembly, open reading frame, and signal sequence prediction, followed by three different homology search strategies: BLAST, HMMER sequence, and HMMER domain. Following this pipeline, we identified 34 clusters of orthologous genes, representing 13 known toxin classes that have been repeatedly recruited into animal venoms. Specifically, the three species share a similar toxin profile with C-type lectins, peptidases, metalloproteinases, spider toxins, and CAP proteins found among the most highly expressed toxin homologs. Despite their great diversity, the putative toxins identified are predominantly involved in three major biological processes: hemostasis, inflammatory response, and allergic reactions, all of which are commonly disrupted after fireworm stings. Although the putative fireworm toxins identified here need to be further validated, our results strongly suggest that fireworms are venomous animals that use a complex mixture of toxins for defense against predators.
Collapse
Affiliation(s)
- Aida Verdes
- Department of Chemistry, Hunter College Belfer Research Center, and The Graduate Center, Program in Biology, Chemistry and Biochemistry, City University of New York
- Department of Invertebrate Zoology, Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York
- Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de Madrid, Spain
| | - Danny Simpson
- Department of Population Health, New York University School of Medicine
| | - Mandë Holford
- Department of Chemistry, Hunter College Belfer Research Center, and The Graduate Center, Program in Biology, Chemistry and Biochemistry, City University of New York
- Department of Invertebrate Zoology, Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York
- Department of Biochemistry, Weill Cornell Medical College, Cornell University
| |
Collapse
|
42
|
Konshina AG, Krylov NA, Efremov RG. Cardiotoxins: Functional Role of Local Conformational Changes. J Chem Inf Model 2017; 57:2799-2810. [DOI: 10.1021/acs.jcim.7b00395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anastasia G. Konshina
- Shemyakin−Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 GSP, Moscow V-437, Russia
| | - Nikolay A. Krylov
- Shemyakin−Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 GSP, Moscow V-437, Russia
- Joint
Supercomputer Center, Russian Academy of Sciences, Leninsky prospect,
32a, Moscow 119991, Russia
| | - Roman G. Efremov
- Shemyakin−Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 GSP, Moscow V-437, Russia
| |
Collapse
|
43
|
Dubovskii PV, Dubinnyi MA, Konshina AG, Kazakova ED, Sorokoumova GM, Ilyasova TM, Shulepko MA, Chertkova RV, Lyukmanova EN, Dolgikh DA, Arseniev AS, Efremov RG. Structural and Dynamic “Portraits” of Recombinant and Native Cytotoxin I from Naja oxiana: How Close Are They? Biochemistry 2017; 56:4468-4477. [DOI: 10.1021/acs.biochem.7b00453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Peter V. Dubovskii
- Shemyakin-Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Maxim A. Dubinnyi
- Shemyakin-Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Anastasia G. Konshina
- Shemyakin-Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | | | | | - Tatyana M. Ilyasova
- Shemyakin-Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Mikhail A. Shulepko
- Shemyakin-Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Rita V. Chertkova
- Shemyakin-Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Ekaterina N. Lyukmanova
- Shemyakin-Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
- Biological
Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
- Biological
Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexander S. Arseniev
- Shemyakin-Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141700, Russia
| | - Roman G. Efremov
- Shemyakin-Ovchinnikov
Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
- Higher School of Economics, 20 Myasnitskaya, Moscow 101000, Russia
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141700, Russia
| |
Collapse
|
44
|
Ponnappan N, Chugh A. Cell-penetrating and cargo-delivery ability of a spider toxin-derived peptide in mammalian cells. Eur J Pharm Biopharm 2017; 114:145-153. [DOI: 10.1016/j.ejpb.2017.01.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 02/06/2023]
|
45
|
Lachesana tarabaevi, an expert in membrane-active toxins. Biochem J 2016; 473:2495-506. [PMID: 27287558 DOI: 10.1042/bcj20160436] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/09/2016] [Indexed: 11/17/2022]
Abstract
In the present study, we show that venom of the ant spider Lachesana tarabaevi is unique in terms of molecular composition and toxicity. Whereas venom of most spiders studied is rich in disulfide-containing neurotoxic peptides, L. tarabaevi relies on the production of linear (no disulfide bridges) cytolytic polypeptides. We performed full-scale peptidomic examination of L. tarabaevi venom supported by cDNA library analysis. As a result, we identified several dozen components, and a majority (∼80% of total venom protein) exhibited membrane-active properties. In total, 33 membrane-interacting polypeptides (length of 18-79 amino acid residues) comprise five major groups: repetitive polypeptide elements (Rpe), latarcins (Ltc), met-lysines (MLys), cyto-insectotoxins (CIT) and latartoxins (LtTx). Rpe are short (18 residues) amphiphilic molecules that are encoded by the same genes as antimicrobial peptides Ltc 4a and 4b. Isolation of Rpe confirms the validity of the iPQM (inverted processing quadruplet motif) proposed to mark the cleavage sites in spider toxin precursors that are processed into several mature chains. MLys (51 residues) present 'idealized' amphiphilicity when modelled in a helical wheel projection with sharply demarcated sectors of hydrophobic, cationic and anionic residues. Four families of CIT (61-79 residues) are the primary weapon of the spider, accounting for its venom toxicity. Toxins from the CIT 1 and 2 families have a modular structure consisting of two shorter Ltc-like peptides. We demonstrate that in CIT 1a, these two parts act in synergy when they are covalently linked. This finding supports the assumption that CIT have evolved through the joining of two shorter membrane-active peptides into one larger molecule.
Collapse
|
46
|
The Spider Venom Peptide Lycosin-II Has Potent Antimicrobial Activity against Clinically Isolated Bacteria. Toxins (Basel) 2016; 8:toxins8050119. [PMID: 27128941 PMCID: PMC4885036 DOI: 10.3390/toxins8050119] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial peptides have been accepted as excellent candidates for developing novel antibiotics against drug-resistant bacteria. Recent studies indicate that spider venoms are the source for the identification of novel antimicrobial peptides. In the present study, we isolated and characterized an antibacterial peptide named lycosin-II from the venom of the spider Lycosa singoriensis. It contains 21 amino acid residue lacking cysteine residues and forms a typical linear amphipathic and cationic α-helical conformation. Lycosin-II displays potent bacteriostatic effect on the tested drug-resistant bacterial strains isolated from hospital patients, including multidrug-resistant A. baumannii, which has presented a huge challenge for the infection therapy. The inhibitory ability of lycosin-II might derive from its binding to cell membrane, because Mg(2+) could compete with the binding sites to reduce the bacteriostatic potency of lycosin-II. Our data suggest that lycosin-II might be a lead in the development of novel antibiotics for curing drug-resistant bacterial infections.
Collapse
|
47
|
Mohanty I, Arunvikram K, Behera D, Milton AAP, Elaiyaraja G, Rajesh G, Dhama K. Immunomodulatory and Therapeutic Potential of Zootoxins (Venom and Toxins) on the Way Towards Designing and Developing Novel Drugs/Medicines: An Overview. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.126.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|