1
|
Sun Z, Ye J, Sun W, Jiang L, Shan B, Zhang M, Xu J, Li W, Liu J, Jing H, Zhang T, Hou M, Xie C, Wu R, Pan H, Yuan J. Cooperation of TRADD- and RIPK1-dependent cell death pathways in maintaining intestinal homeostasis. Nat Commun 2025; 16:1890. [PMID: 39987261 PMCID: PMC11846980 DOI: 10.1038/s41467-025-57211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/12/2025] [Indexed: 02/24/2025] Open
Abstract
Dysfunctional NF-κB signaling is critically involved in inflammatory bowel disease (IBD). We investigated the mechanism by which RIPK1 and TRADD, two key mediators of NF-κB signaling, in mediating intestinal pathology using TAK1 IEC deficient model. We show that phosphorylation of TRADD by TAK1 modulates RIPK1-dependent apoptosis. TRADD and RIPK1 act cooperatively to mediate cell death regulated by TNF and TLR signaling. We demonstrate the pathological evolution from RIPK1-dependent ileitis to RIPK1- and TRADD-co-dependent colitis in TAK1 IEC deficient condition. Combined RIPK1 inhibition and TRADD knockout completely protect against intestinal pathology and lethality in TAK1 IEC KO mice. Furthermore, we identify distinctive microbiota dysbiosis biomarkers for RIPK1-dependent ileitis and TRADD-dependent colitis. These findings reveal the cooperation between RIPK1 and TRADD in mediating cell death and inflammation in IBD with NF-κB deficiency and suggest the possibility of combined inhibition of RIPK1 kinase and TRADD as a new therapeutic strategy for IBD.
Collapse
Affiliation(s)
- Ziyu Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Key Laboratory of Aging Studies, Shanghai, 201210, China
| | - Jianyu Ye
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Key Laboratory of Aging Studies, Shanghai, 201210, China
| | - Weimin Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Mengmeng Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Jingyi Xu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Wanjin Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Jianping Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Hongyang Jing
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Tian Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Meiling Hou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Rongling Wu
- Beijing Key Laboratory of Topological Statistics and Applications for Complex Systems, Beijing Institute of Mathematical Sciences and Applications, Beijing, 101408, China
- Yau Mathematical Sciences Center, Tsinghua University, Beijing, 100084, China
- Shanghai Institute for Mathematics and Interdisciplinary Sciences, Shanghai, 200433, China
| | - Heling Pan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203, Shanghai, China
- Shanghai Key Laboratory of Aging Studies, Shanghai, 201210, China
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, 201210, China.
| |
Collapse
|
2
|
Meng H, Zhao Y, Li Y, Fan H, Yi X, Meng X, Wang P, Fu F, Wu S, Wang Y. Evidence for developmental vascular-associated necroptosis and its contribution to venous-lymphatic endothelial differentiation. Front Cell Dev Biol 2023; 11:1229788. [PMID: 37576598 PMCID: PMC10416103 DOI: 10.3389/fcell.2023.1229788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
During development, apoptosis removes redundant cells and ensures proper organ morphogenesis. Necrosis is long known as an adult-bound inflammatory and pathologic cell death. Whether there exists physiological necrosis during early development has been speculated but yet clearly demonstrated. Here, we report evidence of necroptosis, a type of programmed necrosis, specifically in perivascular cells of cerebral cortex and skin at the early stage of development. Phosphorylated Mixed Lineage Kinase Domain-Like protein (MLKL), a key molecule in executing necroptosis, co-expressed with blood endothelial marker CD31 and venous-lymphatic progenitor marker Sox18. Depletion of Mlkl did not affect the formation of blood vessel network but increased the differentiation of venous-lymphatic lineage cells in postnatal cerebral cortex and skin. Consistently, significant enhancement of cerebrospinal fluid diffusion and lymphatic drainage was found in brain and skin of Mlkl-deficient mice. Under hypobaric hypoxia induced cerebral edema and inflammation induced skin edema, Mlkl mutation significantly attenuated brain-blood-barrier damage and edema formation. Our data, for the first time, demonstrated the presence of physiological vascular-associated necroptosis and its potential involvement in the development of venous-lymphatic vessels.
Collapse
Affiliation(s)
- Han Meng
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Youyi Zhao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research, Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuqian Li
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Hong Fan
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Xuyang Yi
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xinyu Meng
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Pengfei Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Fanfan Fu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shengxi Wu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yazhou Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Li S, Qu L, Wang X, Kong L. Novel insights into RIPK1 as a promising target for future Alzheimer's disease treatment. Pharmacol Ther 2021; 231:107979. [PMID: 34480965 DOI: 10.1016/j.pharmthera.2021.107979] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/30/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an intractable neurodegenerative disease showing a clinical manifestation with memory loss, cognitive impairment and behavioral dysfunction. The predominant pathological characteristics of AD include neuronal loss, β-amyloid (Aβ) deposition and hyperphosphorylated Tau induced neurofibrillary tangles (NFTs), while considerable studies proved these could be triggered by neuronal death and neuroinflammation. Receptor-interacting protein kinase 1 (RIPK1) is a serine/threonine kinase existed at the cross-point of cell death and inflammatory signaling pathways. Emerging investigations have shed light on RIPK1 for its potential role in AD progression. The present review makes a bird's eye view on the functions of RIPK1 and mainly focus on the underlying linkages between RIPK1 and AD from comprehensive aspects including neuronal death, Aβ and Tau, inflammasome activation, BBB rupture, AMPK/mTOR, mitochondrial dysfunction and O-glcNAcylation. Moreover, the discovery of RIPK1 inhibitors, ongoing clinical trials along with future RIPK1-targeted therapeutics are also reviewed.
Collapse
Affiliation(s)
- Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lailiang Qu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
4
|
Dai W, Cheng J, Leng X, Hu X, Ao Y. The potential role of necroptosis in clinical diseases (Review). Int J Mol Med 2021; 47:89. [PMID: 33786617 PMCID: PMC8012024 DOI: 10.3892/ijmm.2021.4922] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
As an important type of programmed cell death in addition to apoptosis, necroptosis occurs in a variety of pathophysiological processes, including infections, liver diseases, kidney injury, neurodegenerative diseases, cardiovascular diseases, and human tumors. It can be triggered by a variety of factors, such as tumor necrosis factor receptor and Toll‑like receptor families, intracellular DNA and RNA sensors, and interferon, and is mainly mediated by receptor‑interacting protein kinase 1 (RIP1), RIP3, and mixed lineage kinase domain‑like protein. A better understanding of the mechanism of necroptosis may be useful in the development of novel drugs for necroptosis‑related diseases. In this review, the focus is on the molecular mechanisms of necroptosis, exploring the role of necroptosis in different pathologies, discussing their potential as a novel therapeutic target for disease therapy, and providing suggestions for further study in this area.
Collapse
Affiliation(s)
- Wenli Dai
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Jin Cheng
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Xi Leng
- Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yingfang Ao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
5
|
Shubina M, Tummers B, Boyd DF, Zhang T, Yin C, Gautam A, Guo XZJ, Rodriguez DA, Kaiser WJ, Vogel P, Green DR, Thomas PG, Balachandran S. Necroptosis restricts influenza A virus as a stand-alone cell death mechanism. J Exp Med 2021; 217:152023. [PMID: 32797196 PMCID: PMC7596817 DOI: 10.1084/jem.20191259] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 05/08/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Influenza A virus (IAV) activates ZBP1-initiated RIPK3-dependent parallel pathways of necroptosis and apoptosis in infected cells. Although mice deficient in both pathways fail to control IAV and succumb to lethal respiratory infection, RIPK3-mediated apoptosis by itself can limit IAV, without need for necroptosis. However, whether necroptosis, conventionally considered a fail-safe cell death mechanism to apoptosis, can restrict IAV—or indeed any virus—in the absence of apoptosis is not known. Here, we use mice selectively deficient in IAV-activated apoptosis to show that necroptosis drives robust antiviral immune responses and promotes effective virus clearance from infected lungs when apoptosis is absent. We also demonstrate that apoptosis and necroptosis are mutually exclusive fates in IAV-infected cells. Thus, necroptosis is an independent, “stand-alone” cell death mechanism that fully compensates for the absence of apoptosis in antiviral host defense.
Collapse
Affiliation(s)
- Maria Shubina
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - David F Boyd
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Ting Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Chaoran Yin
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Avishekh Gautam
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Xi-Zhi J Guo
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Diego A Rodriguez
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - William J Kaiser
- University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Peter Vogel
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
6
|
RIPK3 modulates growth factor receptor expression in endothelial cells to support angiogenesis. Angiogenesis 2021; 24:519-531. [PMID: 33449298 DOI: 10.1007/s10456-020-09763-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Receptor-interacting protein kinase 3 (RIPK3) is a multifunctional intracellular protein that was first recognized as an important component of the necroptosis programmed cell death pathway. RIPK3 is also highly expressed in non-necroptotic murine embryonic endothelial cells (ECs) during vascular development, indicating its potential contribution to angiogenesis. To test this hypothesis, we generated mice lacking endothelial RIPK3 and found non-lethal embryonic and perinatal angiogenesis defects in multiple vascular beds. Our in vitro data indicate that RIPK3 supports angiogenesis by regulating growth factor receptor degradation in ECs. We found that RIPK3 interacted with the membrane trafficking protein myoferlin to sustain expression of vascular endothelial growth factor receptor 2 (VEGFR2) in cultured ECs following vascular endothelial growth factor A (VEGFA) stimulation. Restoration of myoferlin, which was diminished after RIPK3 knockdown, rescued decreased VEGFR2 expression and vascular sprouting in RIPK3-deficient ECs after VEGFA treatment. In addition, we found that RIPK3 modulated expression of genes involved in endothelial identity by inhibiting ERK signaling independently of growth factor receptor turnover. Altogether, our data reveal unexpected non-necroptotic roles for RIPK3 in ECs and evidence that RIPK3 promotes developmental angiogenesis in vivo.
Collapse
|
7
|
Han J, Wu J, Silke J. An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000Res 2020; 9. [PMID: 32612808 PMCID: PMC7324945 DOI: 10.12688/f1000research.22092.1] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
The p38 family is a highly evolutionarily conserved group of mitogen-activated protein kinases (MAPKs) that is involved in and helps co-ordinate cellular responses to nearly all stressful stimuli. This review provides a succinct summary of multiple aspects of the biology, role, and substrates of the mammalian family of p38 kinases. Since p38 activity is implicated in inflammatory and other diseases, we also discuss the clinical implications and pharmaceutical approaches to inhibit p38.
Collapse
Affiliation(s)
- Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - John Silke
- The Walter and Eliza Hall Institute, IG Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3050, Australia
| |
Collapse
|
8
|
Priante G, Gianesello L, Ceol M, Del Prete D, Anglani F. Cell Death in the Kidney. Int J Mol Sci 2019; 20:E3598. [PMID: 31340541 PMCID: PMC6679187 DOI: 10.3390/ijms20143598] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Apoptotic cell death is usually a response to the cell's microenvironment. In the kidney, apoptosis contributes to parenchymal cell loss in the course of acute and chronic renal injury, but does not trigger an inflammatory response. What distinguishes necrosis from apoptosis is the rupture of the plasma membrane, so necrotic cell death is accompanied by the release of unprocessed intracellular content, including cellular organelles, which are highly immunogenic proteins. The relative contribution of apoptosis and necrosis to injury varies, depending on the severity of the insult. Regulated cell death may result from immunologically silent apoptosis or from immunogenic necrosis. Recent advances have enhanced the most revolutionary concept of regulated necrosis. Several modalities of regulated necrosis have been described, such as necroptosis, ferroptosis, pyroptosis, and mitochondrial permeability transition-dependent regulated necrosis. We review the different modalities of apoptosis, necrosis, and regulated necrosis in kidney injury, focusing particularly on evidence implicating cell death in ectopic renal calcification. We also review the evidence for the role of cell death in kidney injury, which may pave the way for new therapeutic opportunities.
Collapse
Affiliation(s)
- Giovanna Priante
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology, Department of Medicine - DIMED, University of Padua, via Giustiniani 2, 35128 Padova, Italy.
| | - Lisa Gianesello
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology, Department of Medicine - DIMED, University of Padua, via Giustiniani 2, 35128 Padova, Italy
| | - Monica Ceol
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology, Department of Medicine - DIMED, University of Padua, via Giustiniani 2, 35128 Padova, Italy
| | - Dorella Del Prete
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology, Department of Medicine - DIMED, University of Padua, via Giustiniani 2, 35128 Padova, Italy
| | - Franca Anglani
- Kidney Histomorphology and Molecular Biology Laboratory, Clinical Nephrology, Department of Medicine - DIMED, University of Padua, via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
9
|
Colijn S, Gao S, Ingram KG, Menendez M, Muthukumar V, Silasi-Mansat R, Chmielewska JJ, Hinsdale M, Lupu F, Griffin CT. The NuRD chromatin-remodeling complex enzyme CHD4 prevents hypoxia-induced endothelial Ripk3 transcription and murine embryonic vascular rupture. Cell Death Differ 2019; 27:618-631. [PMID: 31235857 DOI: 10.1038/s41418-019-0376-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 05/10/2019] [Accepted: 06/11/2019] [Indexed: 01/06/2023] Open
Abstract
Physiological hypoxia can trigger transcriptional events that influence many developmental processes during mammalian embryogenesis. One way that hypoxia affects transcription is by engaging chromatin-remodeling complexes. We now report that chromodomain helicase DNA binding protein 4 (CHD4), an enzyme belonging to the nucleosome remodeling and deacetylase (NuRD) chromatin-remodeling complex, is required for transcriptional repression of the receptor-interacting protein kinase 3 (Ripk3)-a critical executor of the necroptosis cell death program-in hypoxic murine embryonic endothelial cells. Genetic deletion of Chd4 in murine embryonic endothelial cells in vivo results in upregulation of Ripk3 transcripts and protein prior to vascular rupture and lethality at midgestation, and concomitant deletion of Ripk3 partially rescues these phenotypes. In addition, CHD4 binds to and prevents acetylation of the Ripk3 promoter in cultured endothelial cells grown under hypoxic conditions to prevent excessive Ripk3 transcription. These data demonstrate that excessive RIPK3 is detrimental to embryonic vascular integrity and indicate that CHD4 suppresses Ripk3 transcription when the embryonic environment is particularly hypoxic prior to the establishment of fetal-placental circulation at midgestation. Altogether, this research provides new insights into regulators of Ripk3 transcription and encourages future studies into the mechanism by which excessive RIPK3 damages embryonic blood vessels.
Collapse
Affiliation(s)
- Sarah Colijn
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA
| | - Siqi Gao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA
| | - Kyle G Ingram
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA.,Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Matthew Menendez
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Vijay Muthukumar
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Robert Silasi-Mansat
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Joanna J Chmielewska
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
| | - Myron Hinsdale
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA. .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73190, USA.
| |
Collapse
|
10
|
Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res 2019; 29:347-364. [PMID: 30948788 PMCID: PMC6796845 DOI: 10.1038/s41422-019-0164-5] [Citation(s) in RCA: 1575] [Impact Index Per Article: 262.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
Cells may die from accidental cell death (ACD) or regulated cell death (RCD). ACD is a biologically uncontrolled process, whereas RCD involves tightly structured signaling cascades and molecularly defined effector mechanisms. A growing number of novel non-apoptotic forms of RCD have been identified and are increasingly being implicated in various human pathologies. Here, we critically review the current state of the art regarding non-apoptotic types of RCD, including necroptosis, pyroptosis, ferroptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis and oxeiptosis. The in-depth comprehension of each of these lethal subroutines and their intercellular consequences may uncover novel therapeutic targets for the avoidance of pathogenic cell loss.
Collapse
Affiliation(s)
- Daolin Tang
- The Third Affiliated Hospital, Protein Modification and Degradation Lab, School of Basic Medical Sciences, Guangzhou Medical University, 510510, Guangzhou, Guangdong, China.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tom Vanden Berghe
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, 9052, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
- Laboratory of Pathophysiology, Faculty of Biomedical Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, 9052, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
- Methusalem program, Ghent University, 9000, Ghent, Belgium
| | - Guido Kroemer
- Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France.
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France.
- Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France.
- Université Pierre et Marie Curie, 75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015, Paris, France.
- Department of Women's and Children's Health, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
11
|
Humphreys L, Espona-Fiedler M, Longley DB. FLIP as a therapeutic target in cancer. FEBS J 2018; 285:4104-4123. [PMID: 29806737 DOI: 10.1111/febs.14523] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/11/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
One of the classic hallmarks of cancer is disruption of cell death signalling. Inhibition of cell death promotes tumour growth and metastasis, causes resistance to chemo- and radiotherapies as well as targeted agents, and is frequently due to overexpression of antiapoptotic proteins rather than loss of pro-apoptotic effectors. FLIP is a major apoptosis-regulatory protein frequently overexpressed in solid and haematological cancers, in which its high expression is often correlated with poor prognosis. FLIP, which is expressed as long (FLIP(L)) and short (FLIP(S)) splice forms, achieves its cell death regulatory functions by binding to FADD, a critical adaptor protein which links FLIP to the apical caspase in the extrinsic apoptotic pathway, caspase-8, in a number of cell death regulating complexes, such as the death-inducing signalling complexes (DISCs) formed by death receptors. FLIP also plays a key role (together with caspase-8) in regulating another form of cell death termed programmed necrosis or 'necroptosis', as well as in other key cellular processes that impact cell survival, including autophagy. In addition, FLIP impacts activation of the intrinsic mitochondrial-mediated apoptotic pathway by regulating caspase-8-mediated activation of the pro-apoptotic Bcl-2 family member Bid. It has been demonstrated that FLIP can not only inhibit death receptor-mediated apoptosis, but also cell death induced by a range of clinically relevant chemotherapeutic and targeted agents as well as ionizing radiation. More recently, key roles for FLIP in promoting the survival of immunosuppressive tumour-promoting immune cells have been discovered. Thus, FLIP is of significant interest as an anticancer therapeutic target. In this article, we review FLIP's biology and potential ways of targeting this important tumour and immune cell death regulator.
Collapse
Affiliation(s)
- Luke Humphreys
- Drug Resistance Group, Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, UK
| | - Margarita Espona-Fiedler
- Drug Resistance Group, Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- Drug Resistance Group, Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
12
|
Fan EKY, Fan J. Regulation of alveolar macrophage death in acute lung inflammation. Respir Res 2018; 19:50. [PMID: 29587748 PMCID: PMC5872399 DOI: 10.1186/s12931-018-0756-5] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/05/2018] [Indexed: 02/07/2023] Open
Abstract
Acute lung injury (ALI) and its severe form, known as acute respiratory distress syndrome (ARDS), are caused by direct pulmonary insults and indirect systemic inflammatory responses that result from conditions such as sepsis, trauma, and major surgery. The reciprocal influences between pulmonary and systemic inflammation augments the inflammatory process in the lung and promotes the development of ALI. Emerging evidence has revealed that alveolar macrophage (AM) death plays important roles in the progression of lung inflammation through its influence on other immune cell populations in the lung. Cell death and tissue inflammation form a positive feedback cycle, ultimately leading to exaggerated inflammation and development of disease. Pharmacological manipulation of AM death signals may serve as a logical therapeutic strategy for ALI/ARDS. This review will focus on recent advances in the regulation and underlying mechanisms of AM death as well as the influence of AM death on the development of ALI.
Collapse
Affiliation(s)
- Erica K Y Fan
- Kenneth P. Dietrich School of Arts & Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
13
|
Abstract
The programmed self-destruction of infected cells is a powerful antimicrobial strategy in metazoans. For decades, apoptosis represented the dominant mechanism by which the virus-infected cell was thought to undergo programmed cell death. More recently, however, new mechanisms of cell death have been described that are also key to host defense. One such mechanism in vertebrates is programmed necrosis, or "necroptosis", driven by receptor-interacting protein kinase 3 (RIPK3). Once activated by innate immune stimuli, including virus infections, RIPK3 phosphorylates the mixed lineage kinase domain-like protein (MLKL), which then disrupts cellular membranes to effect necroptosis. Emerging evidence demonstrates that RIPK3 can also mediate apoptosis and regulate inflammasomes. Here, we review studies on the mechanisms by which viruses activate RIPK3 and the pathways engaged by RIPK3 that drive cell death.
Collapse
Affiliation(s)
- Jason W Upton
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, University of Texas, Austin, TX, USA
| | - Maria Shubina
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
14
|
Abstract
Roles for cell death in development, homeostasis, and the control of infections and cancer have long been recognized. Although excessive cell damage results in passive necrosis, cells can be triggered to engage molecular programs that result in cell death. Such triggers include cellular stress, oncogenic signals that engage tumor suppressor mechanisms, pathogen insults, and immune mechanisms. The best-known forms of programmed cell death are apoptosis and a recently recognized regulated necrosis termed necroptosis. Of the two best understood pathways of apoptosis, the extrinsic and intrinsic (mitochondrial) pathways, the former is induced by the ligation of death receptors, a subset of the TNF receptor (TNFR) superfamily. Ligation of these death receptors can also induce necroptosis. The extrinsic apoptosis and necroptosis pathways regulate each other and their balance determines whether cells live. Integral in the regulation and initiation of death receptor-mediated activation of programmed cell death is the aspartate-specific cysteine protease (caspase)-8. This review describes the role of caspase-8 in the initiation of extrinsic apoptosis execution and the mechanism by which caspase-8 inhibits necroptosis. The importance of caspase-8 in the development and homeostasis and the way that dysfunctional caspase-8 may contribute to the development of malignancies in mice and humans are also explored.
Collapse
Affiliation(s)
- Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
15
|
Abstract
Acinar cell death is the most important pathophysiological change in the early stage of acute pancreatitis, and it has been the emphasis of the research. The mode of acinar cell death includes apoptosis, necrosis, necroptosis, autophagy, and pyroptosis. Some scholars have shown that acinar cell death affects the outcome of acute pancreatitis. Therefore, studying the mode of acinar cell death has great value in the assessment of the severity of acute pancreatitis. Apoptosis can reduce inflammatory response, and necrosis aggravates inflammatory response. In recent years, research on the effect of necroptosis and pyroptosis on acute pancreatitis has been carried out. This article will review the effect of apoptosis, necrosis, necroptosis, and pyroptosis on acute pancreatitis.
Collapse
Affiliation(s)
- Mei-Feng Zhang
- Department of Cadre Ward, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xiang-Ren Jin
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
16
|
Abstract
Pyroptosis is a kind of programmed cell death mediated by caspases-1/4/5/11. Pancreatic acinar cell death is the major pathophysiological change in early acute pancreatitis (AP), which is an important factor determining its progression and prognosis. Different ways of cell death affect AP progression differently. At present, most scholars believe that the increased proportion of apoptotic cells can mitigate AP, while necrosis has an opposite effect. In our early study, we used electron microscope to observe the morphology of acinar cells and found that there are many cells consistent with the characteristics of pyroptosis. The expression of caspase-1 was analyzed via immunohistochemical staining in acinar cells in AP, which suggests that pyroptosis may play a role in acinar cell death and inflammation. In this review, we review the recent findings regarding the occurrence and modulation of pyroptosis by caspase-1 and inflammsome, and in particular, discuss the potential mechanism and clinical significance of pyroptosis in AP, with an aim to provide new clues to the clinical diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Xiang-Ren Jin
- Department of Pancreatic and Biliary Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Xue-Wei Bai
- Department of Pancreatic and Biliary Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| |
Collapse
|
17
|
Peintner L, Borner C. Role of apoptosis in the development of autosomal dominant polycystic kidney disease (ADPKD). Cell Tissue Res 2017; 369:27-39. [PMID: 28560694 DOI: 10.1007/s00441-017-2628-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a widespread genetic disorder in the Western world and is characterized by cystogenesis that often leads to end-stage renal disease (ESRD). Mutations in the pkd1 gene, encoding for polycystin-1 (PC1) and its interaction partner pkd2, encoding for polycystin-2 (PC2), are the main drivers of this disease. PC1 and PC2 form a multiprotein membrane complex at cilia sites of the plasma membrane and at intracellular membranes. This complex mediates calcium influx and stimulates various signaling pathways regulating cell survival, proliferation and differentiation. The molecular consequences of pkd1 and pkd2 mutations are still a matter of debate. In particular, the ways in which the cysts are initially formed and progress throughout the disease are unknown. The mechanisms proposed to play a role include enhanced cell proliferation, increased apoptotic cell death and diminished autophagy. In this review, we summarize our current understanding about the contribution of apoptosis to cystogenesis and ADPKD. We present the animal models and the tools and methods that have been created to analyze this process. We also critically review the data that are in favor or against the involvement of apoptosis in disease generation. We argue that apoptosis is probably not the sole driver of cystogenesis but that a cooperative action of cell death, compensatory cell proliferation and perturbed autophagy gradually establish the disease. Finally, we propose novel strategies for uncovering the mode of action of PC1 and PC2 and suggest means by which their dysfunction or loss of expression lead to cystogenesis and ADPKD development.
Collapse
Affiliation(s)
- Lukas Peintner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University of Freiburg, Stefan Meier Strasse 17, 79104, Freiburg, Germany
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University of Freiburg, Stefan Meier Strasse 17, 79104, Freiburg, Germany. .,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University of Freiburg, Albertstrasse 19a, 79104, Freiburg, Germany.
| |
Collapse
|
18
|
Shao L, Yu S, Ji W, Li H, Gao Y. The Contribution of Necroptosis in Neurodegenerative Diseases. Neurochem Res 2017; 42:2117-2126. [PMID: 28382594 DOI: 10.1007/s11064-017-2249-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/06/2017] [Accepted: 03/25/2017] [Indexed: 12/29/2022]
Abstract
Over the past decades, cell apoptosis has been significantly reputed as an accidental, redundant and alternative manner of cell demise which partakes in homeostasis in the development of extensive diseases. Nevertheless, necroptosis, another novel manner of cell death through a caspase-independent way, especially in neurodegenerative diseases remains ambiguous. The cognition of this form of cell demise is helpful to understand other forms of morphological resemblance of necrosis. Additionally, the concrete signal mechanism in the regulation of necroptosis is beneficial to the diagnosis and treatment of neurodegenerative diseases. Recent studies have demonstrated that necroptotic inhibitor, 24(S)-Hydroxycholesterol and partial specific histone deacetylase inhibitors could alleviate pathogenetic conditions of neurodegenerative diseases via necroptosis pathway. In this review, we summarize recent researches about mechanisms and modulation of necroptotic signaling pathways and probe into the role of programmed necroptotic cell demise in neurodegenerative diseases such as Parkinson's disease, Multiple sclerosis, Amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Lifei Shao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical College, Nantong University, Nantong, 226001, Jiangsu, China
| | - Shuping Yu
- Department of Blood Transfusion, The Forth Affiliated Hospital of Nantong University, Yancheng, 224006, Jiangsu, China.,Center of Laboratory Medicine, Affiliate Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Wei Ji
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.,Medical College, Nantong University, Nantong, 226001, Jiangsu, China
| | - Haizhen Li
- Medical College, Nantong University, Nantong, 226001, Jiangsu, China.,Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yilu Gao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
19
|
Jorgensen I, Rayamajhi M, Miao EA. Programmed cell death as a defence against infection. Nat Rev Immunol 2017; 17:151-164. [PMID: 28138137 DOI: 10.1038/nri.2016.147] [Citation(s) in RCA: 698] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eukaryotic cells can die from physical trauma, which results in necrosis. Alternatively, they can die through programmed cell death upon the stimulation of specific signalling pathways. In this Review, we discuss the role of different cell death pathways in innate immune defence against bacterial and viral infection: apoptosis, necroptosis, pyroptosis and NETosis. We describe the interactions that interweave different programmed cell death pathways, which create complex signalling networks that cross-guard each other in the evolutionary 'arms race' with pathogens. Finally, we describe how the resulting cell corpses - apoptotic bodies, pore-induced intracellular traps (PITs) and neutrophil extracellular traps (NETs) - promote the clearance of infection.
Collapse
Affiliation(s)
- Ine Jorgensen
- Department of Immunology, Oslo University Hospital, Sognsvannsveien 20, Rikshospitalet 0372, Oslo, Norway
| | - Manira Rayamajhi
- Camargo Pharmaceutical Services, 2505 Meridian Parkway, Suite 175, Durham, North Carolina 27713, USA
| | - Edward A Miao
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, and Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
20
|
Wegner KW, Saleh D, Degterev A. Complex Pathologic Roles of RIPK1 and RIPK3: Moving Beyond Necroptosis. Trends Pharmacol Sci 2017; 38:202-225. [PMID: 28126382 DOI: 10.1016/j.tips.2016.12.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023]
Abstract
A process of regulated necrosis, termed necroptosis, has been recognized as a major contributor to cell death and inflammation occurring under a wide range of pathologic settings. The core event in necroptosis is the formation of the detergent-insoluble 'necrosome' complex of homologous Ser/Thr kinases, receptor protein interacting kinase 1 (RIPK1) and receptor interacting protein kinase 3 (RIPK3), which promotes phosphorylation of a key prodeath effector, mixed lineage kinase domain-like (MLKL), by RIPK3. Core necroptosis mediators are under multiple controls, which have been a subject of intense investigation. Additional, non-necroptotic functions of these factors, primarily in controlling apoptosis and inflammatory responses, have also begun to emerge. This review will provide an overview of the current understanding of the human disease relevance of this pathway, and potential therapeutic strategies, targeting necroptosis mediators in various pathologies.
Collapse
Affiliation(s)
- Kelby W Wegner
- Master of Science in Biomedical Sciences Program, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Danish Saleh
- Medical Scientist Training Program and Program in Neuroscience, Sackler Graduate School, Tufts University, Boston, MA 02111, USA
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
21
|
|