1
|
Zhao L, Chen H, Lan F, Hao J, Zhang W, Li Y, Yin Y, Huang M, Wu X. Distinct FLT3 Pathways Gene Expression Profiles in Pediatric De Novo Acute Lymphoblastic and Myeloid Leukemia with FLT3 Mutations: Implications for Targeted Therapy. Int J Mol Sci 2024; 25:9581. [PMID: 39273530 PMCID: PMC11395013 DOI: 10.3390/ijms25179581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Activating FLT3 mutations plays a crucial role in leukemogenesis, but identifying the optimal candidates for FLT3 inhibitor therapy remains controversial. This study aims to explore the impacts of FLT3 mutations in pediatric acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) and to compare the mutation profiles between the two types to inspire the targeted application of FLT3 inhibitors. We retrospectively analyzed 243 ALL and 62 AML cases, grouping them into FLT3-mutant and wild-type categories, respectively. We then assessed the associations between FLT3 mutations and the clinical manifestations, genetic characteristics, and prognosis in ALL and AML. Additionally, we compared the distinct features of FLT3 mutations between ALL and AML. In ALL patients, those with FLT3 mutations predominantly exhibited hyperdiploidy (48.6% vs. 14.9%, p < 0.001) and higher FLT3 expression (108.02 [85.11, 142.06] FPKM vs. 23.11 [9.16, 59.14] FPKM, p < 0.001), but lower expression of signaling pathway-related genes such as HRAS, PIK3R3, BAD, MAP2K2, MAPK3, and STAT5A compared to FLT3 wild-type patients. There was no significant difference in prognosis between the two groups. In contrast, AML patients with FLT3 mutations were primarily associated with leucocytosis (82.90 [47.05, 189.76] G/L vs. 20.36 [8.90, 55.39] G/L, p = 0.001), NUP98 rearrangements (30% vs. 4.8%, p = 0.018), elevated FLT3 expression (74.77 [54.31, 109.46] FPKM vs. 34.56 [20.98, 48.28] FPKM, p < 0.001), and upregulated signaling pathway genes including PIK3CB, AKT1, MTOR, BRAF, and MAPK1 relative to FLT3 wild-type, correlating with poor prognosis. Notably, internal tandem duplications were the predominant type of FLT3 mutation in AML (66.7%) with higher inserted base counts, whereas they were almost absent in ALL (6.3%, p < 0.001). In summary, our study demonstrated that the forms and impacts of FLT3 mutations in ALL differed significantly from those in AML. The gene expression profiles of FLT3-related pathways may provide a rationale for using FLT3 inhibitors in AML rather than ALL when FLT3 mutations are present.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
2
|
Kazi JU, Al Ashiri L, Purohit R, Rönnstrand L. Understanding the Role of Activation Loop Mutants in Drug Efficacy for FLT3-ITD. Cancers (Basel) 2023; 15:5426. [PMID: 38001685 PMCID: PMC10670458 DOI: 10.3390/cancers15225426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The type III receptor tyrosine kinase FLT3 is a pivotal kinase for hematopoietic progenitor cell regulation, with significant implications in acute myeloid leukemia (AML) through mutations like internal tandem duplication (ITD). This study delves into the structural intricacies of FLT3, the roles of activation loop mutants, and their interaction with tyrosine kinase inhibitors. Coupled with this, the research leverages molecular contrastive learning and protein language modeling to examine interactions between small molecule inhibitors and FLT3 activation loop mutants. Utilizing the ConPLex platform, over 5.7 million unique FLT3 activation loop mutants-small molecule pairs were analyzed. The binding free energies of three inhibitors were assessed, and cellular apoptotic responses were evaluated under drug treatments. Notably, the introduction of the Xepto50 scoring system provides a nuanced metric for drug efficacy. The findings underscore the modulation of molecular interactions and cellular responses by Y842 mutations in FLT3-KD, highlighting the need for tailored therapeutic approaches in FLT3-ITD-related malignancies.
Collapse
Affiliation(s)
- Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Lund University Cancer Centre (LUCC), Lund University, 22381 Lund, Sweden
| | - Lina Al Ashiri
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Lund University Cancer Centre (LUCC), Lund University, 22381 Lund, Sweden
| | - Rituraj Purohit
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India;
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Lund University Cancer Centre (LUCC), Lund University, 22381 Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, 22185 Lund, Sweden
| |
Collapse
|
3
|
He S, Zhang M, Li J, Zhao W, Yu L, Han Y, Pang Y. The FLT3 Y842D mutation may be highly sensitive to midostaurin: a case report. J Int Med Res 2022; 50:3000605221097774. [PMID: 35549749 PMCID: PMC9251825 DOI: 10.1177/03000605221097774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A Y842D mutation within the activation loop of fms-like tyrosine kinase 3 (FLT3)
has been shown to confer strong resistance to sorafenib in
vitro. Whether this type of mutation exerts clinically significant
effects in patients with acute myeloid leukaemia (AML) remains unclear. Here, a
novel Y842D activating mutation within the kinase domain of FLT3, in a pregnant
patient with de novo hyperleucocyte acute myeloid leukaemia, is described.
Following induction failure with standard dose idarubicin and cytarabine (IA),
the patient received re-induction combined with midostaurin, a promising agent
targeting mutant-FLT3, and IA regimen. Fortunately, morphological remission was
achieved. During the period of midostaurin treatment, the patient exhibited a
symptom that was characteristic of differentiation syndrome, which disappeared
following treatment with methylprednisolone. The present case revealed that
Y842D, an uncommon activating mutation in the activation loop of FLT3, may be a
midostaurin-sensitive mutation type in patients with acute myeloid
leukaemia.
Collapse
Affiliation(s)
- Shujiao He
- Department of Haematology-Oncology, International Cancer Centre, Shenzhen Key Laboratory, Haematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Centre, Shenzhen, China
| | - Minjie Zhang
- Department of Obstetrics, Shenzhen University General Hospital, Shenzhen, China
| | - Jieying Li
- Department of Haematology-Oncology, International Cancer Centre, Shenzhen Key Laboratory, Haematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Centre, Shenzhen, China
| | - Weiqiang Zhao
- Department of Haematology-Oncology, International Cancer Centre, Shenzhen Key Laboratory, Haematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Centre, Shenzhen, China
| | - Li Yu
- Department of Haematology-Oncology, International Cancer Centre, Shenzhen Key Laboratory, Haematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Centre, Shenzhen, China
| | - Ying Han
- Department of Haematology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yanbin Pang
- Department of Haematology-Oncology, International Cancer Centre, Shenzhen Key Laboratory, Haematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Centre, Shenzhen, China
| |
Collapse
|
4
|
Shah K, Ahmed M, Kazi JU. The Aurora kinase/β-catenin axis contributes to dexamethasone resistance in leukemia. NPJ Precis Oncol 2021; 5:13. [PMID: 33597638 PMCID: PMC7889633 DOI: 10.1038/s41698-021-00148-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Glucocorticoids, such as dexamethasone and prednisolone, are widely used in cancer treatment. Different hematological malignancies respond differently to this treatment which, as could be expected, correlates with treatment outcome. In this study, we have used a glucocorticoid-induced gene signature to develop a deep learning model that can predict dexamethasone sensitivity. By combining gene expression data from cell lines and patients with acute lymphoblastic leukemia, we observed that the model is useful for the classification of patients. Predicted samples have been used to detect deregulated pathways that lead to dexamethasone resistance. Gene set enrichment analysis, peptide substrate-based kinase profiling assay, and western blot analysis identified Aurora kinase, S6K, p38, and β-catenin as key signaling proteins involved in dexamethasone resistance. Deep learning-enabled drug synergy prediction followed by in vitro drug synergy analysis identified kinase inhibitors against Aurora kinase, JAK, S6K, and mTOR that displayed synergy with dexamethasone. Combining pathway enrichment, kinase regulation, and kinase inhibition data, we propose that Aurora kinase or its several direct or indirect downstream kinase effectors such as mTOR, S6K, p38, and JAK may be involved in β-catenin stabilization through phosphorylation-dependent inactivation of GSK-3β. Collectively, our data suggest that activation of the Aurora kinase/β-catenin axis during dexamethasone treatment may contribute to cell survival signaling which is possibly maintained in patients who are resistant to dexamethasone.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Mehreen Ahmed
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Georgoulia PS, Bjelic S, Friedman R. Deciphering the molecular mechanism of FLT3 resistance mutations. FEBS J 2020; 287:3200-3220. [PMID: 31943770 DOI: 10.1111/febs.15209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/13/2019] [Accepted: 01/09/2020] [Indexed: 12/18/2022]
Abstract
FMS-like tyrosine kinase 3 (FLT3) has been found to be mutated in ~ 30% of acute myeloid leukaemia patients. Small-molecule inhibitors targeting FLT3 that are currently approved or still undergoing clinical trials are subject to drug resistance due to FLT3 mutations. How these mutations lead to drug resistance is hitherto poorly understood. Herein, we studied the molecular mechanism of the drug resistance mutations D835N, Y842S and M664I, which confer resistance against the most advanced inhibitors, quizartinib and PLX3397 (pexidartinib), using enzyme kinetics and computer simulations. In vitro kinase assays were performed to measure the comparative catalytic activity of the native protein and the mutants, using a bacterial expression system developed to this aim. Our results reveal that the differential drug sensitivity profiles can be rationalised by the dynamics of the protein-drug interactions and perturbation of the intraprotein contacts upon mutations. Drug binding induced a single conformation in the native protein, whereas multiple conformations were observed otherwise (in the mutants or in the absence of drugs). The end-point kinetics measurements indicated that the three resistant mutants conferred catalytic activity that is at least as high as that of the reference without such mutations. Overall, our calculations and measurements suggest that the structural dynamics of the drug-resistant mutants that affect the active state and the increased conformational freedom of the remaining inactive drug-bound population are the two major factors that contribute to drug resistance in FLT3 harbouring cancer cells. Our results explain the mechanism of drug resistance mutations and can aid to the design of more effective tyrosine kinase inhibitors.
Collapse
Affiliation(s)
| | - Sinisa Bjelic
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
6
|
Kazi JU, Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev 2019; 99:1433-1466. [PMID: 31066629 DOI: 10.1152/physrev.00029.2018] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| |
Collapse
|
7
|
Zhou F, Ge Z, Chen B. Quizartinib (AC220): a promising option for acute myeloid leukemia. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1117-1125. [PMID: 31114157 PMCID: PMC6497874 DOI: 10.2147/dddt.s198950] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/04/2019] [Indexed: 12/27/2022]
Abstract
Quizartinib is an effective therapy for patients with FLT3-ITD acute myeloid leukemia (AML) by continuing to inhibit the activity of FLT3 gene, leading to apoptosis of tumor cells. Multiple clinical trials have proved that it is effective in relapsed or refractory AML with an FLT3-ITD mutation. In this review, we focus on the characteristics of FLT3/ITD mutations, the mechanism and pharmacokinetics of quizartinib, and the mechanisms of resistance to quizartinib. We also summarize clinical experiences and adverse effects with quizartinib and recommend crucial approaches of quizartinib in the therapy of patients with newly diagnosed AML and patients with relapsed/refractory AML, particularly those with FLT3-ITD mutation. Quizartinib presents its advantages as a very promising agent in the treatment of AML, especially in patients with FLT3-ITD mutations. FLT3/ITD mutation can lead to constitutive autophosphorylation of FLT3 and activation of its downstream effectors including RAS/RAF/MEK, MAPK/ERK, PI3K/AKT/mTOR and JAK/STAT5 signal pathways, while Quizartinib can inhibit these downstream pathways through specific FLT3 inhibition. Quizartinib has received US Food and Drug Administration breakthrough therapy designation in patients with relapsed/refractory FLT3-ITD AML based on clinical trials. A larger sample of clinical trials are needed to verify its safety and efficacy, and the efficacy of quizartinib combined with chemotherapy or allogeneic hematopoietic cell transplantation should also be estimated in clinical trials. Meanwhile, for the side effects of quizartinib, further studies are needed to find a way to reduce its toxicity.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| | - Zheng Ge
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
8
|
Kazi JU, Rönnstrand L. The role of SRC family kinases in FLT3 signaling. Int J Biochem Cell Biol 2018; 107:32-37. [PMID: 30552988 DOI: 10.1016/j.biocel.2018.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022]
Abstract
The receptor tyrosine kinase FLT3 is expressed almost exclusively in the hematopoietic compartment. Binding of its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. This leads to autophosphorylation of FLT3 on several tyrosine residues which constitute high affinity binding sites for signal transduction molecules. Recruitment of these signal transduction molecules to FLT3 leads to the activation of several signal transduction pathways that regulate cell survival, cell proliferation and differentiation. Oncogenic, constitutively active mutants of FLT3 are known to be expressed in acute myeloid leukemia and to correlate with poor prognosis. Activation of the receptor mediates cell survival, cell proliferation and differentiation of cells. Several of the signal transduction pathways downstream of FLT3 have been shown to include various members of the SRC family of kinases (SFKs). They are involved in regulating the activity of RAS/ERK pathways through the scaffolding protein GAB2 and the adaptor protein SHC. They are also involved in negative regulation of signaling through phosphorylation of the ubiquitin E3 ligase CBL. Initially studied as the SFKs, as if they were a homogenous group of kinases, recent data suggest that each SFK has its own specific signaling capabilities where some are involved in positive signaling, while others are involved in negative signaling. This review discusses some recent insights into how SFKs are involved in FLT3 signaling.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden; Division of Oncology, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
9
|
Xu L, Zhang H, Mei M, Du C, Huang X, Li J, Wang Y, Bao S, Zheng H. Phosphorylation of serine/arginine-rich splicing factor 1 at tyrosine 19 promotes cell proliferation in pediatric acute lymphoblastic leukemia. Cancer Sci 2018; 109:3805-3815. [PMID: 30320932 PMCID: PMC6272096 DOI: 10.1111/cas.13834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/21/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022] Open
Abstract
Serine/arginine‐rich splicing factor 1 (SRSF1) has been linked to various human cancers including pediatric acute lymphoblastic leukemia (ALL). Our previous study has shown that SRSF1 potentially contributes to leukemogenesis; however, its underlying mechanism remains unclear. In this study, leukemic cells were isolated from pediatric ALL bone marrow samples, followed by immunoprecipitation assays and mass spectrometry analysis specific to SRSF1. Subcellular localization of the SRSF1 protein and its mutants were analyzed by immunofluorescence staining. Cell growth, colony formation, cell apoptosis, and the cell cycle were investigated using stable leukemic cell lines generated with lentivirus‐mediated overexpressed WT or mutant plasmids. Cytotoxicity of the Tie2 kinase inhibitor was also evaluated. Our results showed the phosphorylation of SRSF1 at tyrosine 19 (Tyr‐19) was identified in newly diagnosed ALL samples, but not in complete remission or normal control samples. Compared to the SRSF1 WT cells, the missense mutants of the Tyr‐19 phosphorylation affected the subcellular localization of SRSF1. In addition, the Tyr‐19 phosphorylation of SRSF1 also led to increased cell proliferation and enhanced colony‐forming properties by promoting the cell cycle. Remarkably, we further identified the kinase Tie2 as a potential therapeutic target in leukemia cells. In conclusion, we identify for the first time that the phosphorylation state of SRSF1 is linked to different phases in pediatric ALL. The Tyr‐19 phosphorylation of SRSF1 disrupts its subcellular localization and promotes proliferation in leukemia cells by driving cell‐cycle progression. Inhibitors targeting Tie2 kinase that could catalyze Tyr‐19 phosphorylation of SRSF1 offer a promising therapeutic target for treatment of pediatric ALL.
Collapse
Affiliation(s)
- Liting Xu
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Han Zhang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Mei Mei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chaohao Du
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiahe Huang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yingchun Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shilai Bao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huyong Zheng
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
10
|
Zhou J, Ng Y, Chng WJ. ENL: structure, function, and roles in hematopoiesis and acute myeloid leukemia. Cell Mol Life Sci 2018; 75:3931-3941. [PMID: 30066088 PMCID: PMC11105289 DOI: 10.1007/s00018-018-2895-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/16/2018] [Accepted: 07/27/2018] [Indexed: 01/09/2023]
Abstract
ENL/MLLT1 is a distinctive member of the KMT2 family based on its structural homology. ENL is a histone acetylation reader and a critical component of the super elongation complex. ENL plays pivotal roles in the regulation of chromatin remodelling and gene expression of many important proto-oncogenes, such as Myc, Hox genes, via histone acetylation. Novel insights of the key role of the YEATS domain of ENL in the transcriptional control of leukemogenic gene expression has emerged from whole genome Crisp-cas9 studies in acute myeloid leukemia (AML). In this review, we have summarized what is currently known about the structure and function of the ENL molecule. We described the ENL's role in normal hematopoiesis, and leukemogenesis. We have also outlined the detailed molecular mechanisms underlying the regulation of target gene expression by ENL, as well as its major interacting partners and complexes involved. Finally, we discuss the emerging knowledge of different approaches for the validation of ENL as a therapeutic target and the development of small-molecule inhibitors disrupting the YEATS reader pocket of ENL protein, which holds great promise for the treatment of AML. This review will not only provide a fundamental understanding of the structure and function of ENL and update on the roles of ENL in AML, but also the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.
| | - Yvonne Ng
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore.
| |
Collapse
|
11
|
Zinkle A, Mohammadi M. A threshold model for receptor tyrosine kinase signaling specificity and cell fate determination. F1000Res 2018; 7:F1000 Faculty Rev-872. [PMID: 29983915 PMCID: PMC6013765 DOI: 10.12688/f1000research.14143.1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2018] [Indexed: 11/20/2022] Open
Abstract
Upon ligand engagement, the single-pass transmembrane receptor tyrosine kinases (RTKs) dimerize to transmit qualitatively and quantitatively different intracellular signals that alter the transcriptional landscape and thereby determine the cellular response. The molecular mechanisms underlying these fundamental events are not well understood. Considering recent insights into the structural biology of fibroblast growth factor signaling, we propose a threshold model for RTK signaling specificity in which quantitative differences in the strength/longevity of ligand-induced receptor dimers on the cell surface lead to quantitative differences in the phosphorylation of activation loop (A-loop) tyrosines as well as qualitative differences in the phosphorylation of tyrosines mediating substrate recruitment. In this model, quantitative differences on A-loop tyrosine phosphorylation result in gradations in kinase activation, leading to the generation of intracellular signals of varying amplitude/duration. In contrast, qualitative differences in the pattern of tyrosine phosphorylation on the receptor result in the recruitment/activation of distinct substrates/intracellular pathways. Commensurate with both the dynamics of the intracellular signal and the types of intracellular pathways activated, unique transcriptional signatures are established. Our model provides a framework for engineering clinically useful ligands that can tune receptor dimerization stability so as to bias the cellular transcriptome to achieve a desired cellular output.
Collapse
Affiliation(s)
- Allen Zinkle
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Moosa Mohammadi
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
12
|
The Src family kinase LCK cooperates with oncogenic FLT3/ITD in cellular transformation. Sci Rep 2017; 7:13734. [PMID: 29062038 PMCID: PMC5653865 DOI: 10.1038/s41598-017-14033-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/05/2017] [Indexed: 12/26/2022] Open
Abstract
The non-receptor tyrosine kinase LCK belongs to the SRC family of kinases. SRC family kinases are proto-oncogenes that have long been known to play key roles in cell proliferation, motility, morphology and survival. Here we show that LCK regulates the function of the type III receptor tyrosine kinase FLT3 in murine pro-B cells. We observed that expression of LCK significantly enhances the colony forming capacity of the constitutively active FLT3 mutant FLT3-ITD (internal tandem duplication). Furthermore, cells expressing LCK developed tumor earlier compared to cells transfected with empty control vector. Staining of the tissues from mouse xenografts showed higher Ki67 staining in cells expressing LCK suggesting that expression of LCK enhances the FLT3-ITD-mediated proliferative capacity. LCK expression did not affect either FLT3-WT or FLT3-ITD -induced AKT, ERK1/2 or p38 phosphorylation. However, LCK expression significantly enhanced FLT3-ITD-mediated STAT5 phosphorylation. Taken together, our data suggest that LCK cooperates with oncogenic FLT3-ITD in cellular transformation.
Collapse
|
13
|
Moharram SA, Shah K, Khanum F, Marhäll A, Gazi M, Kazi JU. Efficacy of the CDK inhibitor dinaciclib in vitro and in vivo in T-cell acute lymphoblastic leukemia. Cancer Lett 2017; 405:73-78. [DOI: 10.1016/j.canlet.2017.07.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 11/28/2022]
|