1
|
Luqman A, He M, Hassan A, Ullah M, Zhang L, Rashid Khan M, Din AU, Ullah K, Wang W, Wang G. Mood and microbes: a comprehensive review of intestinal microbiota's impact on depression. Front Psychiatry 2024; 15:1295766. [PMID: 38404464 PMCID: PMC10884216 DOI: 10.3389/fpsyt.2024.1295766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Depression is considered a multifaceted and intricate mental disorder of growing concern due to its significant impact on global health issues. The human gut microbiota, also known as the "second brain," has an important role in the CNS by regulating it through chemical, immunological, hormonal, and neurological processes. Various studies have found a significant bidirectional link between the brain and the gut, emphasizing the onset of depression therapies. The biological and molecular processes underlying depression and microbiota are required, as the bidirectional association may represent a novel study. However, profound insights into the stratification and diversity of the gut microbiota are still uncommon. This article investigates the emerging evidence of a bacterial relationship between the gut and the brain's neurological system and its potential pathogenicity and relevance. The interplay of microbiota, immune system, nervous system neurotransmitter synthesis, and neuroplasticity transitions is also widely studied. The consequences of stress, dietary fibers, probiotics, prebiotics, and antibiotics on the GB axis are being studied. Multiple studies revealed the processes underlying this axis and led to the development of effective microbiota-based drugs for both prevention and treatment. Therefore, the results support the hypothesis that gut microbiota influences depression and provide a promising area of research for an improved knowledge of the etiology of the disease and future therapies.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Mei He
- Chongqing University Cancer Hospital, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | | | - Muhammad Rashid Khan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Pakistan
| | - Wei Wang
- Chongqing University Cancer Hospital, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
2
|
Ma KL, Kei N, Yang F, Lauw S, Chan PL, Chen L, Cheung PCK. In Vitro Fermentation Characteristics of Fungal Polysaccharides Derived from Wolfiporia cocos and Their Effect on Human Fecal Microbiota. Foods 2023; 12:4014. [PMID: 37959133 PMCID: PMC10648267 DOI: 10.3390/foods12214014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Gut microbiota has been described as a new 'organ' that interferes with host physiology by its metabolites produced from the utilization and biotransformation of undigested food components. Fu Ling (FL), the sclerotia of fungi Wolfiporia cocos, contains β-glucan, which is a known natural polysaccharide with strong medicinal efficacy. This study endeavors to evaluate the fermentability of FL and polysaccharides extracted from its sclerotia. An in vitro fermentation of structurally characterized FL and its β-glucan by human fecal microbiota was conducted. Total bacterial count, pH change, short-chain fatty acid profile and microbiota profile were assessed post-fermentation. FL containing over 70% of β-(1 → 3) and (1 → 6)-glucans with a low degree of branching of 0.24 could enhance acetic acid (a major microbial metabolite) production. Both FL and its extracted β-glucan had similar modulation on microbial composition. They enriched Phascolarctobacterium faecium, Bacteroides dorei and Parabacteroides distasonis, all of which are shown to possess anti-inflammatory effects. FL polysaccharide can be utilized as a natural whole food for its potential health benefits to human gut bacteria.
Collapse
Affiliation(s)
- Ka Lee Ma
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.L.M.); (N.K.); (S.L.); (P.L.C.)
| | - Nelson Kei
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.L.M.); (N.K.); (S.L.); (P.L.C.)
| | - Fan Yang
- Biochemistry Program, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Susana Lauw
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.L.M.); (N.K.); (S.L.); (P.L.C.)
| | - Po Lam Chan
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.L.M.); (N.K.); (S.L.); (P.L.C.)
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (K.L.M.); (N.K.); (S.L.); (P.L.C.)
| |
Collapse
|
3
|
Van Pee T, Nawrot TS, van Leeuwen R, Hogervorst J. Ambient particulate air pollution and the intestinal microbiome; a systematic review of epidemiological, in vivo and, in vitro studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162769. [PMID: 36907413 DOI: 10.1016/j.scitotenv.2023.162769] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 05/13/2023]
Abstract
A healthy indigenous intestinal microbiome is indispensable for intra- and extra-intestinal human health. Since well-established factors such as diet and antibiotic use only explain 16 % of the inter-individual variation in gut microbiome composition, recent studies have focused on the association between ambient particulate air pollution and the intestinal microbiome. We systematically summarize and discuss all evidence concerning the effect of particulate air pollution on intestinal bacterial diversity indices, specific bacterial taxa, and potential underlying intestinal mechanisms. To this end, all possibly relevant publications published between February 1982 and January 2023 were screened, and eventually, 48 articles were included. The vast majority (n = 35) of these studies were animal studies. The exposure periods investigated in the human epidemiological studies (n = 12) ranged from infancy through elderly. This systematic review found that intestinal microbiome diversity indices were generally negatively associated with particulate air pollution in epidemiological studies, with an increase in taxa belonging to Bacteroidetes (two studies), Deferribacterota (one study), and Proteobacteria (four studies), a decrease in taxa belonging to Verrucomicrobiota (one study), and no consensus for taxa belonging to Actinobacteria (six studies) and Firmicutes (seven studies). There was no unequivocal effect of ambient particulate air pollution exposure on bacterial indices and taxa in animal studies. Only one study in humans examined a possible underlying mechanism; yet, the included in vitro and animal studies depicted higher gut damage, inflammation, oxidative stress, and permeability in exposed versus unexposed animals. Overall, the population-based studies showed a dose-related continuum of short- and long-term ambient particulate air pollution exposure on lower gut diversity and shifts in taxa over the entire life course.
Collapse
Affiliation(s)
- Thessa Van Pee
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; Department of Public Health and Primary Care, Leuven University, Herestraat 49-box 706, 3000 Leuven, Belgium.
| | - Romy van Leeuwen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Janneke Hogervorst
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| |
Collapse
|
4
|
Van Pee T, Nawrot TS, van Leeuwen R, Hogervorst J. The Gut Microbiome and Residential Surrounding Greenness: a Systematic Review of Epidemiological Evidence. Curr Environ Health Rep 2023:10.1007/s40572-023-00398-4. [PMID: 37296363 DOI: 10.1007/s40572-023-00398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE OF REVIEW A healthy indigenous intestinal microbiome is essential for human health. Well-established gut microbiome determinants only explain 16% of the inter-individual variation in gut microbiome composition. Recent studies have focused on green space as a potential determinant of the intestinal microbiome. We systematically summarize all evidence concerning the association between green space and intestinal bacterial diversity, evenness, and richness indices, specific bacterial taxa, and potential underlying mechanisms. RECENT FINDINGS Seven epidemiological studies were included in this review. The majority of the included studies (n = 4) reported a positive association between green space and intestinal bacterial diversity, evenness, and richness, while two reported the opposite. There was little overlap between the publications regarding the association between green space and the relative abundance of specific bacterial taxa. Only a decrease in the relative abundance of Bacteroidetes, Bacteroides, and Anaerostipes and an increase in Lachnospiraceae and Ruminococcaceae were reported in multiple studies, predominantly suggesting that green space is positively associated with the intestinal microbiome composition, and subsequently with human health. Lastly, the only examined mechanism was a reduction in perceived psychosocial stress. Mechanisms indicated in blue and white represent tested or hypothesized mechanisms, respectively. The graphical abstract was created with illustrations from BioRender, Noun Project, and Pngtree.
Collapse
Affiliation(s)
- Thessa Van Pee
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
- Department of Public Health and Primary Care, Leuven University, Herestraat 49-Box 706, 3000, Louvain, Belgium.
| | - Romy van Leeuwen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Janneke Hogervorst
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
5
|
Van Pee T, Hogervorst J, Dockx Y, Witters K, Thijs S, Wang C, Bongaerts E, Van Hamme JD, Vangronsveld J, Ameloot M, Raes J, Nawrot TS. Accumulation of Black Carbon Particles in Placenta, Cord Blood, and Childhood Urine in Association with the Intestinal Microbiome Diversity and Composition in Four- to Six-Year-Old Children in the ENVIR ONAGE Birth Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:17010. [PMID: 36719212 PMCID: PMC9888258 DOI: 10.1289/ehp11257] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND The gut microbiome plays an essential role in human health. Despite the link between air pollution exposure and various diseases, its association with the gut microbiome during susceptible life periods remains scarce. OBJECTIVES In this study, we examined the association between black carbon particles quantified in prenatal and postnatal biological matrices and bacterial richness and diversity measures, and bacterial families. METHODS A total of 85 stool samples were collected from 4- to 6-y-old children enrolled in the ENVIRonmental influence ON early AGEing birth cohort. We performed 16S rRNA gene sequencing to calculate bacterial richness and diversity indices (Chao1 richness, Shannon diversity, and Simpson diversity) and the relative abundance of bacterial families. Black carbon particles were quantified via white light generation under femtosecond pulsed laser illumination in placental tissue and cord blood, employed as prenatal exposure biomarkers, and in urine, used as a post-natal exposure biomarker. We used robust multivariable-adjusted linear models to examine the associations between quantified black carbon loads and measures of richness (Chao1 index) and diversity (Shannon and Simpson indices), adjusting for parity, season of delivery, sequencing batch, age, sex, weight and height of the child, and maternal education. Additionally, we performed a differential relative abundance analysis of bacterial families with a correction for sampling fraction bias. Results are expressed as percentage difference for a doubling in black carbon loads with 95% confidence interval (CI). RESULTS Two diversity indices were negatively associated with placental black carbon [Shannon: -4.38% (95% CI: -8.31%, -0.28%); Simpson: -0.90% (95% CI: -1.76%, -0.04%)], cord blood black carbon [Shannon: -3.38% (95% CI: -5.66%, -0.84%); Simpson: -0.91 (95% CI: -1.66%, -0.16%)], and urinary black carbon [Shannon: -3.39% (95% CI: -5.77%, -0.94%); Simpson: -0.89% (95% CI: -1.37%, -0.40%)]. The explained variance of black carbon on the above indices varied from 6.1% to 16.6%. No statistically significant associations were found between black carbon load and the Chao1 richness index. After multiple testing correction, placental black carbon was negatively associated with relative abundance of the bacterial families Defluviitaleaceae and Marinifilaceae, and urinary black carbon with Christensenellaceae and Coriobacteriaceae; associations with cord blood black carbon were not statistically significant after correction. CONCLUSION Black carbon particles quantified in prenatal and postnatal biological matrices were associated with the composition and diversity of the childhood intestinal microbiome. These findings address the influential role of exposure to air pollution during pregnancy and early life in human health. https://doi.org/10.1289/EHP11257.
Collapse
Affiliation(s)
- Thessa Van Pee
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Janneke Hogervorst
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Yinthe Dockx
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Katrien Witters
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jonathan D Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Instituut, KU Leuven-University of Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Public Health and Primary Care, Leuven University, Leuven, Belgium
| |
Collapse
|
6
|
Zhao F, Wang C, Song S, Fang C, Kristiansen K, Li C. Intake of a Chicken Protein-Based or Soy Protein-Based Diet Differentially Affects Growth Performance, Absorptive Capacity, and Gut Microbiota in Young Rats. Mol Nutr Food Res 2022; 66:e2101124. [PMID: 35583811 DOI: 10.1002/mnfr.202101124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/12/2022] [Indexed: 11/06/2022]
Abstract
SCOPE Both plant and animal products provide protein for human demands. However, the effect of protein sources on the physiological responses and the composition and functions of the gut microbiota during the early stage of life have received little attention. METHODS AND RESULTS In the present study, chicken protein and soy protein are fed to young weaning rats for 14 days based on the AIN-93G diet formulation. The growth performance is recorded, and the morphology of the small intestine is analyzed to estimate the absorptive capacity. Shotgun metagenomic sequencing is applied to analyze the cecal microbiota. The chicken protein-based diet (CHPD) enhances growth performance and absorptive capacity in young rats compared to the soy protein-based diet (SPD). The CHPD maintains higher levels of Lactobacillus species, associated with glutathione synthesis. CONCLUSION The CHPD seems favorable for young growing rats in relation to growth performance and absorptive capacity, correlated with changes in the composition and functional potential of the gut microbiota.
Collapse
Affiliation(s)
- Fan Zhao
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Chong Wang
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark.,Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Shangxin Song
- School of Food Science, Nanjing Xiaozhuang University, 3601 Hongjing Road, Nanjing, 211171, P. R. China
| | - Chao Fang
- BGI-Shenzhen, Shenzhen, 518083, P. R. China
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark.,BGI-Shenzhen, Shenzhen, 518083, P. R. China.,Institute of Metagenomics, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, 166555, P. R. China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
7
|
Lu X, Zhong R, Hu L, Huang L, Chen L, Cheng W, Zheng B, Liang P. DHA-enriched phospholipids from large yellow croaker roe regulate lipid metabolic disorders and gut microbiota imbalance in SD rats with a high-fat diet. Food Funct 2021; 12:4825-4841. [PMID: 33949580 DOI: 10.1039/d1fo00747e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Large yellow croaker roe phospholipids (LYCRPLs) have great nutritional value because they are rich in docosahexaenoic acid (DHA), which is an n-3 polyunsaturated fatty acid (n-3 PUFA). In previous research, we studied the effect of LYCRPLs on the inhibition of triglyceride accumulation at the cellular level. However, its lipid regulation effect in rats on a high-fat diet and its influence on the gut microbiota has not yet been clarified. In this study, a high-fat diet was used to induce the lipid metabolism disorder in SD rats, and simvastatin, low-dose, medium-dose and high-dose LYCRPLs were given by intragastric administration for 8 weeks. The rats' body weight, food intake, organ index, blood biochemical indicators, epididymal fat tissue and liver histopathology were compared and analyzed. High-throughput 16S rRNA gene sequencing technology and bioinformatics analysis technology were also used to analyze the diversity of gut microbiota in rats. We found that LYCRPLs can significantly regulate lipid metabolism, and improve the gut microbiota disorder induced in rats by a high-fat diet. These results can lay a foundation for the study of the regulation mechanism of LYCRPLs lipid metabolism, and also provide a theoretical basis for the development of LYCRPLs as functional food additives and excipients with hypolipidemic effects.
Collapse
Affiliation(s)
- Xiaodan Lu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, Fujian, P.R. China. and College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, P.R. China and Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, P.R. China
| | - Rongbin Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, P.R. China
| | - Ling Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, P.R. China
| | - Luyao Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, P.R. China
| | - Lijiao Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, P.R. China
| | - Wenjian Cheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, P.R. China
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, Fujian, P.R. China. and College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, P.R. China and Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, P.R. China
| | - Peng Liang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, Fujian, P.R. China. and College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, P.R. China
| |
Collapse
|
8
|
Martins Lopes MS, Machado LM, Ismael Amaral Silva PA, Tome Uchiyama AA, Yen CT, Ricardo ED, Mutao TS, Pimenta JR, Shimba DS, Hanriot RM, Peixoto RD. Antibiotics, cancer risk and oncologic treatment efficacy: a practical review of the literature. Ecancermedicalscience 2020; 14:1106. [PMID: 33144874 PMCID: PMC7581329 DOI: 10.3332/ecancer.2020.1106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Antibiotics have been extensively used to treat infectious diseases over the past century and have largely contributed to increased life expectancy over time. However, antibiotic use can impose profound and protracted changes to the diversity of the microbial ecosystem, affecting the composition of up to 30% of the bacterial species in the gut microbiome. By modifying human microbiota composition, antibiotics alter the action of several oncologic drugs, potentially leading to decreased efficacy and increased toxicities. Whether antibiotics interfere with cancer therapies or even increase the risk of cancer development has been under investigation, and no randomised trials have been conducted so far. The aim of the current review is to describe the possible effects of antibiotic therapies on different oncologic treatments, especially immunotherapies, and to explore the link between previous antibiotics use and the development of cancer.
Collapse
Affiliation(s)
| | | | | | | | - Cheng T Yen
- Hospital Alemão Oswaldo Cruz, São Paulo, Brazil
| | | | | | | | | | | | - Renata D Peixoto
- Centro Paulista de Oncologia (Grupo Oncoclínicas), São Paulo, Brazil
| |
Collapse
|
9
|
Soy bioactive peptides and the gut microbiota modulation. Appl Microbiol Biotechnol 2020; 104:9009-9017. [PMID: 32945899 DOI: 10.1007/s00253-020-10799-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
The balance of protein, carbohydrate, and fat affect the composition and functions of the gut microbiota. The complexities involved thereof require insights into the roles and impacts of individual dietary components due to the difficulty of defining such in a group of others. Peptides and proteins from several animal and plant sources have been widely explored in relation to the gut microbiome modulation, but the effects of soy peptides and other soy derivatives on the gut microbiota are largely unexplored. This piece considered an overview of the production and interventions of soy bioactive peptides on gut, as they affect the composition and functions of the gut microorganisms. A mini review on the production of soy protein hydrolysates/peptides and highlights of the most recent knowledge regarding their physiological effects on host's gut microbiota cum health were investigated. Overall deductions and research gaps were critically evaluated for futuristic interventions and relevance. Key points • Diet affects the composition of gut microorganisms. • Modulation of the gut microbiota by soy biopeptides is described. • Critical deductions on personal and commercial use are provided.
Collapse
|
10
|
Shinde T, Vemuri R, Shastri S, Perera AP, Gondalia SV, Beale DJ, Karpe AV, Eri R, Stanley R. Modulating the Microbiome and Immune Responses Using Whole Plant Fibre in Synbiotic Combination with Fibre-Digesting Probiotic Attenuates Chronic Colonic Inflammation in Spontaneous Colitic Mice Model of IBD. Nutrients 2020; 12:E2380. [PMID: 32784883 PMCID: PMC7468978 DOI: 10.3390/nu12082380] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/30/2022] Open
Abstract
A probiotic and prebiotic food ingredient combination was tested for synergistic functioning in modulation of the colonic microbiome and remediation of the gastrointestinal immune and inflammatory responses in a spontaneous colitic mouse model. Bacillus coagulans MTCC5856 spores with capability to metabolise complex plant polysaccharides were supplemented with complex whole-plant prebiotic sugarcane fibre (PSCF). The combined and individual efficacies were tested for their influence on the outcomes of chronic inflammation in Muc2 mutant colitic Winnie mice. The mice were fed normal chow diet supplemented with either ingredient or a combination for 21 days. Synbiotic combined supplementation ameliorated clinical symptoms and histological colonic damage scores more effectively than either B. coagulans or PSCF alone. PSCF and B. coagulans alone also induced considerable immunomodulatory effects. Synbiotic supplementation however was the most efficacious in modulating the overall immune profile compared to the unsupplemented Winnie-control. The augmented synbiotic effect could potentially be due to a combination of increased levels of fermentation products, direct immune-modulating abilities of the components, their capability to reduce colonic epithelial damage and/or modulation of the microbiota. The beneficial effects of the supplementation with a complex plant fibre and a fibre-degrading probiotic parallel the effects seen in human microbiota with high plant fibre diets.
Collapse
Affiliation(s)
- Tanvi Shinde
- Centre for Food Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Launceston, Tasmania 7250, Australia
- Gut Health Research Group, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia; (R.V.); (S.S.); (A.P.P.); (R.E.)
| | - Ravichandra Vemuri
- Gut Health Research Group, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia; (R.V.); (S.S.); (A.P.P.); (R.E.)
- Department of Pathology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Sonia Shastri
- Gut Health Research Group, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia; (R.V.); (S.S.); (A.P.P.); (R.E.)
| | - Agampodi Promoda Perera
- Gut Health Research Group, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia; (R.V.); (S.S.); (A.P.P.); (R.E.)
| | - Shakuntla V. Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia;
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organization (CSIRO), Gate 13 Kintore Avenue, South Australia 5000, Australia
| | - David J. Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Ecosciences Precinct, Dutton Park, Queensland 4102, Australia; (D.J.B.); (A.V.K.)
| | - Avinash V. Karpe
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Ecosciences Precinct, Dutton Park, Queensland 4102, Australia; (D.J.B.); (A.V.K.)
| | - Rajaraman Eri
- Gut Health Research Group, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia; (R.V.); (S.S.); (A.P.P.); (R.E.)
| | - Roger Stanley
- Centre for Food Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Launceston, Tasmania 7250, Australia
| |
Collapse
|
11
|
Sharma VR, Singh M, Kumar V, Yadav M, Sehrawat N, Sharma DK, Sharma AK. Microbiome dysbiosis in cancer: Exploring therapeutic strategies to counter the disease. Semin Cancer Biol 2020; 70:61-70. [PMID: 32693015 DOI: 10.1016/j.semcancer.2020.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/11/2020] [Accepted: 07/11/2020] [Indexed: 02/09/2023]
Abstract
Cancer being a multiplex disease which involves many genomic and physiological alterations that occur consistently in the cancerous tissue, making the treatment and management of the disease even more complicated. The human gut microbiota (GM) harbors collective genomes of microbes comprising of trillions of bacteria along with fungi, archaea, and viruses that have the tendency to affect the development and progression of cancer. Moreover, inter-microbial interactions, diversity and distinct differences among the GM populations could influence the course of disease, making the microbiome an ideal target or to be modulated in such a way so as to improve cancer therapeutics with better efficacy and reduced toxicity. Current review focuses upon exploring the association of gut microbiota with the progression of cancer for which a structured search of bibliographic databases for peer-reviewed research literature has been carried out using focused review questions and inclusion/exclusion criteria. Through this review one could envisage a wide-spectrum role of microbiota in maintaining host metabolism, immune homeostasis paving the way for an anticancer diagnostic and therapeutic solution that has the potential to counter the menace of anti-cancer drug resistance as well.
Collapse
Affiliation(s)
- Var Ruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College Sector-26, Chandigarh UT, 160019, India
| | - Manoj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala Haryana, 133207, India
| | - Vikas Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala Haryana, 133207, India
| | - Mukesh Yadav
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala Haryana, 133207, India
| | - Nirmala Sehrawat
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala Haryana, 133207, India
| | | | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala Haryana, 133207, India.
| |
Collapse
|
12
|
Shui L, Yang X, Li J, Yi C, Sun Q, Zhu H. Gut Microbiome as a Potential Factor for Modulating Resistance to Cancer Immunotherapy. Front Immunol 2020; 10:2989. [PMID: 32010123 PMCID: PMC6978681 DOI: 10.3389/fimmu.2019.02989] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023] Open
Abstract
Gut microbiota refers to the diverse community of more than 100 trillion microorganisms residing in our intestines. It is now known that any shift in the composition of gut microbiota from that present during the healthy state in an individual is associated with predisposition to multiple pathological conditions, such as diabetes, autoimmunity, and even cancer. Currently, therapies targeting programmed cell death protein 1/programmed cell death 1 ligand 1 or cytotoxic T-lymphocyte antigen-4 are the focus of cancer immunotherapy and are widely applied in clinical treatment of various tumors. Owing to relatively low overall response rate, however, it has been an ongoing research endeavor to identify the mechanisms or factors for improving the therapeutic efficacy of these immunotherapies. Other than causing mutations that affect gene expression, some gut bacteria may also activate or repress the host's response to immune checkpoint inhibitors. In this review, we have described recent advancements made in understanding the regulatory relationship between gut microbiome and cancer immunotherapy. We have also summarized the potential molecular mechanisms behind this interaction, which can serve as a basis for utilizing different kinds of gut bacteria as promising tools for reversing immunotherapy resistance in cancer.
Collapse
Affiliation(s)
- Lin Shui
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Li
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Sun
- Drug Research Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Dissecting the Evolutionary Development of the Species Bifidobacterium animalis through Comparative Genomics Analyses. Appl Environ Microbiol 2019; 85:AEM.02806-18. [PMID: 30709821 DOI: 10.1128/aem.02806-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
Bifidobacteria are members of the gut microbiota of animals, including mammals, birds, and social insects. In this study, we analyzed and determined the pangenome of Bifidobacterium animalis species, encompassing B. animalis subsp. animalis and the B. animalis subsp. lactis taxon, which is one of the most intensely exploited probiotic bifidobacterial species. In order to reveal differences within the B. animalis species, detailed comparative genomics and phylogenomics analyses were performed, indicating that these two subspecies recently arose through divergent evolutionary events. A subspecies-specific core genome was identified for both B. animalis subspecies, revealing the existence of subspecies-defining genes involved in carbohydrate metabolism. Notably, these in silico analyses coupled with carbohydrate profiling assays suggest genetic adaptations toward a distinct glycan milieu for each member of the B. animalis subspecies, resulting in a divergent evolutionary development of the two subspecies.IMPORTANCE The majority of characterized B. animalis strains have been isolated from human fecal samples. In order to explore genome variability within this species, we isolated 15 novel strains from the gastrointestinal tracts of different animals, including mammals and birds. The present study allowed us to reconstruct the pangenome of this taxon, including the genome contents of 56 B. animalis strains. Through careful assessment of subspecies-specific core genes of the B. animalis subsp. animalis/lactis taxon, we identified genes encoding enzymes involved in carbohydrate transport and metabolism, while unveiling specific gene acquisition and loss events that caused the evolutionary emergence of these two subspecies.
Collapse
|
14
|
Brasili E, Hassimotto NMA, Del Chierico F, Marini F, Quagliariello A, Sciubba F, Miccheli A, Putignani L, Lajolo F. Daily Consumption of Orange Juice from Citrus sinensis L. Osbeck cv. Cara Cara and cv. Bahia Differently Affects Gut Microbiota Profiling as Unveiled by an Integrated Meta-Omics Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1381-1391. [PMID: 30644740 DOI: 10.1021/acs.jafc.8b05408] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We have investigated the effect of intake of two different orange juices from Citrus sinensis cv. "Cara Cara" and cv. "Bahia" on faecal microbiota and metabolome using an integrated meta-omics approach. Following a randomized crossover design, healthy subjects daily consumed 500 mL of orange juice from Cara Cara or Bahia juices or an isocaloric control drink. Stools were collected at baseline (T0) and after a week (T7) of intervention. Operational taxonomic units (OTUs) were pyrosequenced targeting 16S rRNA, and faecal metabolites were analyzed by an untargeted metabolomics approach based on 1H NMR spectroscopy. The major shift observed in microbiota composition after orange juice intake was the increased abundance of a network of Clostridia OTUs from Mogibacteriaceae, Tissierellaceae, Veillonellaceae, Odoribacteraceae, and Ruminococcaceae families, whose members were differently affected by Cara Cara or Bahia juice consumption. A core of six metabolites such as inositol, choline, lysine, arginine, urocanic acid, and formate significantly increased in Cara Cara compared to the Bahia group.
Collapse
Affiliation(s)
- Elisa Brasili
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science , University of São Paulo , São Paulo 05508-000, Brazil
- Food Research Center (FoRC) , CEPID-FAPESP (Research Innovation and Dissemination Centers Sao Paulo Research Foundation) , São Paulo 05468-901 , Brazil
| | - Neuza Mariko Aymoto Hassimotto
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science , University of São Paulo , São Paulo 05508-000, Brazil
- Food Research Center (FoRC) , CEPID-FAPESP (Research Innovation and Dissemination Centers Sao Paulo Research Foundation) , São Paulo 05468-901 , Brazil
| | - Federica Del Chierico
- Unit of Human Microbiome , Children's Hospital and Research Institute Bambino Gesù , Rome 00165 , Italy
| | - Federico Marini
- Department of Chemistry , University of Rome "La Sapienza" , Rome 00185 , Italy
| | - Andrea Quagliariello
- Unit of Human Microbiome , Children's Hospital and Research Institute Bambino Gesù , Rome 00165 , Italy
| | - Fabio Sciubba
- Department of Chemistry , University of Rome "La Sapienza" , Rome 00185 , Italy
| | - Alfredo Miccheli
- Department of Chemistry , University of Rome "La Sapienza" , Rome 00185 , Italy
| | - Lorenza Putignani
- Unit of Human Microbiome , Children's Hospital and Research Institute Bambino Gesù , Rome 00165 , Italy
- Unit of Parasitology , Children's Hospital and Research Institute Bambino Gesù , Rome 00165 , Italy
| | - Franco Lajolo
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science , University of São Paulo , São Paulo 05508-000, Brazil
- Food Research Center (FoRC) , CEPID-FAPESP (Research Innovation and Dissemination Centers Sao Paulo Research Foundation) , São Paulo 05468-901 , Brazil
| |
Collapse
|
15
|
Danneskiold-Samsøe NB, Dias de Freitas Queiroz Barros H, Santos R, Bicas JL, Cazarin CBB, Madsen L, Kristiansen K, Pastore GM, Brix S, Maróstica Júnior MR. Interplay between food and gut microbiota in health and disease. Food Res Int 2019; 115:23-31. [DOI: 10.1016/j.foodres.2018.07.043] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/01/2018] [Accepted: 07/28/2018] [Indexed: 12/14/2022]
|
16
|
Hou A, Xiao Y, Li Z. Effects of 1, 3-dioleoyl-2-palmitoylglycerol and its plant-oil formula on the toddler fecal microbiota during in vitro fermentation. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1648555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Aixiang Hou
- Department of Food Microbiology, College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Yu Xiao
- Department of Food Microbiology, College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Zongjun Li
- Department of Food Microbiology, College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- National Research Center of Engineering & Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
17
|
Egan M, Bottacini F, O'Connell Motherway M, Casey PG, Morrissey R, Melgar S, Faurie JM, Chervaux C, Smokvina T, van Sinderen D. Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions. Appl Microbiol Biotechnol 2018; 102:10645-10663. [PMID: 30306201 DOI: 10.1007/s00253-018-9413-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/08/2018] [Accepted: 09/16/2018] [Indexed: 01/16/2023]
Abstract
Members of the Bifidobacterium genus are widely used as probiotics in fermented milk products. Bifidobacterium animalis subsp. animalis CNCM I-4602 grows and survives poorly in reconstituted skimmed milk (RSM). Availing of genome and transcriptome information, this poor growth and survival phenotype in milk was substantially improved by the addition of certain compounds, such as yeast extract, uric acid, glutathione, cysteine, ferrous sulfate, and a combination of magnesium sulfate and manganese sulfate. Carbohydrate utilization of CNCM I-4602 was also investigated, allowing the identification of several carbohydrate utilization gene clusters, and highlighting this strain's inability to utilize lactose, unlike the type strain of this subspecies, B. animalis subsp. animalis ATCC25527 and the B. animalis subsp. lactis subspecies. In addition, the ability of B. animalis subsp. animalis CNCM I-4602 to colonize a murine model was investigated, which showed that this strain persists in the murine gut for a period of at least 4 weeks. Associated in vivo transcriptome analysis revealed that, among other genes, a gene cluster encoding a predicted type IVb tight adherence (Tad) pilus was upregulated, indicating that this extracellular structure plays a role in the colonization/adaptation of the murine gastrointestinal tract by this strain.
Collapse
Affiliation(s)
- Muireann Egan
- APC Microbiome Ireland and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Mary O'Connell Motherway
- APC Microbiome Ireland and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Patrick G Casey
- APC Microbiome Ireland and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Ruth Morrissey
- APC Microbiome Ireland and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | | | | | - Tamara Smokvina
- Danone Nutricia Research, Avenue de la Vauve, 91767, Palaiseau, France
| | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, University College Cork, Western Road, Cork, Ireland.
| |
Collapse
|