1
|
Qiu Z, Sigh D, Liu Y, Prasad CB, Bean N, Yan C, Li Z, Zhang X, Narla G, DiFeo A, Wang QE, Zhang J. Low PPP2R2A expression promotes sensitivity to CHK1 inhibition in high-grade serous ovarian cancer. Theranostics 2024; 14:7450-7469. [PMID: 39659585 PMCID: PMC11626944 DOI: 10.7150/thno.96879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/06/2024] [Indexed: 12/12/2024] Open
Abstract
Rationale: High-grade serous ovarian cancer (HGSOC), the most lethal epithelial ovarian cancer subtype, faces persistent challenges despite advances in the therapeutic use of PARP inhibitors. Thus, innovative strategies are urgently needed to improve survival rates for this deadly disease. Checkpoint kinase 1 (CHK1) is pivotal in regulating cell survival during oncogene-induced replication stress (RS). While CHK1 inhibitors (CHK1i's) show promise as monotherapy for ovarian cancer, a crucial biomarker for effective stratification in clinical trials is lacking, hindering efficacy improvement and toxicity reduction. PP2A B55α, encoded by PPP2R2A, is a regulatory subunit of the serine/threonine protein phosphatase 2 (PP2A) that influences CHK1 sensitivity in non-small cell lung cancer (NSCLC). Given the complexity of PP2A B55α function in different types of cancer, here we sought to identify whether PPP2R2A deficiency enhances the sensitivity of HGSOC to CHK1 inhibition. Methods: To determine whether PPP2R2A deficiency affects the sensitivity of HGSOC to CHK1 inhibition, we treated PPP2R2A knockdown (KD) HGSOC cells or HGSOC cells with naturally low PPP2R2A expression with a CHK1 inhibitor, then assessed cell growth in in vitro and in vivo assays. Additionally, we investigated the mechanisms contributing to the increased RS and the enhanced sensitivity to the CHK1 inhibitor in PPP2R2A-KD or deficient cells using various molecular biology assays, including western blotting, immunofluorescence, and DNA fiber assays. Results: Our study suggests that PPP2R2A-KD elevates c-Myc-induced RS via upregulation of replication initiation, rendering HGSOC cells reliant on CHK1 for survival, including those resistant to PARP inhibitors. Conclusion: Combined, these results identify PPP2R2A/PP2A B55α as a potential predictive biomarker for CHK1i sensitivity in HGSOC, as well as suggesting it as a therapeutic target to overcome PARP resistance.
Collapse
Affiliation(s)
- Zhaojun Qiu
- Department of Radiation Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio-43210, United States
| | - Deepika Sigh
- Department of Radiation Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio-43210, United States
| | - Yujie Liu
- Department of Radiation Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio-43210, United States
| | - Chandra B. Prasad
- Department of Radiation Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio-43210, United States
| | - Nichalos Bean
- Department of Radiation Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio-43210, United States
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University Medical College, 1410 Laney Walker Blvd., CN-2134, Augusta, Georgia-30912, United States
| | - Zaibo Li
- Department of Pathology, The Ohio State University Wexner Medical Center, College of Medicine, Columbus, Ohio-43210, United States
| | - Xiaoli Zhang
- Department of Biomedical Informatics, Wexner Medical Center, College of Medicine, The Ohio State University, Ohio-43210, United States
| | - Goutham Narla
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI-48109, United States
| | - Analisa DiFeo
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI-48109, United States
| | - Qi-En Wang
- Department of Radiation Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio-43210, United States
| | - Junran Zhang
- Department of Radiation Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio-43210, United States
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio-43210, United States
- The James Comprehensive Cancer Center, Center for metabolism, The Ohio State University, Columbus, Ohio-43210, United States
| |
Collapse
|
2
|
Zhang F, Luo W, Liu S, Zhao L, Su Y. Protein phosphatase 2A regulates blood cell proliferation and differentiation in Drosophila larval lymph glands. FEBS J 2024; 291:4558-4580. [PMID: 39185698 DOI: 10.1111/febs.17247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
Protein phosphatase 2A (PP2A), one of the most abundant protein phosphatases, has divergent functions in multiple types of cells. Its inactivation has been closely associated with leukemia diseases. However, the physiological function of PP2A for hematopoiesis has been poorly understood in organisms. Drosophila hematopoiesis parallels the vertebrate counterpart in developmental and functional features but involves a much simpler hematopoietic system. Here, utilizing the Drosophila major larval hematopoietic organ lymph gland, we studied the function of PP2A for hematopoiesis in vivo. By knocking down the expression of Pp2A-29B that encodes the scaffold subunit of the PP2A holoenzyme complex, we found that PP2A silencing in the differentiating hemocytes resulted in their excessive proliferation. Furthermore, this PP2A inhibition downregulated the expression of Smoothened (Smo), a crucial component in the Hedgehog pathway, and smo overexpression was able to rescue the phenotypes of PP2A depletion, indicating that Smo functions as a downstream effector of PP2A to restrict the hemocyte proliferation. PDGF/VEGF-receptor (Pvr) overexpression also restored the Smo expression and lymph gland morphology of PP2A silencing, suggesting a PP2A-Pvr-Smo axis to regulate lymph gland growth and hemocyte proliferation. Moreover, inhibiting PP2A activity in the blood progenitor cells promoted their differentiation, but which was independent with Smo. Together, our data suggested that PP2A plays a dual role in the Drosophila lymph gland by preserving the progenitor population and restraining the hemocyte proliferation, to properly regulate the hematopoietic process.
Collapse
Affiliation(s)
- Fang Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wang Luo
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Sumin Liu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Long Zhao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Ying Su
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
3
|
Domènech Omella J, Cortesi EE, Verbinnen I, Remmerie M, Wu H, Cubero FJ, Roskams T, Janssens V. A Novel Mouse Model of Combined Hepatocellular-Cholangiocarcinoma Induced by Diethylnitrosamine and Loss of Ppp2r5d. Cancers (Basel) 2023; 15:4193. [PMID: 37627221 PMCID: PMC10453342 DOI: 10.3390/cancers15164193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Primary liver cancer (PLC) can be classified in hepatocellular (HCC), cholangiocarcinoma (CCA), and combined hepatocellular-cholangiocarcinoma (cHCC-CCA). The molecular mechanisms involved in PLC development and phenotype decision are still not well understood. Complete deletion of Ppp2r5d, encoding the B56δ subunit of Protein Phosphatase 2A (PP2A), results in spontaneous HCC development in mice via a c-MYC-dependent mechanism. In the present study, we aimed to examine the role of Ppp2r5d in an independent mouse model of diethylnitrosamine (DEN)-induced hepatocarcinogenesis. Ppp2r5d deletion (heterozygous and homozygous) accelerated HCC development, corroborating its tumor-suppressive function in liver and suggesting Ppp2r5d may be haploinsufficient. Ppp2r5d-deficient HCCs stained positively for c-MYC, consistent with increased AKT activation in pre-malignant and tumor tissues of Ppp2r5d-deficient mice. We also found increased YAP activation in Ppp2r5d-deficient tumors. Remarkably, in older mice, Ppp2r5d deletion resulted in cHCC-CCA development in this model, with the CCA component showing increased expression of progenitor markers (SOX9 and EpCAM). Finally, we observed an upregulation of Ppp2r5d in tumors from wildtype and heterozygous mice, revealing a tumor-specific control mechanism of Ppp2r5d expression, and suggestive of the involvement of Ppp2r5d in a negative feedback regulation restricting tumor growth. Our study highlights the tumor-suppressive role of mouse PP2A-B56δ in both HCC and cHCC-CCA, which may have important implications for human PLC development and targeted treatment.
Collapse
Affiliation(s)
- Judit Domènech Omella
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
| | - Emanuela E. Cortesi
- Translational Cell & Tissue Research, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (E.E.C.); (T.R.)
| | - Iris Verbinnen
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
| | - Michiel Remmerie
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
| | - Hanghang Wu
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (H.W.); (F.J.C.)
| | - Francisco J. Cubero
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (H.W.); (F.J.C.)
- Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
| | - Tania Roskams
- Translational Cell & Tissue Research, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (E.E.C.); (T.R.)
- Department of Pathology, University Hospitals Leuven (UZ Leuven), 3000 Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
- KU Leuven Cancer Institute (LKI), 3000 Leuven, Belgium
| |
Collapse
|
4
|
Guffens L, Derua R, Janssens V. PME-1 sensitizes glioblastoma cells to oxidative stress-induced cell death by attenuating PP2A-B55α-mediated inactivation of MAPKAPK2-RIPK1 signaling. Cell Death Discov 2023; 9:265. [PMID: 37500619 PMCID: PMC10374899 DOI: 10.1038/s41420-023-01572-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults. Current standard therapy is surgery followed by radiotherapy, with concurrent and adjuvant temozolomide chemotherapy. GBM is characterized by almost uniformly fatal outcomes, highlighting the unmet clinical need for more efficient, biomarker-guided treatments. Protein phosphatase methylesterase-1 (PME-1), a regulator of the tumor suppressive phosphatase PP2A, promotes PP2A demethylation and inactivation, and is overexpressed in 44% of GBM, associated with increased tumor grade and cellular proliferation. Here, we aimed to investigate how reactive oxygen species (ROS), a frequent by-product of radiotherapy and temozolomide chemotherapy, regulate PP2A function via its methylesterase PME-1, and how PME-1 overexpression impacts the response of GBM cells to oxidative stress. We found that in two glioblastoma cell lines, U87MG and U251MG, expression of PME-1 is positively correlated with the sensitivity of the cells to H2O2 or t-BHP-induced oxidative stress. Experiments using the irreversible pharmacologic PME-1 inhibitor, AMZ30, and different PME-1 mutants, revealed that the methylesterase function, the PP2A binding capacity, and the nuclear localization of PME-1 are all important for the sensitizing effect of PME-1 expression. Furthermore, we identified increased nuclear localization of the PP2A-B55α subunit, increased binding of PP2A-B55α to PME-1, and increased B55α-bound PP2A-C demethylation upon oxidative stress. Lastly, we uncovered increased stress-induced phosphorylation and activity of MAPKAPK2 and RIPK1 in PME-1 overexpressing U87MG cells, which caused the observed sensitization to t-BHP treatment. Our data reveal a novel role for PME-1 in oxidative stress-induced GBM cell death, regulating nuclear PP2A-B55α activity and MAPKAPK2-RIPK1 signaling. Patients with GBM tumors overexpressing PME-1, although having a worse prognosis due to increased cellular proliferation of the tumor, could actually be more responsive to oxidative stress-inducing therapies.
Collapse
Affiliation(s)
- Liesbeth Guffens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
- SyBioMa, KU Leuven, B-3000, Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. Cellular & Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium.
- KU Leuven Cancer Institute (LKI), B-3000, Leuven, Belgium.
| |
Collapse
|
5
|
Jiang TY, Cui XW, Zeng TM, Pan YF, Lin YK, Feng XF, Tan YX, Yuan ZG, Dong LW, Wang HY. PTEN deficiency facilitates gemcitabine efficacy in cancer by modulating the phosphorylation of PP2Ac and DCK. Sci Transl Med 2023; 15:eadd7464. [PMID: 37437018 DOI: 10.1126/scitranslmed.add7464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
Gemcitabine is a nucleoside analog that has been successfully used in the treatment of multiple cancers. However, intrinsic or acquired resistance reduces the chemotherapeutic potential of gemcitabine. Here, we revealed a previously unappreciated mechanism by which phosphatase and tensin homolog (PTEN), one of the most frequently mutated genes in human cancers, dominates the decision-making process that is central to the regulation of gemcitabine efficacy in cholangiocarcinoma (CCA). By investigating a gemcitabine-treated CCA cohort, we found that PTEN deficiency was correlated with the improved efficacy of gemcitabine-based chemotherapy. Using cell-based drug sensitivity assays, cell line-derived xenograft, and patient-derived xenograft models, we further confirmed that PTEN deficiency or genetic-engineering down-regulation of PTEN facilitated gemcitabine efficacy both in vitro and in vivo. Mechanistically, PTEN directly binds to and dephosphorylates the C terminus of the catalytic subunit of protein phosphatase 2A (PP2Ac) to increase its enzymatic activity, which further dephosphorylates deoxycytidine kinase (DCK) at Ser74 to diminish gemcitabine efficacy. Therefore, PTEN deficiency and high phosphorylation of DCK predict a better response to gemcitabine-based chemotherapy in CCA. We speculate that the combination of PP2A inhibitor and gemcitabine in PTEN-positive tumors could avoid the resistance of gemcitabine, which would benefit a large population of patients with cancer receiving gemcitabine or other nucleoside analogs.
Collapse
Affiliation(s)
- Tian-Yi Jiang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai 200438, China
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
| | - Xiao-Wen Cui
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, the Naval Medical University, Shanghai 201805, China
| | - Tian-Mei Zeng
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, the Naval Medical University, Shanghai 201805, China
| | - Yu-Fei Pan
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai 200438, China
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
| | - Yun-Kai Lin
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai 200438, China
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
| | - Xiao-Fan Feng
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
| | - Ye-Xiong Tan
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
| | - Zhen-Gang Yuan
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, the Naval Medical University, Shanghai 201805, China
| | - Li-Wei Dong
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai 200438, China
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai 200438, China
- National Center for Liver Cancer, the Naval Medical University, Shanghai 201805, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai, 200438, China
- Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, the Naval Medical University and Ministry of Education, Shanghai 200438, China
| |
Collapse
|
6
|
Hsiao KC, Ruan SY, Chen SM, Lai TY, Chan RH, Zhang YM, Chu CA, Cheng HC, Tsai HW, Tu YF, Law BK, Chang TT, Chow NH, Chiang CW. The B56γ3-containing protein phosphatase 2A attenuates p70S6K-mediated negative feedback loop to enhance AKT-facilitated epithelial-mesenchymal transition in colorectal cancer. Cell Commun Signal 2023; 21:172. [PMID: 37430297 DOI: 10.1186/s12964-023-01182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Protein phosphatase 2A (PP2A) is one of the major protein phosphatases in eukaryotic cells and is essential for cellular homeostasis. PP2A is a heterotrimer comprising the dimeric AC core enzyme and a highly variable regulatory B subunit. Distinct B subunits help the core enzyme gain full activity toward specific substrates and contribute to diverse cellular roles of PP2A. PP2A has been thought to play a tumor suppressor and the B56γ3 regulatory subunit was shown to play a key tumor suppressor regulatory subunit of PP2A. Nevertheless, we uncovered a molecular mechanism of how B56γ3 may act as an oncogene in colorectal cancer (CRC). METHODS Polyclonal pools of CRC cells with stable B56γ3 overexpression or knockdown were generated by retroviral or lentiviral infection and subsequent drug selection. Co-immunoprecipitation(co-IP) and in vitro pull-down analysis were applied to analyze the protein-protein interaction. Transwell migration and invasion assays were applied to investigate the role of B56γ3 in affecting motility and invasive capability of CRC cells. The sensitivity of CRC cells to 5-fluorouracil (5-FU) was analyzed using the PrestoBlue reagent assay for cell viability. Immunohistochemistry (IHC) was applied to investigate the expression levels of phospho-AKT and B56γ3 in paired tumor and normal tissue specimens of CRC. DataSets of TCGA and GEO were analyzed to investigate the correlation of B56γ3 expression with overall survival rates of CRC patients. RESULTS We showed that B56γ3 promoted epithelial-mesenchymal transition (EMT) and reduced the sensitivity of CRC cells to 5-FU through upregulating AKT activity. Mechanistically, B56γ3 upregulates AKT activity by targeting PP2A to attenuate the p70S6K-mediated negative feedback loop regulation on PI3K/AKT activation. B56γ3 was highly expressed and positively correlated with the level of phospho-AKT in tumor tissues of CRC. Moreover, high B56γ3 expression is associated with poor prognosis of a subset of patients with CRC. CONCLUSIONS Our finding reveals that the B56γ3 regulatory subunit-containing PP2A plays an oncogenic role in CRC cells by sustaining AKT activation through suppressing p70S6K activity and suggests that the interaction between B56γ3 and p70S6K may serve as a therapeutic target for CRC. Video Abstract.
Collapse
Affiliation(s)
- Kai-Ching Hsiao
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Siou-Ying Ruan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Shih-Min Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Tai-Yu Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Ren-Hao Chan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yan-Ming Zhang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chien-An Chu
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hung-Chi Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hung-Wen Tsai
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yi-Fang Tu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Brian K Law
- Department of Pharmacology and Therapeutics and the UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Nan-Haw Chow
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.
| |
Collapse
|
7
|
Maldonado H, Leyton L. CSK-mediated signalling by integrins in cancer. Front Cell Dev Biol 2023; 11:1214787. [PMID: 37519303 PMCID: PMC10382208 DOI: 10.3389/fcell.2023.1214787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Cancer progression and metastasis are processes heavily controlled by the integrin receptor family. Integrins are cell adhesion molecules that constitute the central components of mechanosensing complexes called focal adhesions, which connect the extracellular environment with the cell interior. Focal adhesions act as key players in cancer progression by regulating biological processes, such as cell migration, invasion, proliferation, and survival. Src family kinases (SFKs) can interplay with integrins and their downstream effectors. SFKs also integrate extracellular cues sensed by integrins and growth factor receptors (GFR), transducing them to coordinate metastasis and cell survival in cancer. The non-receptor tyrosine kinase CSK is a well-known SFK member that suppresses SFK activity by phosphorylating its specific negative regulatory loop (C-terminal Y527 residue). Consequently, CSK may play a pivotal role in tumour progression and suppression by inhibiting SFK oncogenic effects in several cancer types. Remarkably, CSK can localise near focal adhesions when SFKs are activated and even interact with focal adhesion components, such as phosphorylated FAK and Paxillin, among others, suggesting that CSK may regulate focal adhesion dynamics and structure. Even though SFK oncogenic signalling has been extensively described before, the specific role of CSK and its crosstalk with integrins in cancer progression, for example, in mechanosensing, remain veiled. Here, we review how CSK, by regulating SFKs, can regulate integrin signalling, and focus on recent discoveries of mechanotransduction. We additionally examine the cross talk of integrins and GFR as well as the membrane availability of these receptors in cancer. We also explore new pharmaceutical approaches to these signalling pathways and analyse them as future therapeutic targets.
Collapse
Affiliation(s)
- Horacio Maldonado
- Receptor Dynamics in Cancer Laboratory, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Peris I, Romero-Murillo S, Martínez-Balsalobre E, Farrington CC, Arriazu E, Marcotegui N, Jiménez-Muñoz M, Alburquerque-Prieto C, Torres-López A, Fresquet V, Martínez-Climent JA, Mateos MC, Cayuela ML, Narla G, Odero MD, Vicente C. Activation of the PP2A-B56α heterocomplex synergizes with venetoclax therapies in AML through BCL2 and MCL1 modulation. Blood 2023; 141:1047-1059. [PMID: 36455198 PMCID: PMC10023731 DOI: 10.1182/blood.2022016466] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
Venetoclax combination therapies are becoming the standard of care in acute myeloid leukemia (AML). However, the therapeutic benefit of these drugs in older/unfit patients is limited to only a few months, highlighting the need for more effective therapies. Protein phosphatase 2A (PP2A) is a tumor suppressor phosphatase with pleiotropic functions that becomes inactivated in ∼70% of AML cases. PP2A promotes cancer cell death by modulating the phosphorylation state in a variety of proteins along the mitochondrial apoptotic pathway. We therefore hypothesized that pharmacological PP2A reactivation could increase BCL2 dependency in AML cells and, thus, potentiate venetoclax-induced cell death. Here, by using 3 structurally distinct PP2A-activating drugs, we show that PP2A reactivation synergistically enhances venetoclax activity in AML cell lines, primary cells, and xenograft models. Through the use of gene editing tools and pharmacological approaches, we demonstrate that the observed therapeutic synergy relies on PP2A complexes containing the B56α regulatory subunit, of which expression dictates response to the combination therapy. Mechanistically, PP2A reactivation enhances venetoclax-driven apoptosis through simultaneous inhibition of antiapoptotic BCL2 and extracellular signal-regulated kinase signaling, with the latter decreasing MCL1 protein stability. Finally, PP2A targeting increases the efficacy of the clinically approved venetoclax and azacitidine combination in vitro, in primary cells, and in an AML patient-derived xenograft model. These preclinical results provide a scientific rationale for testing PP2A-activating drugs with venetoclax combinations in AML.
Collapse
Affiliation(s)
- Irene Peris
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Silvia Romero-Murillo
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - Elena Martínez-Balsalobre
- Cancer and Aging Group, Hospital Universitario Virgen de la Arrixaca, and Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Caroline C. Farrington
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI
| | - Elena Arriazu
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III, Madrid, Spain
| | - Nerea Marcotegui
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
| | - Marta Jiménez-Muñoz
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
| | | | | | - Vicente Fresquet
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III, Madrid, Spain
| | - Jose A. Martínez-Climent
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria C. Mateos
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Hematology Service, Hospital Universitario de Navarra, Pamplona, Spain
| | - Maria L. Cayuela
- Cancer and Aging Group, Hospital Universitario Virgen de la Arrixaca, and Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI
| | - Maria D. Odero
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Vicente
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
9
|
Cetin Ersen B, Goncu B, Dag A, Birlik Demirel G. GLUT-Targeting Phototherapeutic Nanoparticles for Synergistic Triple Combination Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9080-9098. [PMID: 36780418 DOI: 10.1021/acsami.2c21180] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The combination of multimodal therapies into one nanocarrier system is promising for its potential to enhance treatment performance by overcoming the efficacy problems encountered in conventional monomodal therapy. In this study, targeted and multimodal therapeutic hybrid nanocarriers are fabricated for breast cancer treatments. In this context, the synthesized gold nanorods (AuNRd), photothermal therapy (PTT) agent, are coated with doxorubicin (DOX) conjugated, targeted, and biocompatible tetrablock glycopeptide (P(DMAEMA-b-HMBAMA-b-FrucMA)-b-P(Lys)/DOX, P-DOX) polymer. Here, fructose-based (Fruc) glycopeptide polymer enhances cellular uptake into breast cancer through GLUT5. A photosensitizer molecule, indocyanine green (ICG), was loaded into the particles to provide photodynamic therapy (PDT) upon NIR light at 808 nm. In the final step of the fabrication, the polymer-coated nanoparticles are integrated with antisense ISIS5132 oligonucleotides to prevent apoptotic resistance of cells against drug molecules. The biocompatibility and therapeutic efficacy of the nanoparticles are evaluated on both human normal skin fibroblast cell (CCD-1079Sk) and human breast cancer cell (MCF7) lines. These multimodal therapeutic AuNRd@P-DOX/ICG/ISIS5132 nanoparticles demonstrate an efficient triple synergistic effect of chemo-/PTT/PDT, which is desired for breast cancer treatment. We believe that this promising multimodal therapeutic nanoparticle system can promote the further clinical application in the treatment of breast cancer and can also be adapted to other types of cancer.
Collapse
Affiliation(s)
- Busra Cetin Ersen
- Institute of Graduate Programs and Department of Chemistry, Polatlı Faculty of Arts and Sciences, Ankara Hacı Bayram Veli University, Ankara 06900, Turkey
| | - Beyza Goncu
- Experimental Research Center, Bezmialem Vakif University, İstanbul 34093, Turkey
- Department of Medical Services and Techniques, Vocational School of Health Sciences, Bezmialem Vakif University, İstanbul 34093, Turkey
| | - Aydan Dag
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul 34093, Turkey
| | - Gokcen Birlik Demirel
- Institute of Graduate Programs and Department of Chemistry, Polatlı Faculty of Arts and Sciences, Ankara Hacı Bayram Veli University, Ankara 06900, Turkey
| |
Collapse
|
10
|
Cancer stem cell phosphatases. Biochem J 2021; 478:2899-2920. [PMID: 34319405 DOI: 10.1042/bcj20210254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Cancer stem cells (CSCs) are involved in the initiation and progression of human malignancies by enabling cancer tissue self-renewal capacity and constituting the therapy-resistant population of tumor cells. However, despite the exhausting characterization of CSC genetics, epigenetics, and kinase signaling, eradication of CSCs remains an unattainable goal in most human malignancies. While phosphatases contribute equally with kinases to cellular phosphoregulation, our understanding of phosphatases in CSCs lags severely behind our knowledge about other CSC signaling mechanisms. Many cancer-relevant phosphatases have recently become druggable, indicating that further understanding of the CSC phosphatases might provide novel therapeutic opportunities. This review summarizes the current knowledge about fundamental, but yet poorly understood involvement of phosphatases in the regulation of major CSC signaling pathways. We also review the functional roles of phosphatases in CSC self-renewal, cancer progression, and therapy resistance; focusing particularly on hematological cancers and glioblastoma. We further discuss the small molecule targeting of CSC phosphatases and their therapeutic potential in cancer combination therapies.
Collapse
|
11
|
Bryant JP, Levy A, Heiss J, Banasavadi-Siddegowda YK. Review of PP2A Tumor Biology and Antitumor Effects of PP2A Inhibitor LB100 in the Nervous System. Cancers (Basel) 2021; 13:cancers13123087. [PMID: 34205611 PMCID: PMC8235527 DOI: 10.3390/cancers13123087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Central and peripheral nervous system tumors represent a heterogenous group of neoplasms which often demonstrate resistance to treatment. Given that these tumors are often refractory to conventional therapy, novel pharmaceutical regimens are needed for successfully treating this pathology. One such therapeutic is the serine/threonine phosphatase inhibitor, LB100. LB100 is a water-soluble competitive protein phosphtase inhibitor that has demonstrated antitumor effects in preclinical and clinical trials. In this review, we aim to summarize current evidence demonstrating the efficacy of LB100 as an inhibitor of nervous system tumors. Furthermore, we review the involvement of the well-studied phosphatase, protein phosphatase 2A, in oncogenic cell signaling pathways, neurophysiology, and neurodevelopment. Abstract Protein phosphatase 2A (PP2A) is a ubiquitous serine/threonine phosphatase implicated in a wide variety of regulatory cellular functions. PP2A is abundant in the mammalian nervous system, and dysregulation of its cellular functions is associated with myriad neurodegenerative disorders. Additionally, PP2A has oncologic implications, recently garnering attention and emerging as a therapeutic target because of the antitumor effects of a potent PP2A inhibitor, LB100. LB100 abrogation of PP2A is believed to exert its inhibitory effects on tumor progression through cellular chemo- and radiosensitization to adjuvant agents. An updated and unifying review of PP2A biology and inhibition with LB100 as a therapeutic strategy for targeting cancers of the nervous system is needed, as other reviews have mainly covered broader applications of LB100. In this review, we discuss the role of PP2A in normal cells and tumor cells of the nervous system. Furthermore, we summarize current evidence regarding the therapeutic potential of LB100 for treating solid tumors of the nervous system.
Collapse
Affiliation(s)
- Jean-Paul Bryant
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (J.-P.B.); (J.H.)
| | - Adam Levy
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - John Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (J.-P.B.); (J.H.)
| | - Yeshavanth Kumar Banasavadi-Siddegowda
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (J.-P.B.); (J.H.)
- Correspondence: ; Tel.: +1-301-451-0970
| |
Collapse
|
12
|
Tóth E, Erdődi F, Kiss A. Activation of Myosin Phosphatase by Epigallocatechin-Gallate Sensitizes THP-1 Leukemic Cells to Daunorubicin. Anticancer Agents Med Chem 2021; 21:1092-1098. [PMID: 32679023 DOI: 10.2174/1871520620666200717142315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Myosin Phosphatase (MP) holoenzyme is composed of a Protein Phosphatase type 1 (PP1) catalytic subunit and a regulatory subunit termed Myosin Phosphatase Target subunit 1 (MYPT1). Besides dephosphorylation of myosin, MP has been implicated in the control of cell proliferation via dephosphorylation and activation of the tumor suppressor gene products, retinoblastoma protein (pRb) and merlin. Inhibition of MP was shown to attenuate the drug-induced cell death of leukemic cells by chemotherapeutic agents, while activation of MP might have a sensitizing effect. OBJECTIVE Recently, Epigallocatechin-Gallate (EGCG), a major component of green tea, was shown to activate MP by inducing the dephosphorylation of MYPT1 at phospho-Thr696 (MYPT1pT696), which might confer enhanced chemosensitivity to cancer cells. METHODS THP-1 leukemic cells were treated with EGCG and Daunorubicin (DNR) and cell viability was analyzed. Phosphorylation of tumor suppressor proteins was detected by Western blotting. RESULTS EGCG or DNR (at sub-lethal doses) alone had moderate effects on cell viability, while the combined treatment caused a significant decrease in the number of viable cells by enhancing apoptosis and decreasing proliferation. EGCG plus DNR decreased the phosphorylation level of MYPT1pT696, which was accompanied by prominent dephosphorylation of pRb. In addition, significant dephosphorylation of merlin was observed when EGCG and DNR were applied together. CONCLUSION Our results suggest that EGCG-induced activation of MP might have a regulatory function in mediating the chemosensitivity of leukemic cells via dephosphorylation of tumor suppressor proteins.
Collapse
Affiliation(s)
- Emese Tóth
- Department of Medical Chemistry and MTA-DE Cell Biology and Signalling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry and MTA-DE Cell Biology and Signalling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Kiss
- Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
13
|
Mazhar S, Leonard D, Sosa A, Schlatzer D, Thomas D, Narla G. Challenges and Reinterpretation of Antibody-Based Research on Phosphorylation of Tyr 307 on PP2Ac. Cell Rep 2021; 30:3164-3170.e3. [PMID: 32130915 DOI: 10.1016/j.celrep.2020.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/20/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant hyperphosphorylation of the protein phosphatase 2A catalytic subunit (PP2Ac) at Tyr307 has been associated with aggressive disease and poor clinical outcome in multiple cancers. However, the study of reversible phosphorylation at this site has relied entirely upon the use of antibodies-most prominently, the clone E155. Here, we provide evidence that the E155 and F-8 phospho-Tyr307 antibodies cannot differentiate between phosphorylated and unphosphorylated forms of PP2Ac. The form of PP2Ac bound by these antibodies in H358 cells is unphosphorylated at the C-terminal tail. Furthermore, these antibodies are sensitive to additional protein modifications that occur near Tyr307, including Thr304 phosphorylation and Leu309 methylation, when these post-translational modifications are present. Thus, studies that used these antibodies to report PP2Ac hyperphosphorylation require reinterpretation, as these antibodies cannot be reliably used as readouts for a single PP2Ac post-translational modification (PTM) change.
Collapse
Affiliation(s)
- Sahar Mazhar
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daniel Leonard
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alejandro Sosa
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daniela Schlatzer
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dafydd Thomas
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
14
|
Frohner IE, Mudrak I, Schüchner S, Anrather D, Hartl M, Sontag JM, Sontag E, Wadzinski BE, Preglej T, Ellmeier W, Ogris E. PP2A C Phospho-Tyr 307 Antibodies Are Not Specific for this Modification but Are Sensitive to Other PP2A C Modifications Including Leu 309 Methylation. Cell Rep 2021; 30:3171-3182.e6. [PMID: 32130916 DOI: 10.1016/j.celrep.2020.02.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/03/2019] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is an important regulator of signal transduction pathways and a tumor suppressor. Phosphorylation of the PP2A catalytic subunit (PP2AC) at tyrosine 307 has been claimed to inactivate PP2A and was examined in more than 180 studies using commercial antibodies, but this modification was never identified using mass spectrometry. Here we show that the most cited pTyr307 monoclonal antibodies, E155 and F-8, are not specific for phosphorylated Tyr307 but instead are hampered by PP2AC methylation at leucine 309 or phosphorylation at threonine 304. Other pTyr307 antibodies are sensitive to PP2AC methylation as well, and some cross-react with pTyr residues in general, including phosphorylated hemagglutinin tags. We identify pTyr307 using targeted mass spectrometry after transient overexpression of PP2AC and Src kinase. Yet under such conditions, none of the tested antibodies show exclusive pTyr307 specificity. Thus, data generated using these antibodies need to be revisited, and the mechanism of PP2A inactivation needs to be redefined.
Collapse
Affiliation(s)
- Ingrid E Frohner
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Ingrid Mudrak
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Stefan Schüchner
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Dorothea Anrather
- Mass Spectrometry Facility, Max Perutz Labs, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Markus Hartl
- Mass Spectrometry Facility, Max Perutz Labs, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Jean-Marie Sontag
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brian E Wadzinski
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Teresa Preglej
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Egon Ogris
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
15
|
Wang D, Ning Z, Zhu Z, Zhang C, Wang P, Meng Z. LHPP suppresses tumorigenesis of intrahepatic cholangiocarcinoma by inhibiting the TGFβ/smad signaling pathway. Int J Biochem Cell Biol 2021; 132:105845. [PMID: 33401010 DOI: 10.1016/j.biocel.2020.105845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP), a histidine phosphatase, plays an important role in tumor progression and metastasis as a tumor suppressor. Here, we investigate the effect of LHPP in intrahepatic cholangiocarcinoma (ICC). We discovered that LHPP was downregulated in tumor tissues and low levels of LHPP predicted poor survival. LHPP inhibited ICC cell growth, cell invasion and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Mechanically, LHPP deactivated transforming growth factor‑beta (TGFβ) signaling pathway, and low level LHPP upregulated the expression of TGFβ and phosphorylation of smad2/3. Moreover, inhibition of this pathway reversed the biofunction of LHPP. In summary, these findings demonstrated that LHPP suppressed ICC through inhibiting the activation of TGFβ/smad signaling. Our results indicated that LHPP is a potential therapeutic target in ICC.
Collapse
Affiliation(s)
- Dan Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhouyu Ning
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenfeng Zhu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenyue Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Zhao J, Chen G, Li J, Liu S, Jin Q, Zhang Z, Qi F, Zhang J, Xu J. Loss of PR55α promotes proliferation and metastasis by activating MAPK/AKT signaling in hepatocellular carcinoma. Cancer Cell Int 2021; 21:107. [PMID: 33588847 PMCID: PMC7885213 DOI: 10.1186/s12935-021-01796-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/27/2021] [Indexed: 12/25/2022] Open
Abstract
Background PR55α plays important roles in oncogenesis and progression of numerous malignancies. However, its role in hepatocellular carcinoma (HCC) is unclear. This study aims to characterize the functions of PR55α in HCC. Methods
PR55α expressions in HCC tissues and paired healthy liver samples were evaluated using Western blot and tissue microarray immunohistochemistry. We knocked down the expression of PR55α in SMMC-7721 and LM3 cell lines via small interfering and lentivirus. In vitro cell counting, colony formation, migration and invasion assays were performed along with in vivo xenograft implantation and lung metastases experiments. The potential mechanisms involving target signal pathways were investigated by RNA-sequencing. Results PR55α expression level was suppressed in HCC tissues in comparison to healthy liver samples. Decreased PR55α levels were correlated with poorer prognosis (P = 0.0059). Knockdown of PR55α significantly promoted cell proliferation and migration, induced repression of the cell cycle progression and apoptosis in vitro while accelerating in vivo HCC growth and metastasis. Mechanistic analysis indicated that PR55α silencing was involved with MAPK/AKT signal pathway activation and resulted in increased phosphorylation of both AKT and ERK1/2. Conclusions This study identifies PR55α to be a candidate novel therapeutic target in the treatment of HCC.
Collapse
Affiliation(s)
- JiangSheng Zhao
- Department of Hepatobiliary Surgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, 223001, Jiangsu, People's Republic of China
| | - GuoFeng Chen
- Department of Hepatobiliary Surgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, 223001, Jiangsu, People's Republic of China
| | - Jingqi Li
- Department of Pathology, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, 223001, Jiangsu, People's Republic of China
| | - Shiqi Liu
- Department of Hepatobiliary Surgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, 223001, Jiangsu, People's Republic of China
| | - Quan Jin
- Department of Hepatobiliary Surgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, 223001, Jiangsu, People's Republic of China
| | - ZhengWei Zhang
- Department of Pathology, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, 223001, Jiangsu, People's Republic of China
| | - Fuzhen Qi
- Department of Hepatobiliary Surgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, 223001, Jiangsu, People's Republic of China
| | - JianHuai Zhang
- Department of Hepatobiliary Surgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, 223001, Jiangsu, People's Republic of China
| | - JianBo Xu
- Department of Hepatobiliary Surgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, 223001, Jiangsu, People's Republic of China.
| |
Collapse
|
17
|
Faria AVS, Andrade SS, Peppelenbosch MP, Ferreira-Halder CV, Fuhler GM. The role of phospho-tyrosine signaling in platelet biology and hemostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118927. [PMID: 33310067 DOI: 10.1016/j.bbamcr.2020.118927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Platelets are small enucleated cell fragments specialized in the control of hemostasis, but also playing a role in angiogenesis, inflammation and immunity. This plasticity demands a broad range of physiological processes. Platelet functions are mediated through a variety of receptors, the concerted action of which must be tightly regulated, in order to allow specific and timely responses to different stimuli. Protein phosphorylation is one of the main key regulatory mechanisms by which extracellular signals are conveyed. Despite the importance of platelets in health and disease, the molecular pathways underlying the activation of these cells are still under investigation. Here, we review current literature on signaling platelet biology and in particular emphasize the newly emerging role of phosphatases in these processes.
Collapse
Affiliation(s)
- Alessandra V S Faria
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA Rotterdam, the Netherlands; Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| | | | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA Rotterdam, the Netherlands
| | - Carmen V Ferreira-Halder
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
18
|
IGF‑IR promotes clonal cell proliferation in myelodysplastic syndromes via inhibition of the MAPK pathway. Oncol Rep 2020; 44:1094-1104. [PMID: 32583001 PMCID: PMC7388562 DOI: 10.3892/or.2020.7652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 insulin-like growth factor receptor (IGF-IR) signaling is considered to serve a key role in the development of cancer. However, the effects of IGF-IR on the malignant characteristics of myelodysplastic syndrome (MDS) clonal cells remains to be determined. In the present study it was demonstrated that knockdown of IGF-IR reduced the proliferation and increased the apoptosis of MDS/leukemia cells. Integrated analysis of gene expression profiles using bioinformatics identified the MAPK signaling pathway as a critical downstream factor of IGF-IR, and this was confirmed in vitro using western blotting which revealed that IGF-IR knockdown significantly increased the expression of activated MAPK. Furthermore, IGF-IR signaling was inhibited to investigate the potential of IGF-IR as a therapeutic target of MDS. The results revealed that the IGF-IR inhibitor picropodophyllin (PPP) inhibited cell proliferation, promoted cell apoptosis and arrested the cell cycle at the G2/M phase in MDS/leukemia cells. Similar to the effects of IGF-IR knockdown, PPP treatment also increased MAPK signaling in vitro. In conclusion, IGF-IR may serve as a potential therapeutic target of MDS.
Collapse
|
19
|
Yuan P, Zheng A, Tang Q. Tripartite motif protein 25 is associated with epirubicin resistance in hepatocellular carcinoma cells via regulating PTEN/AKT pathway. Cell Biol Int 2020; 44:1503-1513. [PMID: 32196840 DOI: 10.1002/cbin.11346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/01/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Peng Yuan
- Department of Interventional TherapyThe People's Hospital of JianhuJianhu 224700 Jiangsu P. R. China
| | - Aidong Zheng
- Department of Intensive MedicineThe People's Hospital of JianhuJianhu 224700 Jiangsu P. R. China
| | - Qing Tang
- Department of OncologyThe People's Hospital of Funing County in Yancheng CityYancheng 224400 Jiangsu P. R. China
| |
Collapse
|
20
|
Iida M, Harari PM, Wheeler DL, Toulany M. Targeting AKT/PKB to improve treatment outcomes for solid tumors. Mutat Res 2020; 819-820:111690. [PMID: 32120136 DOI: 10.1016/j.mrfmmm.2020.111690] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
The serine/threonine kinase AKT, also known as protein kinase B (PKB), is the major substrate to phosphoinositide 3-kinase (PI3K) and consists of three paralogs: AKT1 (PKBα), AKT2 (PKBβ) and AKT3 (PKBγ). The PI3K/AKT pathway is normally activated by binding of ligands to membrane-bound receptor tyrosine kinases (RTKs) as well as downstream to G-protein coupled receptors and integrin-linked kinase. Through multiple downstream substrates, activated AKT controls a wide variety of cellular functions including cell proliferation, survival, metabolism, and angiogenesis in both normal and malignant cells. In human cancers, the PI3K/AKT pathway is most frequently hyperactivated due to mutations and/or overexpression of upstream components. Aberrant expression of RTKs, gain of function mutations in PIK3CA, RAS, PDPK1, and AKT itself, as well as loss of function mutation in AKT phosphatases are genetic lesions that confer hyperactivation of AKT. Activated AKT stimulates DNA repair, e.g. double strand break repair after radiotherapy. Likewise, AKT attenuates chemotherapy-induced apoptosis. These observations suggest that a crucial link exists between AKT and DNA damage. Thus, AKT could be a major predictive marker of conventional cancer therapy, molecularly targeted therapy, and immunotherapy for solid tumors. In this review, we summarize the current understanding by which activated AKT mediates resistance to cancer treatment modalities, i.e. radiotherapy, chemotherapy, and RTK targeted therapy. Next, the effect of AKT on response of tumor cells to RTK targeted strategies will be discussed. Finally, we will provide a brief summary on the clinical trials of AKT inhibitors in combination with radiochemotherapy, RTK targeted therapy, and immunotherapy.
Collapse
Affiliation(s)
- M Iida
- Department of Human Oncology, University of Wisconsin in Madison, Madison, WI, USA.
| | - P M Harari
- Department of Human Oncology, University of Wisconsin in Madison, Madison, WI, USA
| | - D L Wheeler
- Department of Human Oncology, University of Wisconsin in Madison, Madison, WI, USA
| | - M Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany; German Cancer Consortium (DKTK), Partner Site Tuebingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
21
|
Merisaari J, Denisova OV, Doroszko M, Le Joncour V, Johansson P, Leenders WPJ, Kastrinsky DB, Zaware N, Narla G, Laakkonen P, Nelander S, Ohlmeyer M, Westermarck J. Monotherapy efficacy of blood-brain barrier permeable small molecule reactivators of protein phosphatase 2A in glioblastoma. Brain Commun 2020; 2:fcaa002. [PMID: 32954276 PMCID: PMC7425423 DOI: 10.1093/braincomms/fcaa002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma is a fatal disease in which most targeted therapies have clinically failed. However, pharmacological reactivation of tumour suppressors has not been thoroughly studied as yet as a glioblastoma therapeutic strategy. Tumour suppressor protein phosphatase 2A is inhibited by non-genetic mechanisms in glioblastoma, and thus, it would be potentially amendable for therapeutic reactivation. Here, we demonstrate that small molecule activators of protein phosphatase 2A, NZ-8-061 and DBK-1154, effectively cross the in vitro model of blood–brain barrier, and in vivo partition to mouse brain tissue after oral dosing. In vitro, small molecule activators of protein phosphatase 2A exhibit robust cell-killing activity against five established glioblastoma cell lines, and nine patient-derived primary glioma cell lines. Collectively, these cell lines have heterogeneous genetic background, kinase inhibitor resistance profile and stemness properties; and they represent different clinical glioblastoma subtypes. Moreover, small molecule activators of protein phosphatase 2A were found to be superior to a range of kinase inhibitors in their capacity to kill patient-derived primary glioma cells. Oral dosing of either of the small molecule activators of protein phosphatase 2A significantly reduced growth of infiltrative intracranial glioblastoma tumours. DBK-1154, with both higher degree of brain/blood distribution, and more potent in vitro activity against all tested glioblastoma cell lines, also significantly increased survival of mice bearing orthotopic glioblastoma xenografts. In summary, this report presents a proof-of-principle data for blood–brain barrier—permeable tumour suppressor reactivation therapy for glioblastoma cells of heterogenous molecular background. These results also provide the first indications that protein phosphatase 2A reactivation might be able to challenge the current paradigm in glioblastoma therapies which has been strongly focused on targeting specific genetically altered cancer drivers with highly specific inhibitors. Based on demonstrated role for protein phosphatase 2A inhibition in glioblastoma cell drug resistance, small molecule activators of protein phosphatase 2A may prove to be beneficial in future glioblastoma combination therapies.
Collapse
Affiliation(s)
- Joni Merisaari
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland.,Institute of Biomedicine, University of Turku, Turku 20520, Finland
| | - Oxana V Denisova
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Milena Doroszko
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden
| | - Vadim Le Joncour
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Patrik Johansson
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden
| | - William P J Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen 6525, The Netherlands
| | - David B Kastrinsky
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Nilesh Zaware
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-5624, USA
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland.,Laboratory Animal Centre, Helsinki Institute of Life Science - HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Sven Nelander
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala 751 85, Sweden
| | - Michael Ohlmeyer
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Atux Iskay LLC, Plainsboro, NJ 08536, USA
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland.,Institute of Biomedicine, University of Turku, Turku 20520, Finland
| |
Collapse
|
22
|
Xu J, Lu Y, Liu Q, Xia A, Zhao J, Xu X, Sun Q, Qi F, Sun B. Long noncoding RNA GMAN promotes hepatocellular carcinoma progression by interacting with eIF4B. Cancer Lett 2019; 473:1-12. [PMID: 31875526 DOI: 10.1016/j.canlet.2019.12.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/06/2019] [Accepted: 12/18/2019] [Indexed: 12/24/2022]
Abstract
Gastric cancer metastasis associated long noncoding RNA (GMAN), a long noncoding RNA, is associated with metastasis in gastric cancer. However, its underlying mechanisms in hepatocellular carcinoma (HCC) are unclear. We found that lncRNA-GMAN was significantly overexpressed in HCC tissues. GMAN expression is associated with vascular invasion, histological grade, tumor, node, metastasis (TNM) stage, short overall survival, and disease-free survival. Knockdown of GMAN induced apoptosis and suppressed invasive and migration potential in vitro and vivo, whereas ectopic GMAN expression produced the opposite effect. We also found that the inhibition of apoptosis, rather than promotion of proliferation, was responsible for GMAN-enhanced cellular viability. Mechanistic analyses indicated that GMAN directly combined with eukaryotic translation initiation factor 4B (eIF4B) and promoted its phosphorylation at serine-422 by preventing eIF4B binding and dephosphorization of the protein phosphatase 2A subunit B. The results demonstrated the stability of p-eIF4B and the elevation of mRNA translation and anti-apoptosis-related protein expression, which further induced proliferation and metastasis of HCC. The current study demonstrates that GMAN regulates the progression of HCC by inhibiting apoptosis and promoting the survival of cancer cells.
Collapse
Affiliation(s)
- Jianbo Xu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 210000, Nanjing, Jiangsu Province, PR China; Department of Hepatobiliary Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, 223001, Huai'an No.1, Jiangsu Province, PR China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.
| | - Yijun Lu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 210000, Nanjing, Jiangsu Province, PR China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.
| | - Qiaoyu Liu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 210000, Nanjing, Jiangsu Province, PR China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.
| | - Anliang Xia
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 210000, Nanjing, Jiangsu Province, PR China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.
| | - Jian Zhao
- Department of Hepatobiliary Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, 223001, Huai'an No.1, Jiangsu Province, PR China.
| | - Xiaoliang Xu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 210000, Nanjing, Jiangsu Province, PR China.
| | - Qikai Sun
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 210000, Nanjing, Jiangsu Province, PR China.
| | - Fuzhen Qi
- Department of Hepatobiliary Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, 223001, Huai'an No.1, Jiangsu Province, PR China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 210000, Nanjing, Jiangsu Province, PR China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.
| |
Collapse
|
23
|
Parasido E, Avetian GS, Naeem A, Graham G, Pishvaian M, Glasgow E, Mudambi S, Lee Y, Ihemelandu C, Choudhry M, Peran I, Banerjee PP, Avantaggiati ML, Bryant K, Baldelli E, Pierobon M, Liotta L, Petricoin E, Fricke ST, Sebastian A, Cozzitorto J, Loots GG, Kumar D, Byers S, Londin E, DiFeo A, Narla G, Winter J, Brody JR, Rodriguez O, Albanese C. The Sustained Induction of c-MYC Drives Nab-Paclitaxel Resistance in Primary Pancreatic Ductal Carcinoma Cells. Mol Cancer Res 2019; 17:1815-1827. [PMID: 31164413 PMCID: PMC6726538 DOI: 10.1158/1541-7786.mcr-19-0191] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/18/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with limited and, very often, ineffective medical and surgical therapeutic options. The treatment of patients with advanced unresectable PDAC is restricted to systemic chemotherapy, a therapeutic intervention to which most eventually develop resistance. Recently, nab-paclitaxel (n-PTX) has been added to the arsenal of first-line therapies, and the combination of gemcitabine and n-PTX has modestly prolonged median overall survival. However, patients almost invariably succumb to the disease, and little is known about the mechanisms underlying n-PTX resistance. Using the conditionally reprogrammed (CR) cell approach, we established and verified continuously growing cell cultures from treatment-naïve patients with PDAC. To study the mechanisms of primary drug resistance, nab-paclitaxel-resistant (n-PTX-R) cells were generated from primary cultures and drug resistance was verified in vivo, both in zebrafish and in athymic nude mouse xenograft models. Molecular analyses identified the sustained induction of c-MYC in the n-PTX-R cells. Depletion of c-MYC restored n-PTX sensitivity, as did treatment with either the MEK inhibitor, trametinib, or a small-molecule activator of protein phosphatase 2a. IMPLICATIONS: The strategies we have devised, including the patient-derived primary cells and the unique, drug-resistant isogenic cells, are rapid and easily applied in vitro and in vivo platforms to better understand the mechanisms of drug resistance and for defining effective therapeutic options on a patient by patient basis.
Collapse
Affiliation(s)
- Erika Parasido
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - George S Avetian
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Aisha Naeem
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Garrett Graham
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Michael Pishvaian
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Eric Glasgow
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Shaila Mudambi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Yichien Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Chukwuemeka Ihemelandu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Muhammad Choudhry
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Ivana Peran
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Partha P Banerjee
- Department of Biochemistry, Molecular and Cell Biology, Georgetown University Medical Center, Washington, D.C
| | - Maria Laura Avantaggiati
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Kirsten Bryant
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Stanley T Fricke
- Center for Translational Imaging, Georgetown University Medical Center, Washington, D.C
| | - Aimy Sebastian
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California
| | - Joseph Cozzitorto
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Gabriela G Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California
| | - Deepak Kumar
- Department of Pharmaceutical Sciences, Julius L. Chambers Biomedical/Biotechnology Research Institute (JLC-BBRI), North Carolina Central University, Durham, North Carolina
| | - Stephen Byers
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Analisa DiFeo
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jordan Winter
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Case Western Reserve School of Medicine, Case Comprehensive Cancer Center and University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Jonathan R Brody
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C
- Center for Translational Imaging, Georgetown University Medical Center, Washington, D.C
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C.
- Center for Translational Imaging, Georgetown University Medical Center, Washington, D.C
| |
Collapse
|
24
|
Saliani M, Jalal R, Ahmadian MR. From basic researches to new achievements in therapeutic strategies of KRAS-driven cancers. Cancer Biol Med 2019; 16:435-461. [PMID: 31565476 PMCID: PMC6743616 DOI: 10.20892/j.issn.2095-3941.2018.0530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
Among the numerous oncogenes involved in human cancers, KRAS represents the most studied and best characterized cancer-related genes. Several therapeutic strategies targeting oncogenic KRAS (KRAS onc ) signaling pathways have been suggested, including the inhibition of synthetic lethal interactions, direct inhibition of KRAS onc itself, blockade of downstream KRAS onc effectors, prevention of post-translational KRAS onc modifications, inhibition of the induced stem cell-like program, targeting of metabolic peculiarities, stimulation of the immune system, inhibition of inflammation, blockade of upstream signaling pathways, targeted RNA replacement, and oncogene-induced senescence. Despite intensive and continuous efforts, KRAS onc remains an elusive target for cancer therapy. To highlight the progress to date, this review covers a collection of studies on therapeutic strategies for KRAS published from 1995 to date. An overview of the path of progress from earlier to more recent insights highlight novel opportunities for clinical development towards KRASonc-signaling targeted therapeutics.
Collapse
Affiliation(s)
- Mahsa Saliani
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Razieh Jalal
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Department of Research Cell and Molecular Biology, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf 40225, Germany
| |
Collapse
|
25
|
Fu Y, Dong J, Wang J, You M, Wei L, Fu H, Wang Y, Chen J. Developmental Exposure to Di-(2-ethylhexyl) Phthalate Induces Cerebellar Granule Cell Apoptosis via the PI3K/AKT Signaling Pathway. Exp Neurobiol 2018; 27:472-488. [PMID: 30636900 PMCID: PMC6318557 DOI: 10.5607/en.2018.27.6.472] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/26/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is an ubiquitous environmental contaminant because of its extensive use in plastics and its persistence. As an environmental endocrine disruptor, it is suspected to interfere with neurodevelopment in people. However, evidence of the effects of maternal DEHP exposure on cerebellar development in offspring is scarce. The objective of this study was to investigate maternal exposure to DEHP and its effect on apoptosis of cerebellar granule cells (CGCs) and related mechanisms. Pregnant Wistar rats were administrated DEHP (0, 30, 300 and 750 mg/kg/d) by gavage from gestational day (GD) 0 to postnatal day (PN) 21. Primary CGCs were also exposed to mono-(2-ethylhexyl) phthalate (MEHP), the main metabolite of DEHP, for 24 h with concentrations of 0, 25, 100 and 250 µM. The CGCs of male offspring from 300 and 750 mg/kg/d DEHP exposure groups showed significantly increased apoptosis. In addition, the PI3K/AKT signaling pathway was inhibited in the male offspring of the 300 and 750 mg/kg/d DEHP exposure groups. However, effects on female pups were not obvious. Apoptosis was also elevated and the PI3K/AKT signaling pathway was inhibited after primary CGCs were exposed to MEHP. Furthermore, apoptosis was reduced after treatment with the PI3K/AKT signaling pathway activator, insulin-like growth factor (IGF) 1, and increased after treatment with LY294002, an inhibitor of the PI3K/AKT signaling pathway. These results suggested that maternal DEHP exposure induced apoptosis in the CGCs of male pups via the PI3K/AKT signaling pathway, and the apoptosis could be rescued by IGF1 and aggravated by LY294002.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jianan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Lingling Wei
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Hui Fu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110122, China
| |
Collapse
|
26
|
Shen J, Zhang Y, Shen H, Pan H, Xu L, Yuan L, Ding Z. The synergistic effect of 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside combined with Adriamycin on MCF-7 breast cancer cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:4083-4094. [PMID: 30555223 PMCID: PMC6278706 DOI: 10.2147/dddt.s186028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Objective Breast cancer has been reported to be a serious disease and a threat to women's health. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside (THSG) is a bioactive natural compound originating from Polygonum multiflorum Thunb., which has been shown to possess anti-inflammatory and antitumor properties. Adriamycin (ADM) is a chemotherapy agent used in tumor therapy that is limited by its side effects. However, little is known about the synergistic effect of THSG combined with ADM on breast cancer. This study seeks to investigate the effects of the combination of THSG plus ADM on MCF-7 breast cancer cells and to test the mechanisms involved. Materials and methods MTT assay was detected to determine cell viability. Furthermore, cell apoptosis was tested by flow cytometry and TUNEL assay. In addition, protein expression was measured by Western blot analysis. Results The individual treatment of THSG and ADM induced cell injury. Moreover, cotreatment further increased it, which the effect may be associated with the elevation of the apoptotic-related protein expression such as Bax/Bcl-2 and cleaved caspase-3/caspase-3. Lastly, our results also show the reduction of vascular endothelial growth factor/phosphatidylinositol 3-kinase/Akt protein expression in the individual or synergistic treatment. Conclusion Taken together, cotreatment of THSG and ADM may exert a synergistic reduction of cell injury via the inhibition of vascular endothelial growth factor/phosphatidylinositol 3-kinase/Akt pathway. Thus, THSG might possess potent anti-breast cancer effect with ADM.
Collapse
Affiliation(s)
- Jianfen Shen
- Department of Central Laboratory, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Youzhi Zhang
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China,
| | - Hui Shen
- Department of Central Laboratory, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Hua Pan
- Department of Central Laboratory, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Longsheng Xu
- Department of Central Laboratory, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Linna Yuan
- Department of Central Laboratory, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Zhiying Ding
- Department of Central Laboratory, The First Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| |
Collapse
|
27
|
Lan L, Wei W, Zheng Y, Niu L, Chen X, Huang D, Gao Y, Mo S, Lu J, Guo M, Liu Y, Lu B. Deferoxamine suppresses esophageal squamous cell carcinoma cell growth via ERK1/2 mediated mitochondrial dysfunction. Cancer Lett 2018; 432:132-143. [DOI: 10.1016/j.canlet.2018.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/01/2022]
|
28
|
Mazhar S, Taylor SE, Sangodkar J, Narla G. Targeting PP2A in cancer: Combination therapies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:51-63. [PMID: 30401535 DOI: 10.1016/j.bbamcr.2018.08.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022]
Abstract
The serine/threonine phosphatase PP2A regulates a vast portion of the phosphoproteome including pathways involved in apoptosis, proliferation and DNA damage response and PP2A inactivation is a vital step in malignant transformation. Many groups have explored the therapeutic venue of combining PP2A reactivation with kinase inhibition to counteract the very changes in tumor suppressors and oncogenes that lead to cancer development. Conversely, inhibition of PP2A to complement chemotherapy and radiation-induced cancer cell death is also an area of active investigation. Here we review the studies that utilize PP2A targeted agents as combination therapy in cancer. A potential role for PP2A in tumor immunity is also highlighted.
Collapse
Affiliation(s)
- Sahar Mazhar
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah E Taylor
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Jaya Sangodkar
- Division of Genetic Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Goutham Narla
- Division of Genetic Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|