1
|
Wu YW, Deng ZQ, Rong Y, Bu GW, Wu YK, Wu X, Cheng H, Fan HY. RNA surveillance by the RNA helicase MTR4 determines volume of mouse oocytes. Dev Cell 2024:S1534-5807(24)00537-9. [PMID: 39378876 DOI: 10.1016/j.devcel.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/21/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024]
Abstract
Oocytes are the largest cell type in multicellular animals. Here, we show that mRNA transporter 4 (MTR4) is indispensable for oocyte growth and functions as part of the RNA surveillance mechanism, which is responsible for nuclear waste RNA clearance. MTR4 ensures the normal post-transcriptional processing of maternal RNAs, their nuclear export to the cytoplasm, and the accumulation of properly processed transcripts. Oocytes with Mtr4 knockout fail to accumulate sufficient and normal transcripts in the cytoplasm and cannot grow to normal sizes. MTR4-dependent RNA surveillance has a previously unrecognized function in maintaining a stable nuclear environment for the establishment of non-canonical histone H3 lysine-4 trimethylation and chromatin reorganization, which is necessary to form a nucleolus-like structure in oocytes. In conclusion, MTR4-dependent RNA surveillance activity is a checkpoint that allows oocytes to grow to a normal size, undergo nuclear and cytoplasmic maturation, and acquire developmental competence.
Collapse
Affiliation(s)
- Yun-Wen Wu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Zuo-Qi Deng
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yan Rong
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Guo-Wei Bu
- Center for Biomedical Research, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Yu-Ke Wu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xuan Wu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Center for Biomedical Research, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China.
| |
Collapse
|
2
|
Silva AFB, Lima LF, Ferreira ACA, Oliveira AC, Neto NMA, Alves BG, Rodrigues APR, Gastal EL, Bordignon V, Figueiredo JR. Improving survival and growth of caprine preantral follicles cultured in medium commonly used for MSC: Role of oxidative stress regulation and epigenetic changes. Domest Anim Endocrinol 2024; 90:106890. [PMID: 39366130 DOI: 10.1016/j.domaniend.2024.106890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024]
Abstract
This study evaluated the efficiency of in vitro culture of preantral follicles (PAF) in a commonly used medium for mesenchymal stem cell (MSC) culture. Parameters assessed included follicle survival, growth, stromal cell density, levels of reduced thiols and reactive oxygen species, epigenetic changes, cell apoptosis, and mRNA abundance. Caprine ovarian tissues were cultured for 1 or 7 days in either PAF or MSC-common media, with uncultured tissues serving as controls. The MSC medium exhibited increased follicular survival and growth and remodeled stromal density potentially through the regulation of oxidative stress and epigenetic changes compared to the PAF medium. In conclusion, our results highlight the importance of the MSC medium in enhancing follicular survival and growth, changing the stromal cell density, as well as in regulating the medium oxidative stress and epigenetic changes during the in vitro culture of caprine PAF.
Collapse
Affiliation(s)
- Ana F B Silva
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - Laritza F Lima
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - Anna C A Ferreira
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - Ariclécio C Oliveira
- Superior Institute of Biomedical Science, State University of Ceará, Fortaleza, CE, Brazil
| | - Napoleão M A Neto
- Integrated Nucleus of Morphology and Research with Stem Cells, Federal University of Piauí, Teresina, PI, Brazil
| | | | - Ana P R Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - Eduardo L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, USA.
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - José R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
3
|
Li C, Zhang Y, Shen J, Bao H, Zhao Y, Li D, Li S, Liu Y, Yang J, Zhou Z, Gao K, Zhao L, Pei Y, Lu Y, Pan Z, Cai B. Cfp1 Controls Cardiomyocyte Maturation by Modifying Histone H3K4me3 of Structural, Metabolic, and Contractile Related Genes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305992. [PMID: 38196272 PMCID: PMC10953565 DOI: 10.1002/advs.202305992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/26/2023] [Indexed: 01/11/2024]
Abstract
Cardiomyocyte maturation is the final stage of heart development, and abnormal cardiomyocyte maturation will lead to serious heart diseases. CXXC zinc finger protein 1 (Cfp1), a key epigenetic factor in multi-lineage cell development, remains underexplored in its influence on cardiomyocyte maturation. This study investigates the role and mechanisms of Cfp1 in this context. Cardiomyocyte-specific Cfp1 knockout (Cfp1-cKO) mice died within 4 weeks of birth. Cardiomyocytes derived from Cfp1-cKO mice showed an inhibited maturation phenotype, characterized by structural, metabolic, contractile, and cell cycle abnormalities. In contrast, cardiomyocyte-specific Cfp1 transgenic (Cfp1-TG) mice and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) overexpressing Cfp1 displayed a more mature phenotype. Mechanistically, deficiency of Cfp1 led to a reduction in trimethylation on lysine 4 of histone H3 (H3K4me3) modification, accompanied by the formation of ectopic H3K4me3. Furthermore, Cfp1 deletion decreased the level of H3K4me3 modification in adult genes and increased the level of H3K4me3 modification in fetal genes. Collectively, Cfp1 modulates the expression of genes crucial to cardiomyocyte maturation by regulating histone H3K4me3 modification, thereby intricately influencing the maturation process. This study implicates Cfp1 as an important molecule regulating cardiomyocyte maturation, with its dysfunction strongly linked to cardiac disease.
Collapse
Affiliation(s)
- Changzhu Li
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Yang Zhang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Jingling Shen
- Institute of Life SciencesCollege of Life and Environmental SciencesWenzhou UniversityWenzhou325035P. R. China
| | - Hairong Bao
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Yue Zhao
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Desheng Li
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Sijia Li
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Yining Liu
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Jiming Yang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Zhiwen Zhou
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Kangyi Gao
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Lexin Zhao
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Yao Pei
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Yanjie Lu
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| | - Zhenwei Pan
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
- Research Unit of Noninfectious Chronic Diseases in Frigid ZoneChinese Academy of Medical Sciences2019 Research Unit 070HarbinHeilongjiang150086P. R. China
- Key Laboratory of Cell TransplantationThe First Affiliated HospitalHarbin Medical UniversityP. R. China
| | - Benzhi Cai
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular DiseaseKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiang150086P. R. China
| |
Collapse
|
4
|
Silva AFB, Morais ANP, Lima LF, Ferreira ACA, Silva RF, Sá NAR, Kumar S, Oliveira AC, Alves BG, Rodrigues APR, Gastal EL, Bordignon V, Figueiredo JR. Trimethylation profile of histones H3 lysine 4 and 9 in late preantral and early antral caprine follicles grown in vivo versus in vitro in the presence of anethole. Mol Reprod Dev 2023; 90:810-823. [PMID: 37671983 DOI: 10.1002/mrd.23700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 09/07/2023]
Abstract
This study assessed the histones methylation profile (H3K4me3 and H3K9me3) in late preantral (PA) and early antral (EA) caprine follicles grown in vivo and in vitro, and the anethole effect during in vitro culture of PA follicles. Uncultured in vivo-grown follicles (PA, n = 64; EA, n = 73) were used as controls to assess the methylation profile and genes' expression related to apoptosis cascade (BAX, proapoptotic; BCL2, antiapoptotic), steroidogenesis (CYP17, CYP19A1), and demethylation (KDM1AX1, KDM1AX2, KDM3A). The isolated PA follicles (n = 174) were cultured in vitro for 6 days in α-MEM+ in either absence (control) or presence of anethole. After culture, EA follicles were evaluated for methylation, mRNA abundance, and morphometry. Follicle diameter increased after culture, regardless of treatment. The methylation profile and the mRNA abundance were similar between in vivo-grown PA and EA follicles. Anethole treatment led to higher H3K4me3 fluorescence intensity in EA follicles. The mRNA abundances of BAX, CYP17, and CYP19A1 were higher, and BCL2 and KDM3A were lower in in vitro-grown EA follicles than in vivo-grown follicles. In conclusion, in vitro follicle culture affected H3K4me3 fluorescence intensity, mRNA abundance of apoptotic genes, and steroidogenic and demethylase enzymes compared with in vivo-grown follicles.
Collapse
Affiliation(s)
- Ana F B Silva
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Ana N P Morais
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Laritza F Lima
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Anna C A Ferreira
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Renato F Silva
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Naiza A R Sá
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Satish Kumar
- Postgraduate Program in Veterinary Sciences, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Ariclécio C Oliveira
- Superior Institute of Biomedical Science, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Benner G Alves
- Postgraduate Program in Animal Bioscience, Federal University of Goiás, Jataí, Goiás, Brazil
| | - Ana P R Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Eduardo L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - José R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
5
|
Wang D, Lu X, Jiang Y, Pan L, Zhu F, Yu A, Zhao M, Yang M, Bi J, He X, Liu H, Li J. The chromatin remodeling protein BPTF mediates cell cycle, proliferation and apoptosis in porcine ovarian granulosa cells. Theriogenology 2023; 211:172-181. [PMID: 37643502 DOI: 10.1016/j.theriogenology.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Bromodomain PHD finger transcription factor (BPTF), a core subunit of nucleosome-remodeling factor (NURF) complex, plays an important role in chromatin remodeling. However, few information of BPTF is available in pig, especially in mammalian follicular granulosa cells (GCs). The present study firstly confirmed that BPTF in porcine was relative close to human and mouse. The expression of BPTF could be detected in ovary, testes, lung, kidney, large intestine, and small intestine. And a relative high expression of BPTF was observed in ovarian follicles and GCs. When BPTF was knocked down (BPTF-siRNA), the viability of GCs was affected. And the expression level of CDK1, cyclin B1, CDK4 and CDK2 was higher than the control, which might indicate that the cell cycle of GCs was inhibited from S to G2/M phase. Although the apoptosis level was induced in the BPTF-siRNA GCs, the reduced level of H3K4 methylation was detected with the down regulation of SMYD3, EHMT2 and DPY30. Thereby, results in the present might provide the primary knowledge of BPTF in GCs and the follicular development in pig.
Collapse
Affiliation(s)
- Dayu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xinyue Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuan Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Linqing Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fuquan Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Aochen Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mingyue Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiaying Bi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xu He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Juan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
6
|
Shen X, Gao X, Luo Y, Xu Q, Fan Y, Hong S, Huang Z, Liu X, Wang Q, Chen Z, Wang D, Lu L, Wu C, Liang H, Wang L. Cxxc finger protein 1 maintains homeostasis and function of intestinal group 3 innate lymphoid cells with aging. NATURE AGING 2023; 3:965-981. [PMID: 37429951 DOI: 10.1038/s43587-023-00453-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/09/2023] [Indexed: 07/12/2023]
Abstract
Aging is accompanied by homeostatic and functional dysregulation of multiple immune cell subsets. Group 3 innate lymphoid cells (ILC3s) constitute a heterogeneous cell population that plays pivotal roles in intestinal immunity. In this study, we found that ILC3s in aged mice exhibited dysregulated homeostasis and function, leading to bacterial and fungal infection susceptibility. Moreover, our data revealed that the enrichment of the H3K4me3 modification in effector genes of aged gut CCR6+ ILC3s was specifically decreased compared to young mice counterparts. Disruption of Cxxc finger protein 1 (Cxxc1) activity, a key subunit of H3K4 methyltransferase, in ILC3s led to similar aging-related phenotypes. An integrated analysis revealed Kruppel-like factor 4 (Klf4) as a potential Cxxc1 target. Klf4 overexpression partially restored the differentiation and functional defects seen in both aged and Cxxc1-deficient intestinal CCR6+ ILC3s. Therefore, these data suggest that targeting intestinal ILC3s may provide strategies to protect against age-related infections.
Collapse
Affiliation(s)
- Xin Shen
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Co-Facility Center, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Xianzhi Gao
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Yikai Luo
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Program of Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| | - Qianying Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Fan
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Shenghui Hong
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | | | - Xiaoqian Liu
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Qianqian Wang
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Di Wang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Linrong Lu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Program of Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Lie Wang
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China.
- Laboratory Animal Center, Zhejiang University, Hangzhou, China.
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China.
| |
Collapse
|
7
|
Chen Y, Wang L, Guo F, Dai X, Zhang X. Epigenetic reprogramming during the maternal-to-zygotic transition. MedComm (Beijing) 2023; 4:e331. [PMID: 37547174 PMCID: PMC10397483 DOI: 10.1002/mco2.331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/08/2023] Open
Abstract
After fertilization, sperm and oocyte fused and gave rise to a zygote which is the beginning of a new life. Then the embryonic development is monitored and regulated precisely from the transition of oocyte to the embryo at the early stage of embryogenesis, and this process is termed maternal-to-zygotic transition (MZT). MZT involves two major events that are maternal components degradation and zygotic genome activation. The epigenetic reprogramming plays crucial roles in regulating the process of MZT and supervising the normal development of early development of embryos. In recent years, benefited from the rapid development of low-input epigenome profiling technologies, new epigenetic modifications are found to be reprogrammed dramatically and may play different roles during MZT whose dysregulation will cause an abnormal development of embryos even abortion at various stages. In this review, we summarized and discussed the important novel findings on epigenetic reprogramming and the underlying molecular mechanisms regulating MZT in mammalian embryos. Our work provided comprehensive and detailed references for the in deep understanding of epigenetic regulatory network in this key biological process and also shed light on the critical roles for epigenetic reprogramming on embryonic failure during artificial reproductive technology and nature fertilization.
Collapse
Affiliation(s)
- Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Fucheng Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| |
Collapse
|
8
|
Yang SC, Park M, Hong KH, La H, Park C, Wang P, Li G, Chen Q, Choi Y, DeMayo FJ, Lydon JP, Skalnik DG, Lim HJ, Hong SH, Park SH, Kim YS, Kim HR, Song H. CFP1 governs uterine epigenetic landscapes to intervene in progesterone responses for uterine physiology and suppression of endometriosis. Nat Commun 2023; 14:3220. [PMID: 37270588 DOI: 10.1038/s41467-023-39008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/24/2023] [Indexed: 06/05/2023] Open
Abstract
Progesterone (P4) is required for the preparation of the endometrium for a successful pregnancy. P4 resistance is a leading cause of the pathogenesis of endometrial disorders like endometriosis, often leading to infertility; however, the underlying epigenetic cause remains unclear. Here we demonstrate that CFP1, a regulator of H3K4me3, is required for maintaining epigenetic landscapes of P4-progesterone receptor (PGR) signaling networks in the mouse uterus. Cfp1f/f;Pgr-Cre (Cfp1d/d) mice showed impaired P4 responses, leading to complete failure of embryo implantation. mRNA and chromatin immunoprecipitation sequencing analyses showed that CFP1 regulates uterine mRNA profiles not only in H3K4me3-dependent but also in H3K4me3-independent manners. CFP1 directly regulates important P4 response genes, including Gata2, Sox17, and Ihh, which activate smoothened signaling pathway in the uterus. In a mouse model of endometriosis, Cfp1d/d ectopic lesions showed P4 resistance, which was rescued by a smoothened agonist. In human endometriosis, CFP1 was significantly downregulated, and expression levels between CFP1 and these P4 targets are positively related regardless of PGR levels. In brief, our study provides that CFP1 intervenes in the P4-epigenome-transcriptome networks for uterine receptivity for embryo implantation and the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Seung Chel Yang
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 13488, Korea
| | - Mira Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 13488, Korea
| | - Kwon-Ho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Chanhyeok Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Peike Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Gaizhen Li
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qionghua Chen
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Francesco J DeMayo
- Department of Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 12233, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology and Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David G Skalnik
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Hyunjung J Lim
- Department of Veterinary Science, Konkuk University, Seoul, 05029, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24431, Korea
- KW-Bio Co., Ltd, Wonju, 26493, Korea
| | - So Hee Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 13488, Korea
| | - Yeon Sun Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 13488, Korea
| | - Hye-Ryun Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 13488, Korea
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, 13488, Korea.
| |
Collapse
|
9
|
Verdikt R, Armstrong AA, Allard P. Transgenerational inheritance and its modulation by environmental cues. Curr Top Dev Biol 2022; 152:31-76. [PMID: 36707214 PMCID: PMC9940302 DOI: 10.1016/bs.ctdb.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epigenome plays an important role in shaping phenotypes. However, whether the environment can alter an organism's phenotype across several generations through epigenetic remodeling in the germline is still a highly debated topic. In this chapter, we briefly review the mechanisms of epigenetic inheritance and their connection with germline development before highlighting specific developmental windows of susceptibility to environmental cues. We further discuss the evidence of transgenerational inheritance to a range of different environmental cues, both epidemiological in humans and experimental in rodent models. Doing so, we pinpoint the current challenges in demonstrating transgenerational inheritance to environmental cues and offer insight in how recent technological advances may help deciphering the epigenetic mechanisms at play. Together, we draw a detailed picture of how our environment can influence our epigenomes, ultimately reshaping our phenotypes, in an extended theory of inheritance.
Collapse
Affiliation(s)
- Roxane Verdikt
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, United States.
| | - Abigail A Armstrong
- Department of Obstetrics/Gynecology and Division of Reproductive Endocrinology and Infertility, University of California, Los Angeles, CA, United States
| | - Patrick Allard
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
10
|
Xiong X, Zhang X, Yang M, Zhu Y, Yu H, Fei X, Mastuda F, Lan D, Xiong Y, Fu W, Yin S, Li J. Oocyte-Specific Knockout of Histone Lysine Demethylase KDM2a Compromises Fertility by Blocking the Development of Follicles and Oocytes. Int J Mol Sci 2022; 23:ijms231912008. [PMID: 36233308 PMCID: PMC9570323 DOI: 10.3390/ijms231912008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
The methylation status of histones plays a crucial role in many cellular processes, including follicular and oocyte development. Lysine-specific demethylase 2a (KDM2a) has been reported to be closely associated with gametogenesis and reproductive performance, but the specific function and regulatory mechanism have been poorly characterized in vivo. We found KDM2a to be highly expressed in growing follicles and oocytes of mice in this study. To elucidate the physiological role of Kdm2a, the zona pellucida 3-Cre (Zp3-Cre)/LoxP system was used to generate an oocyte Kdm2a conditional knockout (Zp3-Cre; Kdm2aflox/flox, termed Kdm2a cKO) model. Our results showed that the number of pups was reduced by approximately 50% in adult Kdm2a cKO female mice mating with wildtype males than that of the control (Kdm2aflox/flox) group. To analyze the potential causes, the ovaries of Kdm2a cKO mice were subjected to histological examination, and results indicated an obvious difference in follicular development between Kdm2a cKO and control female mice and partial arrest at the primary antral follicle stage. The GVBD and matured rates of oocytes were also compromised after conditional knockout Kdm2a, and the morphological abnormal oocytes increased. Furthermore, the level of 17β-estradiol of Kdm2a cKO mice was only 60% of that in the counterparts, and hormone sensitivity decreased as the total number of ovulated and matured oocytes decreased after superovulation. After deletion of Kdm2a, the patterns of H3K36me2/3 in GVBD-stage oocytes were remarkedly changed. Transcriptome sequencing showed that the mRNA expression profiles in Kdm2a cKO oocytes were significantly different, and numerous differentially expressed genes were involved in pathways regulating follicular and oocyte development. Taken together, these results indicated that the oocyte-specific knockout Kdm2a gene led to female subfertility, suggesting the crucial role of Kdm2a in epigenetic modification and follicular and oocyte development.
Collapse
Affiliation(s)
- Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Xiaojian Zhang
- Center for Assisted Reproduction, Sichuan Academy of Medical Science, Sichuan Provincial People’s Hospital, Chengdu 610072, China
| | - Manzhen Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Yanjin Zhu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Hailing Yu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Xixi Fei
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Fuko Mastuda
- Laboratory of Theriogenology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Shi Yin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
11
|
Dynamic mRNA degradome analyses indicate a role of histone H3K4 trimethylation in association with meiosis-coupled mRNA decay in oocyte aging. Nat Commun 2022; 13:3191. [PMID: 35680896 PMCID: PMC9184541 DOI: 10.1038/s41467-022-30928-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 05/20/2022] [Indexed: 11/08/2022] Open
Abstract
A decrease in oocyte developmental potential is a major obstacle for successful pregnancy in women of advanced age. However, the age-related epigenetic modifications associated with dynamic transcriptome changes, particularly meiotic maturation-coupled mRNA clearance, have not been adequately characterized in human oocytes. This study demonstrates a decreased storage of transcripts encoding key factors regulating the maternal mRNA degradome in fully grown oocytes of women of advanced age. A similar defect in meiotic maturation-triggered mRNA clearance is also detected in aged mouse oocytes. Mechanistically, the epigenetic and cytoplasmic aspects of oocyte maturation are synchronized in both the normal development and aging processes. The level of histone H3K4 trimethylation (H3K4me3) is high in fully grown mouse and human oocytes derived from young females but decreased during aging due to the decreased expression of epigenetic factors responsible for H3K4me3 accumulation. Oocyte-specific knockout of the gene encoding CxxC-finger protein 1 (CXXC1), a DNA-binding subunit of SETD1 methyltransferase, causes ooplasm changes associated with accelerated aging and impaired maternal mRNA translation and degradation. These results suggest that a network of CXXC1-maintained H3K4me3, in association with mRNA decay competence, sets a timer for oocyte deterioration and plays a role in oocyte aging in both mouse and human oocytes.
Collapse
|
12
|
Zhu Y, Wu W, Chen S, Zhang Z, Zhang G, Li J, Jiang M. Mettl3 downregulation in germinal vesicle oocytes inhibits mRNA decay and the 1st polar body extrusion during maturation. Biol Reprod 2022; 107:765-778. [PMID: 35639638 DOI: 10.1093/biolre/ioac112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022] Open
Abstract
In oocytes, mRNA decay is essential for maturation and subsequent events, such as maternal-zygotic transition, zygotic genomic activation, and embryo development. Reversible N6-methyladenosine RNA methylation directly regulates transcription, pre-mRNA splicing, mRNA export, mRNA stability, and translation. Here, we identified that downregulation of N6-methyladenosine modification by microinjecting a methyltransferase-like 3 (Mettl3)-specific small interfering RNA into mouse germinal vesicle oocytes led to defects in meiotic spindles and the 1st polar body extrusion during maturation in vitro. By further quantitative real-time polymerase chain reaction and Poly(A)-tail assay analysis, we found that N6-methyladenosine methylation mainly acts by reducing deadenylation of mRNAs mediated by the Carbon catabolite repression 4 (CCR4)- negative on TATA less-(NOT) system, thereby causing mRNA accumulation in oocytes. Meanwhile, transcriptome analysis of germinal vesicle oocytes revealed the downregulation of transcripts of several genes encoding ribosomal subunits proteins in the Mettl3 small interfering RNA treated group, suggesting that N6-methyladenosine modification might affect translation. Together, our results indicate that RNA methylation accelerates mRNA decay, confirming the critical role of RNA clearance in oocyte maturation.
Collapse
Affiliation(s)
- Yan Zhu
- Medical Experiment Center, Guangdong Second Provincial General Hospital, Guangdong, PR China
| | - Wenjiao Wu
- Medical Experiment Center, Guangdong Second Provincial General Hospital, Guangdong, PR China
| | - Shaoqing Chen
- Center for Reproductive Medicine, Guangdong Second Provincial General Hospital, Guangdong, PR China
| | - Zhen Zhang
- Medical Experiment Center, Guangdong Second Provincial General Hospital, Guangdong, PR China
| | - Guangli Zhang
- Center for Reproductive Medicine, Guangdong Second Provincial General Hospital, Guangdong, PR China
| | - Jie Li
- Medical Experiment Center, Guangdong Second Provincial General Hospital, Guangdong, PR China
| | - Manxi Jiang
- Center for Reproductive Medicine, Guangdong Second Provincial General Hospital, Guangdong, PR China
| |
Collapse
|
13
|
Silva RF, Lima LF, Ferreira ACA, Silva AFB, Alves DR, Alves BG, Oliveira AC, Morais SM, Rodrigues APR, Santos RR, Figueiredo JR. Eugenol Improves Follicular Survival and Development During in vitro Culture of Goat Ovarian Tissue. Front Vet Sci 2022; 9:822367. [PMID: 35573397 PMCID: PMC9096615 DOI: 10.3389/fvets.2022.822367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the effects of different concentrations (10, 20, or 40 μM) of eugenol (EUG 10, EUG 20, or EUG 40), ascorbic acid (50 μg/mL; AA) or anethole (300 μg/mL; ANE 300) on the in-vitro survival and development of goat preantral follicles and oxidative stress in the cultured ovarian tissue. Ovarian fragments from five goats were cultured for 1 or 7 days in Alpha Minimum Essential Medium (α-MEM+) supplemented or not with AA, ANE 300, EUG 10, EUG 20 or EUG 40. On day 7 of culture, when compared to MEM, the addition of EUG 40 had increased the rate of follicular development, as observed by a decrease in the proportion of primordial follicles alongside with an increase in the rate of normally developing follicles. Furthermore, EUG 40 significantly increased both follicular and oocyte diameters. Subsequently, ovarian fragments from three goats were cultured for 1 or 7 days in α-MEM+ supplemented or not with AA, ANE 300 or EUG 40. All tested antioxidants, except ANE 300, were able to significantly decrease the levels of reactive oxygen species in the ovarian tissue, but EUG 40 could most efficiently neutralize free radicals. All ovarian tissues cultured in the presence of antioxidants, especially EUG 40, presented a significant decrease in H3K4me3 labeling, indicating a silencing of genes that play a role in the inhibition of follicular activation and apoptosis induction. When compared to cultured control tissues, both EUG 40 and ANE 300 significantly increased the intensity of calreticulin labeling in growing follicles. The mRNA relative expression of ERP29 and KDM3A was significantly increased when the culture medium was supplemented with EUG 40, indicating a response to ER stress experienced during culture. In conclusion, EUG 40 improved in-vitro follicle survival, activation and development and decreased ROS production, ER stress and histone lysine methylation in goat ovarian tissue.
Collapse
Affiliation(s)
- R. F. Silva
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, Brazil
- *Correspondence: R. F. Silva
| | - L. F. Lima
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, Brazil
| | - Anna C. A. Ferreira
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, Brazil
| | - A. F. B. Silva
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, Brazil
| | - D. R. Alves
- Natural Product Chemistry Laboratory, State University of Ceara, Fortaleza, Brazil
| | - B. G. Alves
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, Brazil
| | - A. C. Oliveira
- Superior Institute of Biomedical Science, State University of Ceará, Fortaleza, Brazil
| | - Selene M. Morais
- Natural Product Chemistry Laboratory, State University of Ceara, Fortaleza, Brazil
| | - Ana Paula R. Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, Brazil
| | | | - J. R. Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, Brazil
| |
Collapse
|
14
|
Bilmez Y, Talibova G, Ozturk S. Expression of the histone lysine methyltransferases SETD1B, SETDB1, SETD2, and CFP1 exhibits significant changes in the oocytes and granulosa cells of aged mouse ovaries. Histochem Cell Biol 2022; 158:79-95. [PMID: 35445296 DOI: 10.1007/s00418-022-02102-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Histone methylation is one of the main epigenetic mechanisms by which methyl groups are dynamically added to the lysine and arginine residues of histone tails in nucleosomes. This process is catalyzed by specific histone methyltransferase enzymes. Methylation of these residues promotes gene expression regulation through chromatin remodeling. Functional analysis and knockout studies have revealed that the histone lysine methyltransferases SETD1B, SETDB1, SETD2, and CFP1 play key roles in establishing the methylation marks required for proper oocyte maturation and follicle development. As oocyte quality and follicle numbers progressively decrease with advancing maternal age, investigating their expression patterns in the ovaries at different reproductive periods may elucidate the fertility loss occurring during ovarian aging. The aim of our study was to determine the spatiotemporal distributions and relative expression levels of the Setd1b, Setdb1, Setd2, and Cxxc1 (encoding the CFP1 protein) genes in the postnatal mouse ovaries from prepuberty to late aged periods. For this purpose, five groups based on their reproductive periods and histological structures were created: prepuberty (3 weeks old; n = 6), puberty (7 weeks old; n = 7), postpuberty (18 weeks old; n = 7), early aged (52 weeks old; n = 7), and late aged (60 weeks old; n = 7). We found that Setd1b, Setdb1, Setd2, and Cxxc1 mRNA levels showed significant changes among postnatal ovary groups (P < 0.05). Furthermore, SETD1B, SETDB1, SETD2, and CFP1 proteins exhibited different subcellular localizations in the ovarian cells, including oocytes, granulosa cells, stromal and germinal epithelial cells. In general, their levels in the follicles, oocytes, and granulosa cells as well as in the germinal epithelial and stromal cells significantly decreased in the aged groups when compared the other groups (P < 0.05). These decreases were concordant with the reduced numbers of the follicles at different stages and the luteal structures in the aged groups (P < 0.05). In conclusion, these findings suggest that altered expression of the histone methyltransferase genes in the ovarian cells may be associated with female fertility loss in advancing maternal age.
Collapse
Affiliation(s)
- Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
15
|
Emori C, Ito H, Fujii W, Naito K, Sugiura K. Oocytes suppress FOXL2 expression in cumulus cells in mice†. Biol Reprod 2021; 103:85-93. [PMID: 32307529 DOI: 10.1093/biolre/ioaa054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/07/2020] [Accepted: 04/16/2020] [Indexed: 11/15/2022] Open
Abstract
Cumulus cells and mural granulosa cells (MGCs) play distinct roles during follicular development, and normal development of these cell lineages is critical for the female fertility. Transcriptomic diversification between the two cell lineages is obviously a critical mechanism for their functional diversification; however, the transcriptional regulators responsible for this event have not been fully defined. In this study, we sought to identify key transcriptional regulators responsible for the differential gene expression between the two cell lineages. In silico analysis of transcriptomic comparison between cumulus cells and MGCs identified several candidate regulators responsible for the diversification of the two cell lineages. Among them, we herein focused on forkhead box L2 (FOXL2) and showed that expressions of FOXL2 as well as its target transcripts were differentially regulated between cumulus cells and MGCs. The lower expression of FOXL2 in cumulus cells seemed to be due to the suppression by oocyte-derived paracrine signals. These results suggest that FOXL2 is one of the critical transcription factors that determine cumulus cell and MGC lineages under the control of oocytes.
Collapse
Affiliation(s)
- Chihiro Emori
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Haruka Ito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Yang Y, Yang Y, Chan K, Couture JF. Analyzing the impact of CFP1 mutational landscape on epigenetic signaling. FASEB J 2021; 35:e21790. [PMID: 34320252 DOI: 10.1096/fj.202100427r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/11/2022]
Abstract
CXXC Zinc finger protein 1 (CFP1) is a multitasking protein playing essential roles during various developmental processes. Its ability to interact with several proteins contribute to several epigenetic events. Here, we review CFP1's functions and its impact on DNA methylation and the post-translational modification of histone proteins such as lysine acetylation and methylation. We will also discuss the potential role of CFP1 in carcinogenesis and the impact of the mutations identified in patients suffering from various cancers.
Collapse
Affiliation(s)
- Yidai Yang
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yaqing Yang
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kin Chan
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jean-Francois Couture
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.,Shanghai Institute of Materia Medica-University of Ottawa Research Center in Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
17
|
Sha QQ, Zhu YZ, Xiang Y, Yu JL, Fan XY, Li YC, Wu YW, Shen L, Fan HY. Role of CxxC-finger protein 1 in establishing mouse oocyte epigenetic landscapes. Nucleic Acids Res 2021; 49:2569-2582. [PMID: 33621320 PMCID: PMC7969028 DOI: 10.1093/nar/gkab107] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
During oogenesis, oocytes gain competence and subsequently undergo meiotic maturation and prepare for embryonic development; trimethylated histone H3 on lysine-4 (H3K4me3) mediates a wide range of nuclear events during these processes. Oocyte-specific knockout of CxxC-finger protein 1 (CXXC1, also known as CFP1) impairs H3K4me3 accumulation and causes changes in chromatin configurations. This study investigated the changes in genomic H3K4me3 landscapes in oocytes with Cxxc1 knockout and the effects on other epigenetic factors such as the DNA methylation, H3K27me3, H2AK119ub1 and H3K36me3. H3K4me3 is overall decreased after knocking out Cxxc1, including both the promoter region and the gene body. CXXC1 and MLL2, which is another histone H3 methyltransferase, have nonoverlapping roles in mediating H3K4 trimethylation during oogenesis. Cxxc1 deletion caused a decrease in DNA methylation levels and affected H3K27me3 and H2AK119ub1 distributions, particularly at regions with high DNA methylation levels. The changes in epigenetic networks implicated by Cxxc1 deletion were correlated with the transcriptional changes in genes in the corresponding genomic regions. This study elucidates the epigenetic changes underlying the phenotypes and molecular defects in oocytes with deleted Cxxc1 and highlights the role of CXXC1 in orchestrating multiple factors that are involved in establishing the appropriate epigenetic states of maternal genome.
Collapse
Affiliation(s)
- Qian-Qian Sha
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Ye-Zhang Zhu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Xiang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jia-Li Yu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Ying Fan
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China
| | - Yan-Chu Li
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yun-Wen Wu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Li Shen
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Sha QQ, Zhang J, Fan HY. Function and Regulation of Histone H3 Lysine-4 Methylation During Oocyte Meiosis and Maternal-to-Zygotic Transition. Front Cell Dev Biol 2020; 8:597498. [PMID: 33163498 PMCID: PMC7581939 DOI: 10.3389/fcell.2020.597498] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
During oogenesis and fertilization, histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs) tightly regulate the methylation of histone H3 on lysine-4 (H3K4me) by adding and removing methyl groups, respectively. Female germline-specific conditional knockout approaches that abolish the maternal store of target mRNAs and proteins are used to examine the functions of H3K4 KMTs and KDMs during oogenesis and early embryogenesis. In this review, we discuss the recent advances in information regarding the deposition and removal of histone H3K4 methylations, as well as their functional roles in sculpting and poising the oocytic and zygotic genomes. We start by describing the role of KMTs in establishing H3K4 methylation patterns in oocytes and the impact of H3K4 methylation on oocyte maturation and competence to undergo MZT. We then introduce the latest information regarding H3K4 demethylases that account for the dynamic changes in H3K4 modification levels during development and finish the review by specifying important unanswered questions in this research field along with promising future directions for H3K4-related epigenetic studies.
Collapse
Affiliation(s)
- Qian-Qian Sha
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jue Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Serrano-Quílez J, Roig-Soucase S, Rodríguez-Navarro S. Sharing Marks: H3K4 Methylation and H2B Ubiquitination as Features of Meiotic Recombination and Transcription. Int J Mol Sci 2020; 21:ijms21124510. [PMID: 32630409 PMCID: PMC7350030 DOI: 10.3390/ijms21124510] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Meiosis is a specialized cell division that gives raise to four haploid gametes from a single diploid cell. During meiosis, homologous recombination is crucial to ensure genetic diversity and guarantee accurate chromosome segregation. Both the formation of programmed meiotic DNA double-strand breaks (DSBs) and their repair using homologous chromosomes are essential and highly regulated pathways. Similar to other processes that take place in the context of chromatin, histone posttranslational modifications (PTMs) constitute one of the major mechanisms to regulate meiotic recombination. In this review, we focus on specific PTMs occurring in histone tails as driving forces of different molecular events, including meiotic recombination and transcription. In particular, we concentrate on the influence of H3K4me3, H2BK123ub, and their corresponding molecular machineries that write, read, and erase these histone marks. The Spp1 subunit within the Complex of Proteins Associated with Set1 (COMPASS) is a critical regulator of H3K4me3-dependent meiotic DSB formation. On the other hand, the PAF1c (RNA polymerase II associated factor 1 complex) drives the ubiquitination of H2BK123 by Rad6-Bre1. We also discuss emerging evidence obtained by cryo-electron microscopy (EM) structure determination that has provided new insights into how the "cross-talk" between these two marks is accomplished.
Collapse
|