1
|
Zhu P, Bi X, Su D, Li X, Chen Y, Song Z, Zhao L, Wang Y, Xu S, Wu X. Transcription repression of estrogen receptor alpha by ghrelin/Gq/11/YAP signaling in granulosa cells promotes polycystic ovary syndrome. Hum Cell 2024; 37:1663-1678. [PMID: 39225978 DOI: 10.1007/s13577-024-01127-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Polycystic ovarian syndrome (PCOS) is a prevalent endocrinological disorder affected by ghrelin. This study aimed to investigate the molecular mechanisms underlying the effects of ghrelin on PCOS manifestations in mice and to assess the therapeutic potential of ghrelin. Female C57BL/6 mice were subcutaneously injected with 6 mg/100 g dehydroepiandrosterone (DHEA) for 20 days to induce PCOS. Alterations in reproductive cycles, ovarian morphology, serum sex hormone levels, and related signaling markers were examined. Furthermore, ghrelin-induced effects on granulosa cells and the role of ghrelin/Gq/11/ Yes-associated protein (YAP) signaling were studied by silencing Gαq/11 or YAP using si-RNAs. Finally, we evaluated the therapeutic potential of anti-ghrelin antibodies in DHEA-induced PCOS mice. DHEA administration led to significant PCOS-associated changes including weight gain, disrupted estrous cycles, ovarian morphological alterations, and hormonal imbalances in mice, with elevated Gαq/11 and acylated ghrelin expression, which was also noted in PCOS patients. However, treatment with anti-ghrelin antibodies effectively managed DHEA-induced damage in PCOS mice. In vitro, ghrelin exposure resulted in granulosa cell injury and modulated estrogen receptors alpha (ERα) and YAP protein levels, whereas silencing YAP and Gαq/11 reversed ghrelin-induced detrimental effects and up-regulated ERα expression. This study revealed that DHEA-induced PCOS traits in mice could be improved by anti-ghrelin antibodies, with the ghrelin/Gq/11/YAP signaling pathway identified as a crucial mediator in granulosa cells, affecting ERα transcription to regulate PCOS. These findings suggest a potential therapeutic strategy for the treatment of PCOS.
Collapse
Affiliation(s)
- Pengfei Zhu
- Center of Reproductive Medicine, Xinghualing District, Children's Hospital of Shanxi and Women Health Center, 13 Xinmin North Street, Taiyuan City, 030013, Shanxi Province, China
| | - Xingyu Bi
- Center of Reproductive Medicine, Xinghualing District, Children's Hospital of Shanxi and Women Health Center, 13 Xinmin North Street, Taiyuan City, 030013, Shanxi Province, China
| | - Dan Su
- Center of Reproductive Medicine, Xinghualing District, Children's Hospital of Shanxi and Women Health Center, 13 Xinmin North Street, Taiyuan City, 030013, Shanxi Province, China
| | - Xiaoling Li
- Center of Reproductive Medicine, Xinghualing District, Children's Hospital of Shanxi and Women Health Center, 13 Xinmin North Street, Taiyuan City, 030013, Shanxi Province, China
| | - Yanhua Chen
- Center of Reproductive Medicine, Xinghualing District, Children's Hospital of Shanxi and Women Health Center, 13 Xinmin North Street, Taiyuan City, 030013, Shanxi Province, China
| | - Zhijiao Song
- Department of Health Education, Children's Hospital of Shanxi and Women Health Center, Taiyuan City, 030013, Shanxi Province, China
| | - Lijiang Zhao
- Center of Reproductive Medicine, Xinghualing District, Children's Hospital of Shanxi and Women Health Center, 13 Xinmin North Street, Taiyuan City, 030013, Shanxi Province, China
| | - Yaoqing Wang
- Center of Reproductive Medicine, Xinghualing District, Children's Hospital of Shanxi and Women Health Center, 13 Xinmin North Street, Taiyuan City, 030013, Shanxi Province, China
| | - Suming Xu
- Center of Reproductive Medicine, Xinghualing District, Children's Hospital of Shanxi and Women Health Center, 13 Xinmin North Street, Taiyuan City, 030013, Shanxi Province, China
| | - Xueqing Wu
- Center of Reproductive Medicine, Xinghualing District, Children's Hospital of Shanxi and Women Health Center, 13 Xinmin North Street, Taiyuan City, 030013, Shanxi Province, China.
| |
Collapse
|
2
|
Niu C, Hu Y, Xu K, Pan X, Wang L, Yu G. The role of the cytoskeleton in fibrotic diseases. Front Cell Dev Biol 2024; 12:1490315. [PMID: 39512901 PMCID: PMC11540670 DOI: 10.3389/fcell.2024.1490315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Fibrosis is the process whereby cells at a damaged site are transformed into fibrotic tissue, comprising fibroblasts and an extracellular matrix rich in collagen and fibronectin, following damage to organs or tissues that exceeds their repair capacity. Depending on the affected organs or tissues, fibrosis can be classified into types such as pulmonary fibrosis, hepatic fibrosis, renal fibrosis, and cardiac fibrosis. The primary pathological features of fibrotic diseases include recurrent damage to normal cells and the abnormal activation of fibroblasts, leading to excessive deposition of extracellular matrix and collagen in the intercellular spaces. However, the etiology of certain specific fibrotic diseases remains unclear. Recent research increasingly suggests that the cytoskeleton plays a significant role in fibrotic diseases, with structural changes in the cytoskeleton potentially influencing the progression of organ fibrosis. This review examines cytoskeletal remodeling and its impact on the transformation or activation of normal tissue cells during fibrosis, potentially offering important insights into the etiology and therapeutic strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Caoyuan Niu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Yanan Hu
- Department of Reproductive Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Kai Xu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Xiaoyue Pan
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Lan Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
3
|
Zhang Y, Li BM, Zhang W, Chen P, Liu L, Nie Y, Huang C, Zhu X. LHPP deficiency aggravates liver fibrosis through TGF-β/Smad3 signaling. FASEB J 2024; 38:e70053. [PMID: 39373847 DOI: 10.1096/fj.202400117rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
Liver fibrosis is characterized by a wound-healing response and may progress to liver cirrhosis and even hepatocellular carcinoma. Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) is a tumor suppressor that participates in malignant diseases. However, the role of LHPP in liver fibrosis has not been determined. Herein, the function and regulatory network of LHPP were explored in liver fibrosis. The expression of LHPP in human and murine fibrotic liver tissues was assessed via immunohistochemistry and Western blot analysis. In addition, liver fibrosis was induced in wild-type (WT) and LHPP-/- (KO) mice after carbon tetrachloride (CCl4) or thioacetamide (TAA) treatment. The effect of LHPP was systematically assessed by using specimens acquired from the above murine models. The functional role of LHPP was further explored by detecting the pathway activity of TGF-β/Smad3 and apoptosis after interfering with LHPP in vitro. To explore whether the function of LHPP depended on the TGF-β/Smad3 pathway in vivo, an inhibitor of the TGF-β/Smad3 pathway was used in CCl4-induced WT and KO mice. LHPP expression was downregulated in liver tissue samples from fibrosis patients and fibrotic mice. LHPP deficiency aggravated CCl4- and TAA-induced liver fibrosis. Moreover, through immunoblot analysis, we identified the TGF-β/Smad3 pathway as a key downstream pathway of LHPP in vivo and in vitro. The effect of LHPP deficiency was reversed by inhibiting the TGF-β/Smad3 pathway in liver fibrosis. These results revealed that LHPP deficiency exacerbates liver fibrosis through the TGF-β/Smad3 pathway. LHPP may be a potential therapeutic target in hepatic fibrosis.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bi-Min Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wang Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Peng Chen
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Linxiang Liu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuan Nie
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chenkai Huang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xuan Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Moise K, Arun KM, Pillai M, Salvador J, Mehta AS, Goyal Y, Iruela-Arispe ML. Endothelial cell elongation and alignment in response to shear stress requires acetylation of microtubules. Front Physiol 2024; 15:1425620. [PMID: 39318362 PMCID: PMC11420013 DOI: 10.3389/fphys.2024.1425620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024] Open
Abstract
The innermost layer of the vessel wall is constantly subjected to recurring and relenting mechanical forces by virtue of their direct contact with blood flow. Endothelial cells of the vessel are exposed to distension, pressure, and shear stress; adaptation to these hemodynamic forces requires significant remodeling of the cytoskeleton which includes changes in actin, intermediate filaments, and microtubules. While much is known about the effect of shear stress on the endothelial actin cytoskeleton; the impact of hemodynamic forces on the microtubule network has not been investigated in depth. Here we used imaging techniques and protein expression analysis to characterize how pharmacological and genetic perturbations of microtubule properties alter endothelial responses to laminar shear stress. Our findings revealed that pharmacological suppression of microtubule dynamics blocked two typical responses to laminar shear stress: endothelial elongation and alignment. The findings demonstrate the essential contribution of the microtubule network to changes in cell shape driven by mechanical forces. Furthermore, we observed a flow-dependent increase in microtubule acetylation that occurred early in the process of cell elongation. Pharmacological manipulation of microtubule acetylation showed a direct and causal relationship between acetylation and endothelial elongation. Finally, genetic inactivation of aTAT1, a microtubule acetylase, led to significant loss of acetylation as well as inhibition of cell elongation in response to flow. In contrast, loss of HDAC6, a microtubule deacetylase, resulted in robust microtubule acetylation with cells displaying faster kinetics of elongation and alignment. Taken together, our findings uncovered the critical contributions of HDAC6 and aTAT1, that through their roles in the regulation of microtubule acetylation, are key mediators of endothelial mechanotransduction.
Collapse
Affiliation(s)
- Katiannah Moise
- Department of Cell and Development Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Keerthana M. Arun
- Center for Synthetic Biology, Northwestern University, Chicago, IL, United States
| | - Maalavika Pillai
- Department of Cell and Development Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
- Center for Synthetic Biology, Northwestern University, Chicago, IL, United States
| | - Jocelynda Salvador
- Department of Cell and Development Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Aarya S. Mehta
- Department of Cell and Development Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Yogesh Goyal
- Department of Cell and Development Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
- Center for Synthetic Biology, Northwestern University, Chicago, IL, United States
| | - M. Luisa Iruela-Arispe
- Department of Cell and Development Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
5
|
Dong L, Li L, Chen H, Cao Y, Lei H. Mechanochemistry: Fundamental Principles and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403949. [PMID: 39206931 DOI: 10.1002/advs.202403949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Mechanochemistry is an emerging research field at the interface of physics, mechanics, materials science, and chemistry. Complementary to traditional activation methods in chemistry, such as heat, electricity, and light, mechanochemistry focuses on the activation of chemical reactions by directly or indirectly applying mechanical forces. It has evolved as a powerful tool for controlling chemical reactions in solid state systems, sensing and responding to stresses in polymer materials, regulating interfacial adhesions, and stimulating biological processes. By combining theoretical approaches, simulations and experimental techniques, researchers have gained intricate insights into the mechanisms underlying mechanochemistry. In this review, the physical chemistry principles underpinning mechanochemistry are elucidated and a comprehensive overview of recent significant achievements in the discovery of mechanically responsive chemical processes is provided, with a particular emphasis on their applications in materials science. Additionally, The perspectives and insights into potential future directions for this exciting research field are offered.
Collapse
Affiliation(s)
- Liang Dong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Luofei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Huiyan Chen
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Institute of Advanced Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
6
|
Li Z, Cui Z, Wang X, Lv Y. Knockdown of LRCH4 Remodels Tumor Microenvironment Through Inhibiting YAP and TGF-β/Smad Signaling Pathway in Colorectal Cancer. Comb Chem High Throughput Screen 2024; 27:1823-1829. [PMID: 38383956 DOI: 10.2174/0113862073267943231101065948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND Colorectal cancer is one of the most common gastrointestinal malignancies worldwide. LRCH4 is the top 1 gene associated with an unfavorable prognosis in colorectal cancer. METHODS Here, we reported that the knockdown of LRCH4 inhibited the proliferation, migration and invasion in HT29 cells. RESULTS The activity of Yes-Associated Protein (YAP), a transcription factor in the Hppo-YAP signaling pathway, was significantly inhibited by LRCH4-siRNA. LRCH4 knockdown also reversed the EMT and regulated the expression of extracellular matrix (ECM) protein, Fibronectin and Collagen IV in HT29 cells. In addition, the TGF-β/Smad signaling pathway, as the downstream pathway of Yap, was also inhibited by LRCH4 knockdown. CONCLUSION Knockdown of LRCH4 involved in the regulation of ECM and EMT and inhibited YAP and the TGF-β/Smad signaling pathway in colorectal cancer cells. Our study provided a mechanism of LRCH4 on colorectal cancer cells, and a new potential target for clinical tumor treatment.
Collapse
Affiliation(s)
- Zhiwen Li
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenhua Cui
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xianren Wang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanfeng Lv
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
7
|
Jeong J, Kim OH, Shim J, Keum S, Hwang YE, Song S, Kim JW, Choi JH, Lee HJ, Rhee S. Microtubule acetylation induced by oxidative stress regulates subcellular distribution of lysosomal vesicles for amyloid-beta secretion. J Cell Physiol 2023; 238:2812-2826. [PMID: 37801327 DOI: 10.1002/jcp.31131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Excessive production and accumulation of amyloid-beta (Aβ) in the brain are one of the hallmarks of Alzheimer's disease (AD). Although oxidative stress is known to trigger and promote the progression of AD, the molecular relationship between oxidative stress and Aβ production is not yet fully understood. In this study, we demonstrate that microtubule acetylation induced by oxidative stress plays a critical role in Aβ production and secretion by altering the subcellular distribution of Aβ precursor protein (APP)-containing lysosomal vesicles. Under oxidative stress, both H4-APPSwe/Ind and HEK293T-APPSwe/Ind cell lines showed increased microtubule acetylation and Aβ secretion. Knockdown (KD) of alpha-tubulin N-acetyltransferase 1 (ATAT1) by using a lentiviral shRNA not only inhibited the generation of intermediate APP fragments, such as β-CTF and AICD, but also suppressed Aβ secretion. Oxidative stress promoted the dispersion of LAMP1-positive vesicles to the periphery of the cell through microtubule acetylation, leading to the formation of neutralized lysosomal vesicles (NLVs), which was inhibited by ATAT1 KD. Treatment of the cells with the dynein ATPase inhibitor EHNA or downregulation of LIS1, a regulator of dynein-mediated intracellular transport, increased the peripheral localization of NLVs and promoted Aβ secretion, whereas KD of ADP ribosylation factor like GTPase 8B showed the opposite result. ATAT1 KD in the hippocampal region of the 5×FAD AD mouse model also showed significant reductions in Aβ plaque accumulation and memory loss. Taken together, these findings suggest that oxidative stress-induced microtubule acetylation promotes the peripheral localization of lysosomal vesicles to form NLVs, thereby enhancing Aβ secretion.
Collapse
Affiliation(s)
- Jangho Jeong
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ok-Hyeon Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Jaeyeoung Shim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Seula Keum
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ye Eun Hwang
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Seongeun Song
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jee-Hye Choi
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Wen D, Gao Y, Liu Y, Ho C, Sun J, Huang L, Liu Y, Li Q, Zhang Y. Matrix stiffness-induced α-tubulin acetylation is required for skin fibrosis formation through activation of Yes-associated protein. MedComm (Beijing) 2023; 4:e319. [PMID: 37457658 PMCID: PMC10338853 DOI: 10.1002/mco2.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
Skin fibrosis, a pathological process featured by fibroblast activation and extracellular matrix (ECM) deposition, makes a significant contribution to morbidity. Studies have identified biomechanics as the central element in the complex network of fibrogenesis that drives the profibrotic feedback loop. In this study, we found that the acetylation of α-tubulin at lysine 40 (K40) was augmented in fibrotic skin tissues. Further analysis showed that α-tubulin acetylation is required for fibroblast activation, including contraction, migration, and ECM deposition. More importantly, we revealed that biomechanics-induced upregulation of K40 acetylation promotes fibrosis by mediating mechanosensitive Yes-associated protein S127 dephosphorylation and its cytoplasm nucleus shuttle. Furthermore, we demonstrated that the knockdown of α-tubulin acetyltransferase 1 could rescue the K40 acetylation upregulation caused by increased matrix rigidity and ameliorate skin fibrosis both in vivo and in vitro. Herein, we highlight the critical role of α-tubulin acetylation in matrix stiffness-induced skin fibrosis and clarify a possible molecular mechanism. Our research suggests α-tubulin acetylation as a potential target for drug design and therapeutic intervention.
Collapse
Affiliation(s)
- Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yangdan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chiakang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiaming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lu Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuxin Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
9
|
Chen G, Deng Y, Xia B, Lv Y. In Situ Regulation and Mechanisms of 3D Matrix Stiffness on the Activation and Reversion of Hepatic Stellate Cells. Adv Healthc Mater 2022; 12:e2202560. [PMID: 36519640 DOI: 10.1002/adhm.202202560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Activated hepatic stellate cells (HSCs) is a key event in the progression of liver fibrosis. HSCs transdifferentiate into myofibroblasts and secrete large amounts of extracellular matrix, resulting in increased liver stiffness. It is difficult for platforms constructed in vitro to simulate the structure, composition, and stiffness of the 3D microenvironment of HSCs in vivo. Here, 3D scaffolds with different stiffness are constructed by decellularizing rat livers at different stages of fibrosis. The effects of matrix stiffness on the proliferation, activation, and reversion of HSCs are studied. The results demonstrate these scaffolds have good cytocompatibility. It is also found that the high stiffness can significantly promote the activation of HSCs, and this process is accompanied by the activation of integrin β1 as well as the nucleation and activation of Yes-associated protein (YAP). Moreover, the low stiffness of the scaffold can promote the reversion of activated HSCs, which is associated with cell apoptosis and accompanied by the inactivation of integrin β1 and YAP. These results suggest that YAP may be a potential therapeutic target for the treatment of liver fibrosis and the theoretical feasibility of inducing activated HSCs reversion to the resting state by regulating matrix stiffness of liver.
Collapse
Affiliation(s)
- Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, P. R. China.,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, P. R. China.,Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, P. R. China
| | - Yaxin Deng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, P. R. China.,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, P. R. China
| | - Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, P. R. China
| |
Collapse
|
10
|
Fenbendazole Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice via Suppression of Fibroblast-to-Myofibroblast Differentiation. Int J Mol Sci 2022; 23:ijms232214088. [PMID: 36430565 PMCID: PMC9693227 DOI: 10.3390/ijms232214088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal interstitial lung disease with unknown etiology. Despite substantial progress in understanding the pathogenesis of pulmonary fibrosis and drug development, there is still no cure for this devastating disease. Fenbendazole (FBZ) is a benzimidazole compound that is widely used as an anthelmintic agent and recent studies have expanded the scope of its pharmacological effects and application prospect. This study demonstrated that FBZ treatment blunted bleomycin-induced lung fibrosis in mice. In vitro studies showed that FBZ inhibited the proliferation and migration of human embryo lung fibroblasts. Further studies showed that FBZ significantly inhibited glucose consumption, moderated glycolytic metabolism in fibroblasts, thus activated adenosine monophosphate-activated protein kinase (AMPK), and reduced the activation of the mammalian target of rapamycin (mTOR) pathway, thereby inhibiting transforming growth factor-β (TGF-β1)-induced fibroblast-to-myofibroblast differentiation and collagen synthesis. In summary, our data suggested that FBZ has potential as a novel treatment for pulmonary fibrosis.
Collapse
|
11
|
Firnau MB, Brieger A. CK2 and the Hallmarks of Cancer. Biomedicines 2022; 10:1987. [PMID: 36009534 PMCID: PMC9405757 DOI: 10.3390/biomedicines10081987] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Casein kinase 2 (CK2) is commonly dysregulated in cancer, impacting diverse molecular pathways. CK2 is a highly conserved serine/threonine kinase, constitutively active and ubiquitously expressed in eukaryotes. With over 500 known substrates and being estimated to be responsible for up to 10% of the human phosphoproteome, it is of significant importance. A broad spectrum of diverse types of cancer cells has been already shown to rely on disturbed CK2 levels for their survival. The hallmarks of cancer provide a rationale for understanding cancer's common traits. They constitute the maintenance of proliferative signaling, evasion of growth suppressors, resisting cell death, enabling of replicative immortality, induction of angiogenesis, the activation of invasion and metastasis, as well as avoidance of immune destruction and dysregulation of cellular energetics. In this work, we have compiled evidence from the literature suggesting that CK2 modulates all hallmarks of cancer, thereby promoting oncogenesis and operating as a cancer driver by creating a cellular environment favorable to neoplasia.
Collapse
Affiliation(s)
| | - Angela Brieger
- Department of Internal Medicine I, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
12
|
You E, Jeong J, Lee J, Keum S, Hwang YE, Choi JH, Rhee S. Casein kinase 2 promotes the TGF-β-induced activation of α-tubulin acetyltransferase 1 in fibroblasts cultured on a soft matrix. BMB Rep 2022. [PMID: 35321783 PMCID: PMC9058472 DOI: 10.5483/bmbrep.2022.55.4.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cell signals for growth factors depend on the mechanical properties of the extracellular matrix (ECM) surrounding the cells. Microtubule acetylation is involved in the transforming growth factor (TGF)-β-induced myofibroblast differentiation in the soft ECM. However, the mechanism of activation of α-tubulin acetyltransferase 1 (α-TAT1), a major α-tubulin acetyltransferase, in the soft ECM is not well defined. Here, we found that casein kinase 2 (CK2) is required for the TGF-β-induced activation of α-TAT1 that promotes microtubule acetylation in the soft matrix. Genetic mutation and pharmacological inhibition of CK2 catalytic activity specifically reduced microtubule acetylation in the cells cultured on a soft matrix rather than those cultured on a stiff matrix. Immunoprecipitation analysis showed that CK2α, a catalytic subunit of CK2, directly bound to the C-terminal domain of α-TAT1, and this interaction was more prominent in the cells cultured on the soft matrix. Moreover, the substitution of alanine with serine, the 236th amino acid located at the C-terminus, which contains the CK2-binding site of α-TAT1, sig-nificantly abrogated the TGF-β-induced microtubule acetylation in the soft matrix, indicating that the successful binding of CK2 and the C-terminus of α-TAT1 led to the phosphorylation of serine at the 236th position of amino acids in α-TAT1 and regulation of its catalytic activity. Taken together, our findings provide novel insights into the molecular mechanisms underlying the TGF-β-induced activation of α-TAT1 in a soft matrix.
Collapse
Affiliation(s)
- Eunae You
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Jangho Jeong
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Jieun Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Seula Keum
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Ye Eun Hwang
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Jee-Hye Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
13
|
Wang Z, Niu Y, Lei B, Yu L, Ke Z, Cao C, Wang R, Li J. Downhill Running Decreases the Acetylation of Tubulins and Impairs Autophagosome Degradation in Rat Skeletal Muscle. Med Sci Sports Exerc 2021; 53:2477-2484. [PMID: 34115728 DOI: 10.1249/mss.0000000000002728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study was designed to probe the effect of downhill running on microtubule acetylation and autophagic flux in rat skeletal muscle. METHODS Sprague-Dawley rats were subjected to an exercise protocol of a 90-min downhill run with a slope of -16° and a speed of 16 m·min-1, and then the soleus was sampled at 0, 12, 24, 48, and 72 h after exercise. Protein expression levels of microtubule-associated protein 1 light chain 3 (LC3), p62/sequestosome 1 (p62), α-tubulin, and acetylated α-tubulin (AcK40 α-tubulin) were detected by Western blotting. Alpha-tubulin was costained with AcK40 α-tubulin or cytoplasmic dynein intermediate chain in a single muscle fiber, and LC3 was costained with lysosomal-associated membrane protein 1 in cryosections. To assess autophagic flux in vivo, colchicine or vehicle was injected intraperitoneally 3 d before the exercise experiment, and the protein levels of LC3 and p62 were measured by Western blotting. RESULTS Downhill running induced a significant increase in the protein levels of LC3-II and p62, whereas the level and proportion of AcK40 α-tubulin were markedly decreased. Furthermore, the amount of dynein on α-tubulin was decreased after downhill running, and autophagosomes accumulated in the middle of myofibrils. Importantly, LC3-II flux was decreased after downhill running compared with that in the control group. CONCLUSIONS A bout of downhill running decreases microtubule acetylation, which may impair dynein recruitment and autophagosome transportation, causing blocked autophagic flux.
Collapse
Affiliation(s)
- Zhen Wang
- School of Sports Science, Beijing Sport University, Beijing, CHINA
| | | | - Bingkai Lei
- School of Sports Science, Beijing Sport University, Beijing, CHINA
| | - Liang Yu
- School of Sports Science, Beijing Sport University, Beijing, CHINA
| | - Zhifei Ke
- School of Sports Science, Beijing Sport University, Beijing, CHINA
| | - Chunxia Cao
- School of Sports Science, Beijing Sport University, Beijing, CHINA
| | - Ruiyuan Wang
- School of Sports Science, Beijing Sport University, Beijing, CHINA
| | - Junping Li
- School of Sports Science, Beijing Sport University, Beijing, CHINA
| |
Collapse
|
14
|
Zhang J, Liu Q, He J, Li Y. Novel Therapeutic Targets in Liver Fibrosis. Front Mol Biosci 2021; 8:766855. [PMID: 34805276 PMCID: PMC8602792 DOI: 10.3389/fmolb.2021.766855] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Liver fibrosis is end-stage liver disease that can be rescued. If irritation continues due to viral infection, schistosomiasis and alcoholism, liver fibrosis can progress to liver cirrhosis and even cancer. The US Food and Drug Administration has not approved any drugs that act directly against liver fibrosis. The only treatments currently available are drugs that eliminate pathogenic factors, which show poor efficacy; and liver transplantation, which is expensive. This highlights the importance of clarifying the mechanism of liver fibrosis and searching for new treatments against it. This review summarizes how parenchymal, nonparenchymal cells, inflammatory cells and various processes (liver fibrosis, hepatic stellate cell activation, cell death and proliferation, deposition of extracellular matrix, cell metabolism, inflammation and epigenetics) contribute to liver fibrosis. We highlight discoveries of novel therapeutic targets, which may provide new insights into potential treatments for liver fibrosis.
Collapse
Affiliation(s)
- Jinhang Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
15
|
Colciago A, Audano M, Bonalume V, Melfi V, Mohamed T, Reid AJ, Faroni A, Greer PA, Mitro N, Magnaghi V. Transcriptomic Profile Reveals Deregulation of Hearing-Loss Related Genes in Vestibular Schwannoma Cells Following Electromagnetic Field Exposure. Cells 2021; 10:cells10071840. [PMID: 34360009 PMCID: PMC8307028 DOI: 10.3390/cells10071840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/23/2022] Open
Abstract
Hearing loss (HL) is the most common sensory disorder in the world population. One common cause of HL is the presence of vestibular schwannoma (VS), a benign tumor of the VIII cranial nerve, arising from Schwann cell (SC) transformation. In the last decade, the increasing incidence of VS has been correlated to electromagnetic field (EMF) exposure, which might be considered a pathogenic cause of VS development and HL. Here, we explore the molecular mechanisms underlying the biologic changes of human SCs and/or their oncogenic transformation following EMF exposure. Through NGS technology and RNA-Seq transcriptomic analysis, we investigated the genomic profile and the differential display of HL-related genes after chronic EMF. We found that chronic EMF exposure modified the cell proliferation, in parallel with intracellular signaling and metabolic pathways changes, mostly related to translation and mitochondrial activities. Importantly, the expression of HL-related genes such as NEFL, TPRN, OTOGL, GJB2, and REST appeared to be deregulated in chronic EMF exposure. In conclusion, we suggest that, at a preclinical stage, EMF exposure might promote the transformation of VS cells and contribute to HL.
Collapse
Affiliation(s)
- Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Veronica Bonalume
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Valentina Melfi
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Tasnim Mohamed
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Adam J. Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NQ, UK; (A.J.R.); (A.F.)
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Center, Manchester M13 9NQ, UK
| | - Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NQ, UK; (A.J.R.); (A.F.)
| | - Peter A. Greer
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
- Correspondence: ; Tel.: +39-0250318414
| |
Collapse
|
16
|
Ko P, Choi JH, Song S, Keum S, Jeong J, Hwang YE, Kim JW, Rhee S. Microtubule Acetylation Controls MDA-MB-231 Breast Cancer Cell Invasion through the Modulation of Endoplasmic Reticulum Stress. Int J Mol Sci 2021; 22:ijms22116018. [PMID: 34199510 PMCID: PMC8199658 DOI: 10.3390/ijms22116018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 12/27/2022] Open
Abstract
During aggressive cancer progression, cancer cells adapt to unique microenvironments by withstanding various cellular stresses, including endoplasmic reticulum (ER) stress. However, the mechanism whereby cancer cells overcome the ER stress to survive remains to be elucidated. Herein, we demonstrated that microtubule acetylation in cancer cells grown on a stiff matrix promotes cancer progression by preventing excessive ER stress. Downregulation of microtubule acetylation using shRNA or CRSIPR/Cas9 techniques targeting ATAT1, which encodes α-tubulin N-acetyltransferase (αTAT1), resulted in the upregulation of ER stress markers, changes in ER morphology, and enhanced tunicamycin-induced UPR signaling in cancer cells. A set of genes involved in cancer progression, especially focal adhesion genes, were downregulated in both ATAT1-knockout and tunicamycin-treated cells, whereas ATAT1 overexpression restored the gene expression inhibited by tunicamycin. Finally, the expression of ATAT1 and ER stress marker genes were negatively correlated in various breast cancer types. Taken together, our results suggest that disruption of microtubule acetylation is a potent therapeutic tool for preventing breast cancer progression through the upregulation of ER stress. Moreover, ATAT1 and ER stress marker genes may be useful diagnostic markers in various breast cancer types.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sangmyung Rhee
- Correspondence: ; Tel.: +82-2-820-5818; Fax: +82-2-825-5206
| |
Collapse
|