1
|
Suhaimi FW, Khari NHM, Hassan Z, Müller CP. Exploring the cognitive effects of kratom: A review. Behav Brain Res 2024; 480:115387. [PMID: 39643045 DOI: 10.1016/j.bbr.2024.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Despite the strict kratom regulation in some regions, the demand for kratom products is still increasing worldwide. Kratom products are commonly consumed for their pain-relieving effect or as a self-treatment for opioid use disorder. Kratom is also taken as a recreational drug among youth and adults. Since substance abuse can cause cognitive impairment, many studies investigated the effects of kratom on cognition. The interaction of some kratom alkaloids with various receptors such as opioid, serotonergic, and adrenergic receptors further sparks the interest to investigate the effects of kratom on cognitive function. Hence, this review aims to provide an overview of the effects of kratom on cognitive behaviours and their underlying changes in neurobiological mechanisms. In conclusion, kratom, particularly its main alkaloid, mitragynine may adversely affect cognitive performances that may be attributed to the disruption in synaptic plasticity, brain activity as well as various proteins involved in synaptic transmission. The impact of kratom on cognitive functions could also shed light on its safety profile, which is essential for the therapeutic development of kratom, including its potential use in opioid substitution therapy.
Collapse
Affiliation(s)
| | | | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, Erlangen, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
2
|
Gonzalez D, Bensing PC, Dixon KN, Leong KC. Cocaine diminishes consolidation of cued fear memory in female rats through interactions with ventral hippocampal D2 receptors. Pharmacol Biochem Behav 2024; 244:173863. [PMID: 39186953 DOI: 10.1016/j.pbb.2024.173863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
In addition to cocaine's addictive properties, cocaine use may lead to heightened risk-taking behavior. The disruptive effects of cocaine on aversive memory formation may underlie this behavior. The present study investigated the effects of cocaine on fear memory using a cued fear conditioning paradigm in female Sprague Dawley rats, and further determined the role of D2 receptors in modulating the effect of cocaine on cued fear expression. Animals received six evenly spaced shocks preceded by a tone. The following day, rats were returned to the fear chamber where tones, but no shocks, were delivered. In Experiment 1, separate or concurrent administrations of cocaine (15 mg/kg; i.p.) and the D2 receptor antagonist eticlopride (0.1 mg/kg; i.p.) were given immediately after conditioning trials. It was determined that cocaine administration during the consolidation period diminished the expression of cued fear during the subsequent test day. Concurrent eticlopride administration attenuated this effect, indicating the involvement of D2 receptors in the deleterious effects of cocaine on fear memory consolidation. In Experiment 2, eticlopride (0.05 μg) was infused directly into the ventral hippocampus (VH) after fear conditioning and before cocaine administration. Cocaine continued to disrupt consolidation of cued and contextual fear memory, and concurrent intra-VH eticlopride blocked this effect, thereby demonstrating that VH D2 receptors mediate cocaine-induced impairment of fear memory consolidation. Overall, the present study provides evidence that acute cocaine administration impairs aversive memory formation and establishes a potential circuit through which cocaine induces its detrimental effects on fear memory consolidation.
Collapse
Affiliation(s)
- Daniela Gonzalez
- Neuroscience Program, Trinity University, San Antonio, TX, United States of America
| | - Paige C Bensing
- Neuroscience Program, Trinity University, San Antonio, TX, United States of America
| | - Katherine N Dixon
- Neuroscience Program, Trinity University, San Antonio, TX, United States of America
| | - Kah-Chung Leong
- Neuroscience Program, Trinity University, San Antonio, TX, United States of America.
| |
Collapse
|
3
|
Wang CL, Cao DN, Wu N, Zhu YJ, Li J. The secondary visual cortex mediated the enhancement of associative learning on methamphetamine self-administration behaviors. Psychopharmacology (Berl) 2024; 241:1841-1855. [PMID: 38702472 DOI: 10.1007/s00213-024-06597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
RATIONALE Methamphetamine addiction is a persistent and intractable pathological learning and memory, whereas no approved therapeutics is available. However, few attentions have been paid to how associative learning participates in the formation of intractable memory related to drug addiction OBJECTIVES AND METHODS: To investigate the role of associative learning in methamphetamine addiction and the underlying neurobiological mechanism, methamphetamine self-administration, oral sucrose self-administration, chemogenetic neuromanipulation, and fiber photometry in mice were performed in this study. RESULTS We reported that associative learning increased methamphetamine-induced self-administration, but not oral sucrose self-administration. In addition, the enhancement of methamphetamine-induced self-administration was independent of more methamphetamine consumption, and remained with higher drug-taking and motivation in the absence of visual cues, suggesting the direct effects of the associative learning that enhanced methamphetamine-induced self-administration. Moreover, chemogenetic inactivation of the secondary visual cortex (V2) reduced the enhancement of the drug-taking induced by associative learning but did not alter sucrose-taking. Further fiber photometry of V2 neurons demonstrated that methamphetamine-associative learning elicits V2 neuron excitation, and sucrose-associative learning elicits V2 neuron inhibition. CONCLUSIONS Therefore, this study reveals the neurobiological mechanism of V2 excitability underlying how associative learning participates in the formation of intractable memory related to drug addiction, and gives evidence to support V2 as a promising target for stimulation therapy for methamphetamine addiction.
Collapse
Affiliation(s)
- Cai-Ling Wang
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Dan-Ni Cao
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Ying-Jie Zhu
- Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| |
Collapse
|
4
|
Li H, Liuha X, Chen R, Xiao Y, Xu W, Zhou Y, Bai L, Zhang J, Zhao Y, Zhao Y, Wang L, Qin F, Chen Y, Han S, Wei Q, Li S, Zhang D, Bu Q, Wang X, Jiang L, Dai Y, Zhang N, Kuang W, Qin M, Wang H, Tian J, Zhao Y, Cen X. Pyruvate dehydrogenase complex E1 subunit α crotonylation modulates cocaine-associated memory through hippocampal neuron activation. Cell Rep 2024; 43:114529. [PMID: 39046876 DOI: 10.1016/j.celrep.2024.114529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/04/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Neuronal activation is required for the formation of drug-associated memory, which is critical for the development, persistence, and relapse of drug addiction. Nevertheless, the metabolic mechanisms underlying energy production for neuronal activation remain poorly understood. In the study, a large-scale proteomics analysis of lysine crotonylation (Kcr), a type of protein posttranslational modification (PTM), reveals that cocaine promoted protein Kcr in the hippocampal dorsal dentate gyrus (dDG). We find that Kcr is predominantly discovered in a few enzymes critical for mitochondrial energy metabolism; in particular, pyruvate dehydrogenase (PDH) complex E1 subunit α (PDHA1) is crotonylated at the lysine 39 (K39) residue through P300 catalysis. Crotonylated PDHA1 promotes pyruvate metabolism by activating PDH to increase ATP production, thus providing energy for hippocampal neuronal activation and promoting cocaine-associated memory recall. Our findings identify Kcr of PDHA1 as a PTM that promotes pyruvate metabolism to enhance neuronal activity for cocaine-associated memory.
Collapse
Affiliation(s)
- Hongchun Li
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Liuha
- Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Rong Chen
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuzhou Xiao
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen 518055, China
| | - Yuanyi Zhou
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Bai
- Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zhang
- Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yue Zhao
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Zhao
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang Wang
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Qin
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaxing Chen
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuang Han
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingfan Wei
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shu Li
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dingwen Zhang
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qian Bu
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; West China-Frontier PharmaTech Co., Ltd., Chengdu 610041, China
| | - Xiaojie Wang
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linhong Jiang
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanping Dai
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ni Zhang
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weihong Kuang
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Qin
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongbo Wang
- Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jingwei Tian
- Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yinglan Zhao
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaobo Cen
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Bender BN, Stringfield SJ, Torregrossa MM. Changes in dorsomedial striatum activity during expression of goal-directed vs. habit-like cue-induced cocaine seeking. ADDICTION NEUROSCIENCE 2024; 11:100149. [PMID: 38957402 PMCID: PMC11218864 DOI: 10.1016/j.addicn.2024.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
A preclinical model of cue exposure therapy, cue extinction, reduces cue-induced cocaine seeking that is goal-directed but not habit-like. Goal-directed and habitual behaviors differentially rely on the dorsomedial striatum (DMS) and dorsolateral striatum (DLS), but the effects of cue extinction on dorsal striatal responses to cue-induced drug seeking are unknown. We used fiber photometry in rats trained to self-administer cocaine paired with an audiovisual cue to examine how dorsal striatal intracellular calcium and extracellular dopamine activity differs between goal-directed and habit-like cue-induced cocaine seeking and how it is impacted by cue extinction. After minimal fixed-ratio training, rats showed enhanced DMS and DLS calcium responses to cue-reinforced compared to unreinforced lever presses. After rats were trained on goal-promoting fixed ratio schedules or habit-promoting second-order schedules of reinforcement, different patterns of dorsal striatal calcium and dopamine responses to cue-reinforced lever presses emerged. Rats trained on habit-promoting second-order schedules showed reduced DMS calcium responses and enhanced DLS dopamine responses to cue-reinforced lever presses. Cue extinction reduced calcium responses during subsequent drug seeking in the DMS, but not in the DLS. Therefore, cue extinction may reduce goal-directed behavior through its effects on the DMS, whereas habit-like behavior and the DLS are unaffected.
Collapse
Affiliation(s)
- Brooke N. Bender
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15213, United States
| | - Sierra J. Stringfield
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States
| | - Mary M. Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15213, United States
| |
Collapse
|
6
|
Lima ALD, Silva EG, Cardozo PL, da Silva MCM, Koerich S, Ribeiro FM, Moreira FA, Vieira LB. Isradipine, an L-type calcium channel blocker, attenuates cocaine effects in mice by reducing central glutamate release. Eur J Pharmacol 2024; 971:176489. [PMID: 38492875 DOI: 10.1016/j.ejphar.2024.176489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Substance abuse disorder is a chronic condition for which pharmacological treatment options remain limited. L-type calcium channels (LTCC) have been implicated in drug-related plasticity and behavior. Specifically, dopaminergic neurons in the mesocorticolimbic pathway express Cav1.2 and Cav1.3 channels, which may regulate dopaminergic activity associated with reward behavior. Therefore, this study aimed to investigate the hypothesis that pre-administration of the LTCC blocker, isradipine can mitigate the effects of cocaine by modulating central glutamatergic transmission. For that, we administered isradipine at varying concentrations (1, 7.5, and 15 μg/μL) via intracerebroventricular injection in male Swiss mice. This pretreatment was carried out prior to subjecting animals to behavioral assessments to evaluate cocaine-induced locomotor sensitization and conditioned place preference (CPP). The results revealed that isradipine administered at a concentration of 1 μg/μL effectively attenuated both the sensitization and CPP induced by cocaine (15 mg/kg, via i. p.). Moreover, mice treated with 1 μg/μL of isradipine showed decreased presynaptic levels of glutamate and calcium in the cortex and hippocampus as compared to control mice following cocaine exposure. Notably, the gene expression of ionotropic glutamate receptors, AMPA, and NMDA, remained unchanged, as did the expression of Cav1.2 and Cav1.3 channels. Importantly, these findings suggest that LTCC blockage may inhibit behavioral responses to cocaine, most likely by decreasing glutamatergic input in areas related to addiction.
Collapse
Affiliation(s)
- Anna Luiza Diniz Lima
- Department of Pharmacology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Emanuele Guimarães Silva
- Department of Immunology and Biochemistry, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pablo Leal Cardozo
- Department of Immunology and Biochemistry, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Suélyn Koerich
- Department of Pharmacology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabíola Mara Ribeiro
- Department of Immunology and Biochemistry, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciene Bruno Vieira
- Department of Pharmacology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
7
|
Clarke-Williams CJ, Lopes-Dos-Santos V, Lefèvre L, Brizee D, Causse AA, Rothaermel R, Hartwich K, Perestenko PV, Toth R, McNamara CG, Sharott A, Dupret D. Coordinating brain-distributed network activities in memory resistant to extinction. Cell 2024; 187:409-427.e19. [PMID: 38242086 PMCID: PMC7615560 DOI: 10.1016/j.cell.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/13/2023] [Accepted: 12/13/2023] [Indexed: 01/21/2024]
Abstract
Certain memories resist extinction to continue invigorating maladaptive actions. The robustness of these memories could depend on their widely distributed implementation across populations of neurons in multiple brain regions. However, how dispersed neuronal activities are collectively organized to underpin a persistent memory-guided behavior remains unknown. To investigate this, we simultaneously monitored the prefrontal cortex, nucleus accumbens, amygdala, hippocampus, and ventral tegmental area (VTA) of the mouse brain from initial recall to post-extinction renewal of a memory involving cocaine experience. We uncover a higher-order pattern of short-lived beta-frequency (15-25 Hz) activities that are transiently coordinated across these networks during memory retrieval. The output of a divergent pathway from upstream VTA glutamatergic neurons, paced by a slower (4-Hz) oscillation, actuates this multi-network beta-band coactivation; its closed-loop phase-informed suppression prevents renewal of cocaine-biased behavior. Binding brain-distributed neural activities in this temporally structured manner may constitute an organizational principle of robust memory expression.
Collapse
Affiliation(s)
- Charlie J Clarke-Williams
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Laura Lefèvre
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Demi Brizee
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Adrien A Causse
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Roman Rothaermel
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Katja Hartwich
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Pavel V Perestenko
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Robert Toth
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Colin G McNamara
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| |
Collapse
|
8
|
Arguello AA, Valade CT, Voutour LS, Reeves CA. Cocaine reward and reinstatement in adolescent versus adult rodents. Front Behav Neurosci 2024; 17:1278263. [PMID: 38249124 PMCID: PMC10796467 DOI: 10.3389/fnbeh.2023.1278263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/27/2023] [Indexed: 01/23/2024] Open
Abstract
Adolescence is a critical juncture when initiation of drug use intersects with profound developmental changes in the brain. Adolescent drug use increases the risk to develop substance use disorders (SUDs) later in life, but the mechanisms that confer this vulnerability are not understood. SUDs are defined by cycles of use, abstinence, and relapse. Intense craving during drug-free periods is often triggered by cues and environmental contexts associated with previous use. In contrast to our understanding of stimuli that elicit craving and relapse in adults, the behavioral processes that occur during periods of abstinence and relapse in adolescents are poorly understood. The current mini-review will summarize findings from preclinical rodent studies that used cocaine conditioned place preference and operant cocaine self-administration to examine subsequent effects on reward, relapse and incubation of craving.
Collapse
Affiliation(s)
- Amy A. Arguello
- Department of Psychology, Interdisciplinary Science and Technology Building, Michigan State University, East Lansing, MI, United States
| | | | | | | |
Collapse
|
9
|
Charpentier ANH, Olekanma DI, Valade CT, Reeves CA, Cho BR, Arguello AA. Influence of reconsolidation in maintenance of cocaine-associated contextual memories formed during adolescence or adulthood. Sci Rep 2023; 13:13936. [PMID: 37626103 PMCID: PMC10457301 DOI: 10.1038/s41598-023-39949-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Adolescents are at increased risk to develop substance use disorders and suffer from relapse throughout life. Targeted weakening of drug-associated memories has been shown to reduce relapse-like behavior in adult rats, however this process has been understudied in adolescents. We aimed to examine whether adolescent-formed, cocaine-associated memories could be manipulated via reconsolidation mechanisms. To accomplish this objective, we used an abbreviated operant cocaine self-administration paradigm (ABRV Coc-SA). Adult and adolescent rats received jugular catheterization surgery followed by ABRV Coc-SA in a distinct context for 2 h, 2×/day over 5 days. Extinction training (EXT) occurred in a second context for 2 h, 2×/day over 4 days. To retrieve cocaine-context memories, rats were exposed to the cocaine-paired context for 15 min, followed by subcutaneous injection of vehicle or the protein synthesis inhibitor cycloheximide (2.5 mg/kg). Two additional EXT sessions were conducted before a 2 h reinstatement test in the cocaine-paired context to assess cocaine-seeking behavior. We find that both adult and adolescent cocaine-exposed rats show similar levels of cocaine-seeking behavior regardless of post-reactivation treatment. Our results suggest that systemic treatment with the protein synthesis inhibitor cycloheximide does not impair reconsolidation of cocaine-context memories and subsequent relapse during adulthood or adolescence.
Collapse
Affiliation(s)
- André N Herrera Charpentier
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA
| | - Doris I Olekanma
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA
| | - Christian T Valade
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA
| | - Christopher A Reeves
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA
| | - Bo Ram Cho
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA
| | - Amy A Arguello
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA.
| |
Collapse
|
10
|
Bender BN, Stringfield SJ, Torregrossa MM. Changes in dorsomedial striatum activity mediate expression of goal-directed vs. habit-like cue-induced cocaine seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550364. [PMID: 37546826 PMCID: PMC10402009 DOI: 10.1101/2023.07.24.550364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
A preclinical model of cue exposure therapy, cue extinction, reduces cue-induced cocaine seeking when drug seeking is goal-directed but not habitual. Goal-directed and habitual behaviors differentially rely on the dorsomedial striatum (DMS) and dorsolateral striatum (DLS), but the effects of cue extinction on dorsal striatal responses to cue-induced drug seeking are unknown. We used fiber photometry to examine how dorsal striatal intracellular calcium and extracellular dopamine activity differs between goal-directed and habitual cue-induced cocaine seeking and how it is impacted by cue extinction. Rats trained to self-administer cocaine paired with an audiovisual cue on schedules of reinforcement that promote goal-directed or habitual cocaine seeking had different patterns of dorsal striatal calcium and dopamine responses to cue-reinforced lever presses. Cue extinction reduced calcium and dopamine responses during subsequent drug seeking in the DMS, but not in the DLS. Therefore, cue extinction may reduce goal-directed behavior through its effects on the DMS, whereas habitual behavior and the DLS are unaffected.
Collapse
|
11
|
Pasqualitto F, Panin F, Maidhof C, Thompson N, Fachner J. Neuroplastic Changes in Addiction Memory-How Music Therapy and Music-Based Intervention May Reduce Craving: A Narrative Review. Brain Sci 2023; 13:259. [PMID: 36831802 PMCID: PMC9953876 DOI: 10.3390/brainsci13020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Recent findings indicate that Music Therapy (MT) and Music-Based Interventions (MBIs) may reduce craving symptoms in people with Substance Use Disorders (SUD). However, MT/MBIs can lead SUD clients to recall memories associated with their drug history and the corresponding strong emotions (addiction memories). Craving is a central component of SUD, possibly linked to relapse and triggered by several factors such as the recall of memories associated with the drug experience. Therefore, to address the topic of what elements can account for an improvement in craving symptoms after MT/MBIs, we conducted a narrative review that (1) describes the brain correlates of emotionally salient autobiographical memories evoked by music, (2) outlines neuroimaging and neurophysiological studies suggesting how the experience of craving may encompass the recall of emotionally filled moments, and (3) points out the role of perineuronal nets (PNNs) in addiction memory neuroplasticity. We highlight how autobiographical memory retrieval, music-evoked autobiographical memories, and craving share similar neural activations with PNNs which represent a causal element in the processing of addiction memory. We finally conclude by considering how the neuroplastic characteristics of addiction memory might represent the ground to update and/or recalibrate, within the therapy, the emotional content related to the recall.
Collapse
Affiliation(s)
- Filippo Pasqualitto
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Francesca Panin
- School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Clemens Maidhof
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Naomi Thompson
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Jörg Fachner
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge CB1 1PT, UK
| |
Collapse
|
12
|
High Morphine Use Disorder Susceptibility Is Predicted by Impaired Learning Ability in Mice. Brain Sci 2022; 12:brainsci12121650. [PMID: 36552110 PMCID: PMC9776386 DOI: 10.3390/brainsci12121650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
An obvious reason for substance uses disorders (SUDs) is drug craving and seeking behavior induced by conditioned context, which is an abnormal solid context memory. The relationship between susceptibility to SUD and learning ability remains unclear in humans and animal models. In this study, we found that susceptibility to morphine use disorder (MUD) was negatively correlated with learning ability in conditioned place preference (CPP) in C57 mice. By using behavioral tests, we identified the FVB mouse as learning impaired. In addition, we discovered that learning-relevant proteins, such as the glutamate receptor subunits GluA1, NR1, and NR2A, were decreased in FVB mice. Finally, we assessed the context learning ability of FVB mice using the CPP test and priming. We found that FVB mice had lower learning performance with respect to normal memory but higher performance of morphine-reinstatement memory. Compared to C57 mice, FVB mice are highly sensitive to MUDs. Our results suggest that SUD susceptibility is predicted by impaired learning ability in mice; therefore, learning ability can play a simple and practical role in identifying high-risk SUD groups.
Collapse
|
13
|
Li H, Hu T, Zhang Y, Zhao Z, Liu Q, Chen Z, Chen S. Extracellular signal-regulated kinase in the basolateral amygdala is required for reconsolidation of heroin-associated memory. Front Mol Neurosci 2022; 15:1020098. [PMID: 36438183 PMCID: PMC9684340 DOI: 10.3389/fnmol.2022.1020098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/20/2022] [Indexed: 09/28/2023] Open
Abstract
Reconsolidation of heroin-associated memory is an independent memory process that occurs following retrieval, which is essential for the sustained capacity of an associative drug stimulus to precipitate heroin-seeking. Extracellular signal-regulated kinase (ERK) in the basolateral amygdala (BLA) mediates the reconsolidation of drug memory. In the present study, we utilized a rat model of drug craving and relapse to verify the hypothesis that the reconsolidation of heroin-associated memory requires ERK in an instrumental heroin-seeking behavior, focusing on the BLA brain region, which is crucial for synaptic plasticity and memory processes. We found that bilateral intra-BLA infusions of U0126 (1 μg/0.5 μl), an ERK inhibitor, immediately after retrieving heroin-associated memory significantly reduced cue-induced and drug-induced reinstatement and spontaneous recovery of heroin-seeking compared to the vehicle. Furthermore, this inhibitory effect was related to the characteristic of reconsolidation. Conversely, no effect was observed on the heroin-seeking behavior when the intra-BLA infusion of U0126 was administered 6 h after the heroin-associated memory retrieval or without memory retrieval. Together, these data suggest that disrupting the reconsolidation of heroin-associated memory via an ERK inhibitor may serve as a promising option for treating relapse in opiate addicts.
Collapse
Affiliation(s)
- Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Hu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yanghui Zhang
- Center of Medical Genetics, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zihua Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Si Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
14
|
Li H, Chen R, Zhou Y, Wang H, Sun L, Yang Z, Bai L, Zhang J. Endocannabinoids regulate cocaine-associated memory through brain AEA-CB1R signalling activation. Mol Metab 2022; 65:101597. [PMID: 36096452 PMCID: PMC9508352 DOI: 10.1016/j.molmet.2022.101597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Contextual drug-associated memory precipitates craving and relapse in substance users, and the risk of relapse is a major challenge in the treatment of substance use disorders. Thus, understanding the neurobiological underpinnings of how this association memory is formed and maintained will inform future advances in the treatment of drug addiction. Brain endocannabinoids (eCBs) signalling has been associated with drug-induced neuroadaptations, but the role of lipases that mediate small lipid ligand biosynthesis and metabolism in regulating drug-associated memory has not been examined. Here, we explored how manipulation of the lipase fatty acid amide hydrolase (FAAH), which is involved in mediating the level of the lipid ligand anandamide (AEA), affects cocaine-associated memory formation. Methods We applied behavioural, pharmacological and biochemical methods to detect cocaine-associated memory formation, eCBs in the dorsal dentate gyrus (dDG), and the activity of related enzymes. We further examined the roles of abnormal FAAH activity and AEA–CB1R signalling in the regulation of cocaine-associated memory formation and granule neuron dendritic structure alterations in the dDG through Western blotting, electron microscopy and immunofluorescence. Results In the present study, we found that cocaine induced a decrease in the level of FAAH in the dDG and increased the level of AEA. A high level of AEA activated cannabinoid type 1 receptors (CB1Rs) and further triggered CB1R signalling activation and granule neuron dendritic remodelling, and these effects were reversed by blockade of CB1Rs in the brain. Furthermore, inhibition of FAAH in the dDG markedly increased AEA levels and promoted cocaine-associated memory formation through CB1R signalling activation. Conclusions Together, our findings demonstrate that the lipase FAAH influences CB1R signalling activation and granule neuron dendritic structure alteration in the dDG by regulating AEA levels and that AEA and AEA metabolism play a key role in cocaine-associated memory formation. Manipulation of AEA production may serve as a potential therapeutic strategy for drug addiction and relapse prevention. AEA plays an important role in the cocaine-associated memory formation through triggering CB1Rs. Cocaine decreases FAAH level and leads to AEA increasing, which activate CB1R signaling and remodel dendritic spines structure of granule neurons. Regulating AEA degradation through manipulation of FAAH, governs the cocaine-associated memory formation.
Collapse
Affiliation(s)
- Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Rong Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyi Zhou
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Haichuan Wang
- Department of Pediatrics, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Luqiang Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhen Yang
- Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Bai
- Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zhang
- Histology and Imaging Platform, Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Zhang Y, Li H, Hu T, Zhao Z, Liu Q, Li H. Disrupting reconsolidation by PKA inhibitor in BLA reduces heroin-seeking behavior. Front Cell Neurosci 2022; 16:996379. [PMID: 36106011 PMCID: PMC9464818 DOI: 10.3389/fncel.2022.996379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Drug abuse is considered a maladaptive pathology of emotional memory and is associated with craving and relapse induced by drug-associated stimuli or drugs. Reconsolidation is an independent memory process with a strict time window followed by the reactivation of drug-associated stimulus depending on the basolateral amygdala (BLA). Pharmacology or behavior treatment that disrupts the reconsolidation can effectively attenuate drug-seeking in addicts. Here, we hypothesized that heroin-memory reconsolidation requires cAMP-dependent protein kinase A (PKA) of BLA based on the fundamental effect of PKA in synaptic plasticity and memory process. After 10 days of acquisition, the rats underwent 11 days of extinction training and then received the intra-BLA infusions of the PKA inhibitor Rp-cAMPS at different time windows with/without a reactivation session. The results show that PKA inhibitor treatment in the reconsolidation time window disrupts the reconsolidation and consequently reduces cue-induced reinstatement, heroin-induced reinstatement, and spontaneous recovery of heroin-seeking behavior in the rats. In contrast, there was no effect on cue-induced reinstatement in the intra-BLA infusion of PKA inhibitor 6 h after reactivation or without reactivation. These data suggest that PKA inhibition disrupts the reconsolidation of heroin-associated memory, reduces subsequent drug seeking, and prevents relapse, which is retrieval-dependent, time-limited, and BLA-dependent.
Collapse
Affiliation(s)
- Yanghui Zhang
- Center of Medical Genetics, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Haoxian Li
- Center of Medical Genetics, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Ting Hu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- *Correspondence: Haoyu Li
| |
Collapse
|
16
|
Wen Y, Hao X, Chen X, Qiao S, Li Q, Winkler MH, Wang F, Yan X, Wang F, Wang L, Jiang F, Pauli P, Dong X, Li Y. Theta-Burst Stimulation Combined With Virtual-Reality Reconsolidation Intervention for Methamphetamine Use Disorder: Study Protocol for a Randomized-Controlled Trial. Front Psychiatry 2022; 13:903242. [PMID: 35865301 PMCID: PMC9294395 DOI: 10.3389/fpsyt.2022.903242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/13/2022] [Indexed: 12/05/2022] Open
Abstract
Background Craving associated with drug-related memory is one of the key factors that induce the relapse of methamphetamine (MA). Disruption or modulation of the reconsolidation of drug-related memory may serve as an option for clinical treatment of MA addiction. This protocol proposes to use virtual reality (VR) to retrieve drug-associated memory and then use transcranial magnetic stimulation (TMS) at the neural circuit that encodes the reward value of drug cues to provide a non-invasive intervention during reconsolidation. We aim to evaluate the effectiveness of TMS treatment after VR retrieval on the reduction of cue reactivity and craving of MA. Methods This is a randomized, double-blind, sham-controlled, parallel group trial, targeting participants with MA use disorder aged from 18 to 45 years old. Forty-five eligible volunteers in Shanxi Drug Rehabilitation Center will be recruited and be randomly allocated into three parallel groups, receiving either 1) MA-related cues retrieval in VR combined with active TMS (MA VR scene + TBS) or 2) sham TMS (MA VR scene + sham TBS), or 3) neutral cues retrieval in VR combined with active TMS (neutral VR scene + TBS). Two sessions of post-VR-retrieval TBS will be scheduled on two separate days within 1 week. The primary outcome will detect the memory-related activity by the electroencephalography (EEG) reactivity to drug cues in VR scenes. Secondary outcomes are the self-reported MA craving in VR scene, the physiological parameter (cue-induced heart rate) and the scores of psychological questionnaires including anxiety, depression, and mood. All primary and secondary outcomes will be assessed at baseline, 1-week, and 1-month post-intervention. Assessments will be compared between the groups of 1) MA VR scene + TBS, 2) MA VR scene + sham TBS and 3) neutral VR scene + TBS. Discussion This will be the first study to examine whether the TMS modulation after VR retrieval can reduce self-reported craving and drug-related cue reactivity. It will promote the understanding of the neural circuit mechanism of the reconsolidation-based intervention and provide an effective treatment for MA use disorder patients. Clinical Trial Registration [Chinese Clinical Trial Registry], identifier [ChiCTR1900026902]. Registered on 26 October 2019.
Collapse
Affiliation(s)
- Yatong Wen
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuemin Hao
- School of Education, Shaanxi Normal University, Xi'an, China
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, China
| | - Xijing Chen
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Siyue Qiao
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Qianling Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Markus H. Winkler
- Department of Psychology I, Biological Psychology, Clinical Psychology, and Psychotherapy, University of Wurzburg, Wurzburg, Germany
| | - Fenglan Wang
- Shanxi Women's Drug Rehabilitation Center, Taiyuan, China
| | - Xiaoli Yan
- Shanxi Women's Drug Rehabilitation Center, Taiyuan, China
| | - Fang Wang
- Shanxi Women's Drug Rehabilitation Center, Taiyuan, China
| | - Liang Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Jiang
- Library, Shanxi Medical University, Taiyuan, China
| | - Paul Pauli
- Department of Psychology I, Biological Psychology, Clinical Psychology, and Psychotherapy, University of Wurzburg, Wurzburg, Germany
| | - Xinwen Dong
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yonghui Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Qi S, Tan SM, Wang R, Higginbotham JA, Ritchie JL, Ibarra CK, Arguello AA, Christian RJ, Fuchs RA. Optogenetic inhibition of the dorsal hippocampus CA3 region during early-stage cocaine-memory reconsolidation disrupts subsequent context-induced cocaine seeking in rats. Neuropsychopharmacology 2022; 47:1473-1483. [PMID: 35581381 PMCID: PMC9205994 DOI: 10.1038/s41386-022-01342-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/11/2022] [Accepted: 05/07/2022] [Indexed: 11/09/2022]
Abstract
The dorsal hippocampus (DH) is key to the maintenance of cocaine memories through reconsolidation into long-term memory stores after retrieval-induced memory destabilization. Here, we examined the time-dependent role of the cornu ammonis 3 DH subregion (dCA3) in cocaine-memory reconsolidation by utilizing the temporal and spatial specificity of optogenetics. eNpHR3.0-eYFP- or eYFP-expressing male Sprague-Dawley rats were trained to lever press for cocaine infusions in a distinct context and received extinction training in a different context. Rats were then re-exposed to the cocaine-paired context for 15 min to destabilize cocaine memories (memory reactivation) or remained in their home cages (no-reactivation). Optogenetic dCA3 inhibition for one hour immediately after memory reactivation reduced c-Fos expression (index of neuronal activation) in dCA3 stratum pyramidale (SP) glutamatergic and GABAergic neurons and in stratum lucidum (SL) GABAergic neurons during reconsolidation. Furthermore, dCA3 inhibition attenuated drug-seeking behavior (non-reinforced lever presses) selectively in the cocaine-paired context three days later (recall test), relative to no photoinhibition. This behavioral effect was eNpHR3.0-, memory-reactivation, and time-dependent, indicating a memory-reconsolidation deficit. Based on this observation and our previous finding that protein synthesis in the DH is not necessary for cocaine-memory reconsolidation, we postulate that recurrent pyramidal neuronal activity in the dCA3 may maintain labile cocaine memories prior to protein synthesis-dependent reconsolidation elsewhere, and SL/SP interneurons may facilitate this process by limiting extraneous neuronal activity. Interestingly, SL c-Fos expression was reduced at recall concomitant with impairment in cocaine-seeking behavior, suggesting that SL neurons may also facilitate cocaine-memory retrieval by inhibiting non-engram neuronal activity.
Collapse
Affiliation(s)
- Shuyi Qi
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Shi Min Tan
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Rong Wang
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Jessica A Higginbotham
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Jobe L Ritchie
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Christopher K Ibarra
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Amy A Arguello
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Robert J Christian
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA
| | - Rita A Fuchs
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington, USA.
- Alcohol and Drug Abuse Research Program, Washington State University, Pullman, Washington, USA.
| |
Collapse
|
18
|
Grigoryan GA. Neuroinflammation and Reconsolidation of Memory. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Panopoulou M, Schlüter OM. Ca 2+-permeable AMPA receptors set the threshold for retrieval of drug memories. Mol Psychiatry 2022; 27:2868-2878. [PMID: 35296806 DOI: 10.1038/s41380-022-01505-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/13/2022] [Accepted: 02/22/2022] [Indexed: 11/09/2022]
Abstract
Frequent relapse prevents the successful treatment of substance use disorders and is triggered in part by retrieval of drug-associated memories. Drug-conditioned behaviours in rodents are reinstated upon drug memory retrieval following re-exposure to cues previously associated with the drug, or the drug itself. Therapies based on mechanistic insights from rodent studies have focused on amnesic procedures of cue-drug associations but with so far limited success. Conversely, more recent studies propose that inhibiting drug memory retrieval offers improved anti-relapse efficacy. However, mechanisms of memory retrieval are poorly understood. Here, we used a conditioned place preference (CPP) procedure in mice to investigate the cellular and molecular underpinnings of drug-induced memory retrieval. After extinction training of CPP, Ca2+-permeable AMPA receptors (CP-AMPARs) accumulated at drug-generated silent synapses of nucleus accumbens (NAc) medium spiny neurons. The NAc CP-AMPARs regulated the retrieval mechanism of drug memories after extinction. Specifically, we used different priming doses of cocaine, fentanyl, or a cue associated with drug exposure to reinstate CPP, providing different memory retrieval conditions. Although both high and low doses of these two drugs induced CPP reinstatement, compromising CP-AMPAR accumulation impaired CPP reinstatement, induced by low doses of each drug or the cue. This threshold effect was mediated by NAc CP-AMPARs as region specific knock-down of PSD-95 prevented low-dose cocaine-induced retrieval selectively. These results demonstrate the NAc as a brain region and CP-AMPARs as key synaptic substrates that govern the threshold for drug-induced retrieval and behavioural expression of drug memories.
Collapse
Affiliation(s)
- Myrto Panopoulou
- Department of Psychiatry and Psychotherapy, University Medical Center, D-37075, Göttingen, Germany.,International Max Planck Research School for Neurosciences, D-37077, Göttingen, Germany
| | - Oliver M Schlüter
- Department of Psychiatry and Psychotherapy, University Medical Center, D-37075, Göttingen, Germany. .,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
20
|
Li H, Zhou X, Chen R, Xiao Y, Zhou T. The Src-Kinase Fyn is Required for Cocaine-Associated Memory Through Regulation of Tau. Front Pharmacol 2022; 13:769827. [PMID: 35185557 PMCID: PMC8850722 DOI: 10.3389/fphar.2022.769827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
Drug-associated context-induced relapse of cocaine-seeking behaviour requires the retrieval of drug-associated memory. Studies exploring the underlying neurobiological mechanism of drug memory formation will likely contribute to the development of treatments for drug addiction and the prevention of relapse. In our study, we applied a cocaine-conditioned place preference (CPP) paradigm and a self-administration paradigm (two drug-associated memory formation model) to confirm the hypothesis that the Src kinase Fyn critically regulates cocaine-associated memory formation in the hippocampus. For this experiment, we administered the Src kinase inhibitor PP2 into the bilateral hippocampus before cocaine-CPP and self-administration training, and the results showed that pharmacological manipulation of the Src kinase Fyn activity significantly attenuated the response to cocaine-paired cues in the cocaine-CPP and self-administration paradigms, indicating that hippocampal Fyn activity contributes to cocaine-associated memory formation. In addition, the regulation of cocaine-associated memory formation by Fyn depends on Tau expression, as restoring Tau to normal levels disrupted cocaine memory formation. Together, these results indicate that hippocampal Fyn activity plays a key role in the formation of cocaine-associated memory, which underlies cocaine-associated contextual stimulus-mediated regulation of cocaine-seeking behaviour, suggesting that Fyn represents a promising therapeutic target for weakening cocaine-related memory and treating cocaine addiction.
Collapse
Affiliation(s)
- Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Hongchun Li,
| | - Xinglong Zhou
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuzhou Xiao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhou
- Department of Drug and Equipment, China Rongtong Bayi Orthopaedic Hospital, Chengdu, China
| |
Collapse
|
21
|
Fernàndez-Castillo N, Cabana-Domínguez J, Corominas R, Cormand B. Molecular genetics of cocaine use disorders in humans. Mol Psychiatry 2022; 27:624-639. [PMID: 34453125 PMCID: PMC8960411 DOI: 10.1038/s41380-021-01256-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
Drug addiction, one of the major health problems worldwide, is characterized by the loss of control in drug intake, craving, and withdrawal. At the individual level, drugs of abuse produce serious consequences on health and have a negative impact on the family environment and on interpersonal and work relationships. At a wider scale, they have significant socio-economic and public health consequences and they cause delinquency and citizen insecurity. Cocaine, a psychostimulant substance, is one of the most used illicit drugs, especially in America, Western Europe, and Australia. Cocaine use disorders (CUD) are complex multifactorial conditions driven by both genetic and environmental influences. Importantly, not all people who use cocaine develop CUD, and this is due, at least in part, to biological factors that are encoded in the genome of individuals. Acute and repeated use of cocaine induces epigenetic and gene expression changes responsible for the neuronal adaptations and the remodeling of brain circuits that lead to the transition from use to abuse or dependence. The purpose of this review is to delineate such factors, which should eventually help to understand the inter-individual variability in the susceptibility to cocaine addiction. Heritability estimates for CUD are high and genetic risk factors for cocaine addiction have been investigated by candidate gene association studies (CGAS) and genome-wide association studies (GWAS), reviewed here. Also, the high comorbidity that exists between CUD and several other psychiatric disorders is well known and includes phenotypes like schizophrenia, aggression, antisocial or risk-taking behaviors. Such comorbidities are associated with a worse lifetime trajectory, and here we report shared genetic factors that may contribute to them. Gene expression changes and epigenetic modifications induced by cocaine use and chronic abuse in humans are addressed by reviewing transcriptomic studies performed on neuronal cells and on postmortem brains. We report some genes which expression is altered by cocaine that also bear genetic risk variants for the disorder. Finally, we have a glance to the pharmacogenetics of CUD treatments, still in early stages. A better understanding of the genetic underpinnings of CUD will foster the search of effective treatments and help to move forward to personalized medicine.
Collapse
Affiliation(s)
- Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain. .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain. .,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Judit Cabana-Domínguez
- grid.5841.80000 0004 1937 0247Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain ,grid.5841.80000 0004 1937 0247Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia Spain ,grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia Spain
| | - Roser Corominas
- grid.5841.80000 0004 1937 0247Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain ,grid.5841.80000 0004 1937 0247Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia Spain ,grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain. .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain. .,Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
22
|
Awathale SN, Waghade AM, Kawade HM, Jadhav G, Choudhary AG, Sagarkar S, Sakharkar AJ, Subhedar NK, Kokare DM. Neuroplastic Changes in the Superior Colliculus and Hippocampus in Self-rewarding Paradigm: Importance of Visual Cues. Mol Neurobiol 2021; 59:890-915. [PMID: 34797522 DOI: 10.1007/s12035-021-02597-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
Coincident excitation via different sensory modalities encoding objects of positive salience is known to facilitate learning and memory. With a view to dissect the contribution of visual cues in inducing adaptive neural changes, we monitored the lever press activity of a rat conditioned to self-administer sweet food pellets in the presence/absence of light cues. Application of light cues facilitated learning and consolidation of long-term memory. The superior colliculus (SC) of rats trained on light cue showed increased neuronal activity, dendritic branching, and brain-derived neurotrophic factor (BDNF) protein and mRNA expression. Concomitantly, the hippocampus showed augmented neurogenesis as well as BDNF protein and mRNA expression. While intra-SC administration of U0126 (inhibitor of ERK 1/2 and long-term memory) impaired memory formation, lidocaine (local anaesthetic) hindered memory recall. The light cue-dependent sweet food pellet self-administration was coupled with increased efflux of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens shell (AcbSh). In conditioned rats, pharmacological inhibition of glutamatergic signalling in dentate gyrus (DG) reduced lever press activity, as well as DA and DOPAC secretion in the AcbSh. We suggest that the neuroplastic changes in the SC and hippocampus might represent memory engrams sculpted by visual cues encoding reward information.
Collapse
Affiliation(s)
- Sanjay N Awathale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Akash M Waghade
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Harish M Kawade
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Gouri Jadhav
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Amit G Choudhary
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Sneha Sagarkar
- Department of Zoology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India.
| |
Collapse
|
23
|
Simvastatin Blocks Reinstatement of Cocaine-induced Conditioned Place Preference in Male Mice with Brain Lipidome Remodeling. Neurosci Bull 2021; 37:1683-1702. [PMID: 34491535 DOI: 10.1007/s12264-021-00771-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Drug-associated reward memories are conducive to intense craving and often trigger relapse. Simvastatin has been shown to regulate lipids that are involved in memory formation but its influence on other cognitive processes is elusive. Here, we used a mass spectrometry-based lipidomic method to evaluate the impact of simvastatin on the mouse brain in a cocaine-induced reinstatement paradigm. We found that simvastatin blocked the reinstatement of cocaine-induced conditioned place preference (CPP) without affecting CPP acquisition. Specifically, only simvastatin administered during extinction prevented cocaine-primed reinstatement. Global lipidome analysis showed that the nucleus accumbens was the region with the greatest degree of change caused by simvastatin. The metabolism of fatty-acids, phospholipids, and triacylglycerol was profoundly affected. Simvastatin reversed most of the effects on phospholipids induced by cocaine. The correlation matrix showed that cocaine and simvastatin significantly reshaped the lipid metabolic pathways in specific brain regions. Furthermore, simvastatin almost reversed all changes in the fatty acyl profile and unsaturation caused by cocaine. In summary, pre-extinction treatment with simvastatin facilitates cocaine extinction and prevents cocaine relapse with brain lipidome remodeling.
Collapse
|
24
|
Chen L, Yan H, Wang Y, He Z, Leng Q, Huang S, Wu F, Feng X, Yan J. The Mechanisms and Boundary Conditions of Drug Memory Reconsolidation. Front Neurosci 2021; 15:717956. [PMID: 34421529 PMCID: PMC8377231 DOI: 10.3389/fnins.2021.717956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Drug addiction can be seen as a disorder of maladaptive learning characterized by relapse. Therefore, disrupting drug-related memories could be an approach to improving therapies for addiction. Pioneering studies over the last two decades have revealed that consolidated memories are not static, but can be reconsolidated after retrieval, thereby providing candidate pathways for the treatment of addiction. The limbic-corticostriatal system is known to play a vital role in encoding the drug memory engram. Specific structures within this system contribute differently to the process of memory reconsolidation, making it a potential target for preventing relapse. In addition, as molecular processes are also active during memory reconsolidation, amnestic agents can be used to attenuate drug memory. In this review, we focus primarily on the brain structures involved in storing the drug memory engram, as well as the molecular processes involved in drug memory reconsolidation. Notably, we describe reports regarding boundary conditions constraining the therapeutic potential of memory reconsolidation. Furthermore, we discuss the principles that could be employed to modify stored memories. Finally, we emphasize the challenge of reconsolidation-based strategies, but end with an optimistic view on the development of reconsolidation theory for drug relapse prevention.
Collapse
Affiliation(s)
- Liangpei Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - He Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Yufang Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Ziping He
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qihao Leng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shihao Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Feilong Wu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Xiangyang Feng
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China.,Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
25
|
Che X, Bai Y, Cai J, Liu Y, Li Y, Yin M, Xu T, Wu C, Yang J. Hippocampal neurogenesis interferes with extinction and reinstatement of methamphetamine-associated reward memory in mice. Neuropharmacology 2021; 196:108717. [PMID: 34273388 DOI: 10.1016/j.neuropharm.2021.108717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 12/16/2022]
Abstract
Drugs of abuse, including morphine and cocaine, can reduce hippocampal neurogenesis (HN). Whereas promotion of HN is being increasingly recognized as a promising strategy for treating morphine and cocaine addiction. The present study is focused on exploring the changes of HN during methamphetamine (METH) administration and further clarify if HN is involved in METH-associated reward memory. After successfully establishing the conditioned place preference (CPP) paradigm to simulate the METH-associated reward memory in C57BL/6 mice, we observed that HN was significantly inhibited during METH (2 mg/kg, i. p.) administration and returned to normal after the extinction of METH CPP, as indicated by the immunostaining of bromodeoxyuridine (BrdU) and doublecortin (DCX) in the hippocampus. To promote/inhibit HN levels, 7,8-dihydroxyflavone (DHF), a small tyrosine kinase receptor B (TrkB) agonist and temozolomide (TMZ), an alkylating agent, were administered intraperitoneally (i.p.), respectively. The data showed that either DHF (5 mg/kg, i. p.) or TMZ (25 mg/kg, i. p.) pre-treatment before METH administration could significantly prolong extinction and enhance reinstatement of the reward memory. Notably, DHF treatment after METH administration significantly facilitated extinction and inhibited METH reinstatement, while TMZ treatment resulted in opposite effects. The present study indicated that METH administration could induce a temporal inhibitory effect on HN. More importantly, promotion of HN after the acquisition of METH-associated reward memory, but not inhibition of HN or promotion of HN before the acquisition of reward memory, could facilitate METH extinction and inhibit METH reinstatement, indicating the beneficial effect of HN on METH addiction by erasing the according reward memory.
Collapse
Affiliation(s)
- Xiaohang Che
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yijun Bai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Jialing Cai
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yuting Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Meixue Yin
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Tianyu Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
26
|
Zhang F, Huang S, Bu H, Zhou Y, Chen L, Kang Z, Chen L, Yan H, Yang C, Yan J, Jian X, Luo Y. Disrupting Reconsolidation by Systemic Inhibition of mTOR Kinase via Rapamycin Reduces Cocaine-Seeking Behavior. Front Pharmacol 2021; 12:652865. [PMID: 33897438 PMCID: PMC8064688 DOI: 10.3389/fphar.2021.652865] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022] Open
Abstract
Drug addiction is considered maladaptive learning, and drug-related memories aroused by the presence of drug related stimuli (drug context or drug-associated cues) promote recurring craving and reinstatement of drug seeking. The mammalian target of rapamycin signaling pathway is involved in reconsolidation of drug memories in conditioned place preference and alcohol self-administration (SA) paradigms. Here, we explored the effect of mTOR inhibition on reconsolidation of addiction memory using cocaine self-administration paradigm. Rats received intravenous cocaine self-administration training for 10 consecutive days, during which a light/tone conditioned stimulus was paired with each cocaine infusion. After acquisition of the stable cocaine self-administration behaviors, rats were subjected to nosepoke extinction (11 days) to extinguish their behaviors, and then received a 15 min retrieval trial with or without the cocaine-paired tone/light cue delivery or without. Immediately or 6 h after the retrieval trial, rapamycin (10 mg/kg) was administered intraperitoneally. Finally, cue-induced reinstatement, cocaine-priming-induced reinstatement and spontaneous recovery of cocaine-seeking behaviors were assessed in rapamycin previously treated animals, respectively. We found that rapamycin treatment immediately after a retrieval trial decreased subsequent reinstatement of cocaine seeking induced by cues or cocaine itself, and these effects lasted at least for 28 days. In contrast, delayed intraperitoneal injection of rapamycin 6 h after retrieval or rapamycin injection without retrieval had no effects on cocaine-seeking behaviors. These findings indicated that mTOR inhibition within the reconsolidation time-window impairs the reconsolidation of cocaine associated memory, reduces cocaine-seeking behavior and prevents relapse, and these effects are retrieval-dependent and temporal-specific.
Collapse
Affiliation(s)
- Fushen Zhang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Shihao Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Haiyan Bu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yu Zhou
- Yiyang Medical College, Yiyang, China
| | - Lixiang Chen
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Ziliu Kang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | | | - He Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Chang Yang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Xiaohong Jian
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yixiao Luo
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
27
|
Bender BN, Torregrossa MM. Dorsolateral striatum dopamine-dependent cocaine seeking is resistant to pavlovian cue extinction in male and female rats. Neuropharmacology 2021; 182:108403. [PMID: 33197468 PMCID: PMC7740074 DOI: 10.1016/j.neuropharm.2020.108403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 10/23/2022]
Abstract
Cue exposure therapy (CET) reduces craving induced by drug-associated cues in individuals with substance use disorders. A preclinical model of CET, cue extinction, similarly reduces cue-induced cocaine seeking in rodent self-administration models; however, those models may not capture the habitual or compulsive aspects of drug use. Thus, the effectiveness of cue extinction was tested in male and female rats trained to self-administer cocaine using second-order (SO) or fixed-ratio (FR) schedules of reinforcement to facilitate dorsolateral striatum (DLS) dopamine-dependent or -independent response strategies, respectively. Cue extinction significantly reduced drug seeking in FR-trained rats, replicating prior results, but was ineffective in SO-trained rats. SO-trained rats also showed increased indices of glutamate signaling in the DLS relative to FR-trained rats, despite comparable levels of cocaine intake. Furthermore, in SO-trained rats, antagonism of AMPA receptors in the DLS rescued the efficacy of cue extinction to reduce drug seeking. Finally, the effectiveness of cue extinction was also revealed in SO-trained rats when they were taught to perform a new, non-habitual response for cocaine cue presentation. Overall, our findings indicate that habit-like drug seeking leads to plasticity in the DLS and behavior that is resistant to cue extinction, but that the effects of cue extinction are restored when DLS glutamatergic signaling is blocked. These results have implications for the effectiveness of clinical cue exposure therapy.
Collapse
Affiliation(s)
- Brooke N Bender
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, United States; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, United States
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, United States; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, United States.
| |
Collapse
|
28
|
Environmental enrichment-inspired pharmacological tools for the treatment of addiction. Curr Opin Pharmacol 2020; 56:22-28. [PMID: 32966941 DOI: 10.1016/j.coph.2020.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
Environmental enrichment (EE) has been shown to produce powerful beneficial effects in animal models of addiction. In particular, the ability of EE to promote abstinence and prevent relapse may allow for the identification of brain mechanisms responsible for the recovery from addiction. Indeed, the effects of EE on specific brain mechanisms could be mimicked by old or new molecules, which may become novel medications, called enviromimetics. Here, we review the best known enviromimetics for the treatment of addiction and suggest that, whereas these compounds may be relatively ineffective by themselves, they may be useful complements for existing therapeutic approaches to manage addiction which includes behavioural, environmental and pharmacological interventions.
Collapse
|