1
|
Konieczny P. Systemic Treatment of Body-Wide Duchenne Muscular Dystrophy Symptoms. Clin Pharmacol Ther 2024; 116:1472-1484. [PMID: 38965715 DOI: 10.1002/cpt.3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/09/2024] [Indexed: 07/06/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked disease that leads to premature death due to the loss of dystrophin. Current strategies predominantly focus on the therapeutic treatment of affected skeletal muscle tissue. However, certain results point to the fact that with successful treatment of skeletal muscle, DMD-exposed latent phenotypes in tissues, such as cardiac and smooth muscle, might lead to adverse effects and even death. Likewise, it is now clear that the absence of dystrophin affects the function of the nervous system, and that this phenotype is more pronounced when shorter dystrophins are absent, in addition to the full-length dystrophin that is present predominantly in the muscle. Here, I focus on the systemic aspects of DMD, highlighting the ubiquitous expression of the dystrophin gene in human tissues. Furthermore, I describe therapeutic strategies that have been tested in the clinic and point to unresolved questions regarding the function of distinct dystrophin isoforms, and the possibility of current therapeutic strategies to tackle phenotypes that relate to their absence.
Collapse
Affiliation(s)
- Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
2
|
Cervia D, Zecchini S, Pincigher L, Roux-Biejat P, Zalambani C, Catalani E, Arcari A, Del Quondam S, Brunetti K, Ottria R, Casati S, Vanetti C, Barbalace MC, Prata C, Malaguti M, Casati SR, Lociuro L, Giovarelli M, Mocciaro E, Falcone S, Fenizia C, Moscheni C, Hrelia S, De Palma C, Clementi E, Perrotta C. Oral administration of plumbagin is beneficial in in vivo models of Duchenne muscular dystrophy through control of redox signaling. Free Radic Biol Med 2024; 225:193-207. [PMID: 39326684 DOI: 10.1016/j.freeradbiomed.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease. Recently approved molecular/gene treatments do not solve the downstream inflammation-linked pathophysiological issues such that supportive therapies are required to improve therapeutic efficacy and patients' quality of life. Over the years, a plethora of bioactive natural compounds have been used for human healthcare. Among them, plumbagin, a plant-derived analog of vitamin K3, has shown interesting potential to counteract chronic inflammation with potential therapeutic significance. In this work we evaluated the effects of plumbagin on DMD by delivering it as an oral supplement within food to dystrophic mutant of the fruit fly Drosophila melanogaster and mdx mice. In both DMD models, plumbagin show no relevant adverse effect. In terms of efficacy plumbagin improved the climbing ability of the dystrophic flies and their muscle morphology also reducing oxidative stress in muscles. In mdx mice, plumbagin enhanced the running performance on the treadmill and the muscle strength along with muscle morphology. The molecular mechanism underpinning these actions was found to be the activation of nuclear factor erythroid 2-related factor 2 pathway, the re-establishment of redox homeostasis and the reduction of inflammation thus generating a more favorable environment for skeletal muscles regeneration after damage. Our data provide evidence that food supplementation with plumbagin modulates the main, evolutionary conserved, mechanistic pathophysiological hallmarks of dystrophy, thus improving muscle function in vivo; the use of plumbagin as a therapeutic in humans should thus be explored further.
Collapse
Affiliation(s)
- Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Luca Pincigher
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Chiara Zalambani
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Alessandro Arcari
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Roberta Ottria
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Sara Casati
- Department of Biomedical, Surgical, and Dental Science (DISBIOC), Università Degli Studi di Milano, Milano, 20133, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Department of Pathophysiology and Transplantation (DEPT), Università Degli Studi di Milano, Milano, 20122, Italy
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università Degli Studi di Milano, 20054, Segrate, Italy
| | - Laura Lociuro
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Emanuele Mocciaro
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milano, 20132, Italy
| | - Sestina Falcone
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, F-75013, France
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Department of Pathophysiology and Transplantation (DEPT), Università Degli Studi di Milano, Milano, 20122, Italy
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università Degli Studi di Milano, 20054, Segrate, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; IRCCS Eugenio Medea, Bosisio Parini, 23842, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy.
| |
Collapse
|
3
|
Aldrich JC, Vanderlinden LA, Jacobsen TL, Wood C, Saba LM, Britt SG. Genome-Wide Association Study and transcriptome analysis reveals a complex gene network that regulates opsin gene expression and cell fate determination in Drosophila R7 photoreceptor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606616. [PMID: 39149333 PMCID: PMC11326169 DOI: 10.1101/2024.08.05.606616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background An animal's ability to discriminate between differing wavelengths of light (i.e., color vision) is mediated, in part, by a subset of photoreceptor cells that express opsins with distinct absorption spectra. In Drosophila R7 photoreceptors, expression of the rhodopsin molecules, Rh3 or Rh4, is determined by a stochastic process mediated by the transcription factor spineless. The goal of this study was to identify additional factors that regulate R7 cell fate and opsin choice using a Genome Wide Association Study (GWAS) paired with transcriptome analysis via RNA-Seq. Results We examined Rh3 and Rh4 expression in a subset of fully-sequenced inbred strains from the Drosophila Genetic Reference Panel and performed a GWAS to identify 42 naturally-occurring polymorphisms-in proximity to 28 candidate genes-that significantly influence R7 opsin expression. Network analysis revealed multiple potential interactions between the associated candidate genes, spineless and its partners. GWAS candidates were further validated in a secondary RNAi screen which identified 12 lines that significantly reduce the proportion of Rh3 expressing R7 photoreceptors. Finally, using RNA-Seq, we demonstrated that all but four of the GWAS candidates are expressed in the pupal retina at a critical developmental time point and that five are among the 917 differentially expressed genes in sevenless mutants, which lack R7 cells. Conclusions Collectively, these results suggest that the relatively simple, binary cell fate decision underlying R7 opsin expression is modulated by a larger, more complex network of regulatory factors. Of particular interest are a subset of candidate genes with previously characterized neuronal functions including neurogenesis, neurodegeneration, photoreceptor development, axon growth and guidance, synaptogenesis, and synaptic function.
Collapse
Affiliation(s)
- John C. Aldrich
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
- Department of Psychology, University of Texas at Austin, Austin, TX 78712
| | - Lauren A. Vanderlinden
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Thomas L. Jacobsen
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Laura M. Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Steven G. Britt
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
4
|
Bongiorni S, Catalani E, Arisi I, Lazzarini F, Del Quondam S, Brunetti K, Cervia D, Prantera G. Pathological Defects in a Drosophila Model of Alzheimer's Disease and Beneficial Effects of the Natural Product Lisosan G. Biomolecules 2024; 14:855. [PMID: 39062569 PMCID: PMC11274821 DOI: 10.3390/biom14070855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) brains are histologically marked by the presence of intracellular and extracellular amyloid deposits, which characterize the onset of the disease pathogenesis. Increasing evidence suggests that certain nutrients exert a direct or indirect effect on amyloid β (Aβ)-peptide production and accumulation and, consequently, on AD pathogenesis. We exploited the fruit fly Drosophila melanogaster model of AD to evaluate in vivo the beneficial properties of Lisosan G, a fermented powder obtained from organic whole grains, on the intracellular Aβ-42 peptide accumulation and related pathological phenotypes of AD. Our data showed that the Lisosan G-enriched diet attenuates the production of neurotoxic Aβ peptides in fly brains and reduces neuronal apoptosis. Notably, Lisosan G exerted anti-oxidant effects, lowering brain levels of reactive oxygen species and enhancing mitochondrial activity. These aspects paralleled the increase in autophagy turnover and the inhibition of nucleolar stress. Our results give support to the use of the Drosophila model not only to investigate the molecular genetic bases of neurodegenerative disease but also to rapidly and reliably test the efficiency of potential therapeutic agents and diet regimens.
Collapse
Affiliation(s)
- Silvia Bongiorni
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.B.); (F.L.); (G.P.)
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Ivan Arisi
- Bioinformatics Facility, European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, 00161 Rome, Italy;
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy
| | - Francesca Lazzarini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.B.); (F.L.); (G.P.)
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Giorgio Prantera
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.B.); (F.L.); (G.P.)
| |
Collapse
|
5
|
Aparicio JG, Hopp H, Harutyunyan N, Stewart C, Cobrinik D, Borchert M. Aberrant gene expression yet undiminished retinal ganglion cell genesis in iPSC-derived models of optic nerve hypoplasia. Ophthalmic Genet 2024; 45:1-15. [PMID: 37807874 PMCID: PMC10841193 DOI: 10.1080/13816810.2023.2253902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/26/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Optic nerve hypoplasia (ONH), the leading congenital cause of permanent blindness, is characterized by a retinal ganglion cell (RGC) deficit at birth. Multifactorial developmental events are hypothesized to underlie ONH and its frequently associated neurologic and endocrine abnormalities; however, environmental influences are unclear and genetic underpinnings are unexplored. This work investigates the genetic contribution to ONH RGC production and gene expression using patient induced pluripotent stem cell (iPSC)-derived retinal organoids (ROs). MATERIALS AND METHODS iPSCs produced from ONH patients and controls were differentiated to ROs. RGC genesis was assessed using immunofluorescence and flow cytometry. Flow-sorted BRN3+ cells were collected for RNA extraction for RNA-Sequencing. Differential gene expression was assessed using DESeq2 and edgeR. PANTHER was employed to identify statistically over-represented ontologies among the differentially expressed genes (DEGs). DEGs of high interest to ONH were distinguished by assessing function, mutational constraint, and prior identification in ONH, autism and neurodevelopmental disorder (NDD) studies. RESULTS RGC genesis and survival were similar in ONH and control ROs. Differential expression of 70 genes was identified in both DESeq2 and edgeR analyses, representing a ~ 4-fold higher percentage of DEGs than in randomized study participants. DEGs showed trends towards over-representation of validated NDD genes and ONH exome variant genes. Among the DEGs, RAPGEF4 and DMD had the greatest number of disease-relevant features. CONCLUSIONS ONH genetic background was not associated with impaired RGC genesis but was associated with DEGs exhibiting disease contribution potential. This constitutes some of the first evidence of a genetic contribution to ONH.
Collapse
Affiliation(s)
- Jennifer G. Aparicio
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Hanno Hopp
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Narine Harutyunyan
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Carly Stewart
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - David Cobrinik
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Biochemistry & Molecular Medicine, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of
Medicine, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Department of Ophthalmology, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark Borchert
- The Vision Center and The Saban Research Institute,
Children’s Hospital Los Angeles, Los Angeles, CA, USA
- USC Roski Eye Institute, Department of Ophthalmology, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Catalani E, Brunetti K, Del Quondam S, Cervia D. Targeting Mitochondrial Dysfunction and Oxidative Stress to Prevent the Neurodegeneration of Retinal Ganglion Cells. Antioxidants (Basel) 2023; 12:2011. [PMID: 38001864 PMCID: PMC10669517 DOI: 10.3390/antiox12112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The imbalance of redox homeostasis contributes to neurodegeneration, including that related to the visual system. Mitochondria, essential in providing energy and responsible for several cell functions, are a significant source of reactive oxygen and/or nitrogen species, and they are, in turn, sensitive to free radical imbalance. Dysfunctional mitochondria are implicated in the development and progression of retinal pathologies and are directly involved in retinal neuronal degeneration. Retinal ganglion cells (RGCs) are higher energy consumers susceptible to mitochondrial dysfunctions that ultimately cause RGC loss. Proper redox balance and mitochondrial homeostasis are essential for maintaining healthy retinal conditions and inducing neuroprotection. In this respect, the antioxidant treatment approach is effective against neuronal oxidative damage and represents a challenge for retinal diseases. Here, we highlighted the latest findings about mitochondrial dysfunction in retinal pathologies linked to RGC degeneration and discussed redox-related strategies with potential neuroprotective properties.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (K.B.); (S.D.Q.)
| | | | | | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (K.B.); (S.D.Q.)
| |
Collapse
|
7
|
Catalani E, Del Quondam S, Brunetti K, Cherubini A, Bongiorni S, Taddei AR, Zecchini S, Giovarelli M, De Palma C, Perrotta C, Clementi E, Prantera G, Cervia D. Neuroprotective role of plumbagin on eye damage induced by high-sucrose diet in adult fruit fly Drosophila melanogaster. Biomed Pharmacother 2023; 166:115298. [PMID: 37597318 DOI: 10.1016/j.biopha.2023.115298] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023] Open
Abstract
The natural compound plumbagin has a wide range of pharmacological and potential therapeutic activities, although its role in neuroretina degeneration is unknown. Here we evaluated the effects of plumbagin on retina homeostasis of the fruit fly Drosophila melanogaster fed with high glucose diet, a model of hyperglycemia-induced eye impairment to study the pathophysiology of diabetic retinopathy at the early stages. To this aim, the visual system of flies orally administered with plumbagin has been analyzed at structural, functional, and molecular/cellular level as for instance neuronal apoptosis/autophagy dysregulation and oxidative stress-related signals. Our results demonstrated that plumbagin ameliorates the visual performance of hyperglycemic flies. Drosophila eye-structure, clearly altered by hyperglycemia, i.e. defects of the pattern of ommatidia, irregular rhabdomeres, vacuoles, damaged mitochondria, and abnormal phototransduction units were rescued, at least in part, by plumbagin. In addition, it reactivated autophagy, decreased the presence of cell death/apoptotic features, and exerted antioxidant effects in the retina. In terms of mechanisms favoring death/survival ratio, Nrf2 signaling activation may be one of the strategies by which plumbagin reduced redox unbalance mainly increasing the levels of glutathione-S-transferase. Likewise, plumbagin may act additively and/or synergistically inhibiting the mitochondrial-endoplasmic reticulum stress and unfolded protein response pathways, which prevented neuronal impairment and eye damage induced by reactive oxygen species. These results provide an avenue for further studies, which may be helpful to develop novel therapeutic candidates and drug targets against eye neurotoxicity by high glucose, a key aspect in retinal complications of diabetes.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Agnese Cherubini
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Silvia Bongiorni
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Anna Rita Taddei
- Section of Electron Microscopy, Great Equipment Center, Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via L. Vanvitelli 32, 20129 Milano, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; Scientific Institute IRCCS "Eugenio Medea", via Don Luigi Monza 20, 23842 Bosisio Parini, Italy
| | - Giorgio Prantera
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, 01100 Viterbo, Italy.
| |
Collapse
|
8
|
Catalani E, Zecchini S, Giovarelli M, Cherubini A, Del Quondam S, Brunetti K, Silvestri F, Roux-Biejat P, Napoli A, Casati SR, Ceci M, Romano N, Bongiorni S, Prantera G, Clementi E, Perrotta C, De Palma C, Cervia D. RACK1 is evolutionary conserved in satellite stem cell activation and adult skeletal muscle regeneration. Cell Death Dis 2022; 8:459. [PMID: 36396939 PMCID: PMC9672362 DOI: 10.1038/s41420-022-01250-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Skeletal muscle growth and regeneration involves the activity of resident adult stem cells, namely satellite cells (SC). Despite numerous mechanisms have been described, different signals are emerging as relevant in SC homeostasis. Here we demonstrated that the Receptor for Activated C-Kinase 1 (RACK1) is important in SC function. RACK1 was expressed transiently in the skeletal muscle of post-natal mice, being abundant in the early phase of muscle growth and almost disappearing in adult mature fibers. The presence of RACK1 in interstitial SC was also detected. After acute injury in muscle of both mouse and the fruit fly Drosophila melanogaster (used as alternative in vivo model) we found that RACK1 accumulated in regenerating fibers while it declined with the progression of repair process. To note, RACK1 also localized in the active SC that populate recovering tissue. The dynamics of RACK1 levels in isolated adult SC of mice, i.e., progressively high during differentiation and low compared to proliferating conditions, and RACK1 silencing indicated that RACK1 promotes both the formation of myotubes and the accretion of nascent myotubes. In Drosophila with depleted RACK1 in all muscle cells or, specifically, in SC lineage we observed a delayed recovery of skeletal muscle after physical damage as well as the low presence of active SC in the wound area. Our results also suggest the coupling of RACK1 to muscle unfolded protein response during SC activation. Collectively, we provided the first evidence that transient levels of the evolutionarily conserved factor RACK1 are critical for adult SC activation and proper skeletal muscle regeneration, favoring the efficient progression of SC from a committed to a fully differentiated state.
Collapse
|
9
|
Barboni MTS, Joachimsthaler A, Roux MJ, Nagy ZZ, Ventura DF, Rendon A, Kremers J, Vaillend C. Retinal dystrophins and the retinopathy of Duchenne muscular dystrophy. Prog Retin Eye Res 2022:101137. [DOI: 10.1016/j.preteyeres.2022.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
|
10
|
Catalani E, Cherubini A, Del Quondam S, Cervia D. Regenerative Strategies for Retinal Neurons: Novel Insights in Non-Mammalian Model Organisms. Int J Mol Sci 2022; 23:ijms23158180. [PMID: 35897754 PMCID: PMC9331597 DOI: 10.3390/ijms23158180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
A detailed knowledge of the status of the retina in neurodegenerative conditions is a crucial point for the development of therapeutics in retinal pathologies and to translate eye research to CNS disease. In this context, manipulating signaling pathways that lead to neuronal regeneration offers an excellent opportunity to substitute damaged cells and, thus, restore the tissue functionality. Alternative systems and methods are increasingly being considered to replace/reduce in vivo approaches in the study of retina pathophysiology. Herein, we present recent data obtained from the zebrafish (Danio rerio) and the fruit fly Drosophila melanogaster that bring promising advantages into studying and modeling, at a preclinical level, neurodegeneration and regenerative approaches in retinal diseases. Indeed, the regenerative ability of vertebrate model zebrafish is particularly appealing. In addition, the fruit fly is ideal for regenerative studies due to its high degree of conservation with vertebrates and the broad spectrum of genetic variants achievable. Furthermore, a large part of the drosophila brain is dedicated to sight, thus offering the possibility of studying common mechanisms of the visual system and the brain at once. The knowledge acquired from these alternative models may help to investigate specific well-conserved factors of interest in human neuroregeneration after injuries or during pathologies.
Collapse
|
11
|
Zhong L, Fang S, Wang AQ, Zhang ZH, Wang T, Huang W, Zhou HX, Zhang H, Yin ZS. Identification of the Fosl1/AMPK/autophagy axis involved in apoptotic and inflammatory effects following spinal cord injury. Int Immunopharmacol 2022; 103:108492. [PMID: 34973528 DOI: 10.1016/j.intimp.2021.108492] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/04/2021] [Accepted: 12/18/2021] [Indexed: 12/15/2022]
Abstract
Strategies for reducing spinal cord injury (SCI) have become a research focus because an effective treatment of SCI is unavailable. The objective of this study was to explore the underlying mechanisms of Fosl1 following SCI. Based on the analysis of the Gene Expression Omnibus (GEO) database, Fosl1 was found to be highly enhanced in SCI. This result was confirmed in our animal model, and Fosl1 was found to be obviously expressed in neurons. Next, we treated PC-12 cells with H2O2 to mimic injured neurons and further verified that Fosl1 silencing upregulated AMPK expression, promoted autophagy and inhibited inflammation and apoptosis. Subsequently, a special inhibitor of AMPK was used to examine the role of AMPK, and we learned that the inhibition of AMPK suppressed autophagy and promoted inflammation and apoptosis following Fosl1 silencing. These changes completely reversed the beneficial effects of Fosl1 silencing on injured PC-12 cells. Moreover, treatment with an AMPK activator resulted in effects that were opposite those of the inhibitor. Finally, rats were injected intrathecally with si-Fosl1 to detect its role in vivo. The results showed that si-Fosl1 improved neurological function and decreased apoptosis and inflammation at 14 d postoperation, and the activator further benefited the rats of si-Fosl1 treatment. In conclusion, Fosl1 inhibits autophagy and promotes inflammation and apoptosis through the AMPK signaling pathway following SCI in vivo and in vitro.
Collapse
Affiliation(s)
- Lin Zhong
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China; Department of Orthopedics, the Third Affiliated Hospital of Anhui Medical University, #390 Huaihe Road, Hefei, 230061, China
| | - Sheng Fang
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China
| | - An-Quan Wang
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China
| | - Zhen-Hua Zhang
- Department of Orthopedics, Anhui Provincial Armed Police Corps Hospital, #78 Changfeng Road, Hefei, 230041, China
| | - Tao Wang
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, #415 Fengyang Road, Shanghai, 200003 China
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, #17 Lujiang Road, Hefei, 230001, China
| | - Hong-Xiang Zhou
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China.
| | - Hui Zhang
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China.
| | - Zong-Sheng Yin
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China.
| |
Collapse
|
12
|
Catalani E, Silvestri F, Cervia D. A Drosophila perspective on retina functions and dysfunctions. Neural Regen Res 2022; 17:341-343. [PMID: 34269208 PMCID: PMC8463982 DOI: 10.4103/1673-5374.317980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Elisabetta Catalani
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, Viterbo, Italy
| | - Federica Silvestri
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, Viterbo, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, largo dell'Università snc, Viterbo, Italy
| |
Collapse
|
13
|
Catalani E, Giovarelli M, Zecchini S, Perrotta C, Cervia D. Oxidative Stress and Autophagy as Key Targets in Melanoma Cell Fate. Cancers (Basel) 2021; 13:cancers13225791. [PMID: 34830947 PMCID: PMC8616245 DOI: 10.3390/cancers13225791] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 01/18/2023] Open
Abstract
Melanoma originates from the malignant transformation of melanocytes and is one of the most aggressive forms of cancer. The recent approval of several drugs has increased the chance of survival although a significant subset of patients with metastatic melanoma do not show a long-lasting response to these treatments. The complex cross-talk between oxidative stress and the catabolic process autophagy seems to play a central role in all aspects of melanoma pathophysiology, from initiation to progression and metastasis, including drug resistance. However, determining the fine role of autophagy in cancer death and in response to redox disruption is still a fundamental challenge in order to advance both basic and translational aspects of this field. In order to summarize the interactions among reactive oxygen and nitrogen species, autophagy machinery and proliferation/growth/death/apoptosis/survival, we provide here a narrative review of the preclinical evidence for drugs/treatments that modulate oxidative stress and autophagy in melanoma cells. The significance and the potential for pharmacological targeting (also through multiple and combination approaches) of these two different events, which can contribute independently or simultaneously to the fate of melanoma, may help to define new processes and their interconnections underlying skin cancer biology and unravel new reliable approaches.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, Via G.B. Grassi 74, 20157 Milano, Italy; (M.G.); (S.Z.)
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, Via G.B. Grassi 74, 20157 Milano, Italy; (M.G.); (S.Z.)
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, Via G.B. Grassi 74, 20157 Milano, Italy; (M.G.); (S.Z.)
- Correspondence: (C.P.); (D.C.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
- Correspondence: (C.P.); (D.C.)
| |
Collapse
|
14
|
Nutraceutical Strategy to Counteract Eye Neurodegeneration and Oxidative Stress in Drosophila melanogaster Fed with High-Sugar Diet. Antioxidants (Basel) 2021; 10:antiox10081197. [PMID: 34439445 PMCID: PMC8388935 DOI: 10.3390/antiox10081197] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/14/2022] Open
Abstract
Aberrant production of reactive oxygen species (ROS) is a common feature of damaged retinal neurons in diabetic retinopathy, and antioxidants may exert both preventive and therapeutic action. To evaluate the beneficial and antioxidant properties of food supplementation with Lisosan G, a powder of bran and germ of grain (Triticum aestivum) obtained by fermentation with selected lactobacillus and natural yeast strains, we used an in vivo model of hyperglycemia-induced retinal damage, the fruit fly Drosophila melanogaster fed with high-sucrose diet. Lisosan G positively affected the visual system of hyperglycemic flies at structural/functional level, decreased apoptosis, and reactivated protective autophagy at the retina internal network. Also, in high sucrose-fed Drosophila, Lisosan G reduced the levels of brain ROS and retina peroxynitrite. The analysis of oxidative stress-related metabolites suggested 7,8-dihydrofolate, uric acid, dihydroorotate, γ-L-glutamyl-L-cysteine, allantoin, cysteinyl-glycine, and quinolate as key mediators of Lisosan G-induced inhibition of neuronal ROS, along with the upregulation of glutathione system. Of note, Lisosan G may impact oxidative stress and the ensuing retinal cell death, also independently from autophagy, although the autophagy-ROS cross-talk is critical. This study demonstrated that the continuous supplementation with the alimentary integrator Lisosan G exerts a robust and multifaceted antioxidant effect on retinal neurons, thus providing efficacious neuroprotection of hyperglycemic eye.
Collapse
|
15
|
Thoreson WB. Transmission at rod and cone ribbon synapses in the retina. Pflugers Arch 2021; 473:1469-1491. [PMID: 33779813 DOI: 10.1007/s00424-021-02548-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022]
Abstract
Light-evoked voltage responses of rod and cone photoreceptor cells in the vertebrate retina must be converted to a train of synaptic vesicle release events for transmission to downstream neurons. This review discusses the processes, proteins, and structures that shape this critical early step in vision, focusing on studies from salamander retina with comparisons to other experimental animals. Many mechanisms are conserved across species. In cones, glutamate release is confined to ribbon release sites although rods are also capable of release at non-ribbon sites. The role of non-ribbon release in rods remains unclear. Release from synaptic ribbons in rods and cones involves at least three vesicle pools: a readily releasable pool (RRP) matching the number of membrane-associated vesicles along the ribbon base, a ribbon reserve pool matching the number of additional vesicles on the ribbon, and an enormous cytoplasmic reserve. Vesicle release increases in parallel with Ca2+ channel activity. While the opening of only a few Ca2+ channels beneath each ribbon can trigger fusion of a single vesicle, sustained release rates in darkness are governed by the rate at which the RRP can be replenished. The number of vacant release sites, their functional status, and the rate of vesicle delivery in turn govern replenishment. Along with an overview of the mechanisms of exocytosis and endocytosis, we consider specific properties of ribbon-associated proteins and pose a number of remaining questions about this first synapse in the visual system.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Truhlsen Eye Institute, Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
16
|
Age and Sex-Dependent ADNP Regulation of Muscle Gene Expression Is Correlated with Motor Behavior: Possible Feedback Mechanism with PACAP. Int J Mol Sci 2020; 21:ijms21186715. [PMID: 32937737 PMCID: PMC7555576 DOI: 10.3390/ijms21186715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
The activity-dependent neuroprotective protein (ADNP), a double-edged sword, sex-dependently regulates multiple genes and was previously associated with the control of early muscle development and aging. Here we aimed to decipher the involvement of ADNP in versatile muscle gene expression patterns in correlation with motor function throughout life. Using quantitative RT-PCR we showed that Adnp+/− heterozygous deficiency in mice resulted in aberrant gastrocnemius (GC) muscle, tongue and bladder gene expression, which was corrected by the Adnp snippet, drug candidate, NAP (CP201). A significant sexual dichotomy was discovered, coupled to muscle and age-specific gene regulation. As such, Adnp was shown to regulate myosin light chain (Myl) in the gastrocnemius (GC) muscle, the language acquisition gene forkhead box protein P2 (Foxp2) in the tongue and the pituitary-adenylate cyclase activating polypeptide (PACAP) receptor PAC1 mRNA (Adcyap1r1) in the bladder, with PACAP linked to bladder function. A tight age regulation was observed, coupled to an extensive correlation to muscle function (gait analysis), placing ADNP as a muscle-regulating gene/protein.
Collapse
|