1
|
Parisi B, Esposito A, Castroflorio E, Bramini M, Pepe S, Marte A, Guarnieri FC, Valtorta F, Baldelli P, Benfenati F, Fassio A, Giovedì S. Apache is a neuronal player in autophagy required for retrograde axonal transport of autophagosomes. Cell Mol Life Sci 2024; 81:416. [PMID: 39367928 PMCID: PMC11455771 DOI: 10.1007/s00018-024-05441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 10/07/2024]
Abstract
Neurons are dependent on efficient quality control mechanisms to maintain cellular homeostasis and function due to their polarization and long-life span. Autophagy is a lysosomal degradative pathway that provides nutrients during starvation and recycles damaged and/or aged proteins and organelles. In neurons, autophagosomes constitutively form in distal axons and at synapses and are trafficked retrogradely to the cell soma to fuse with lysosomes for cargo degradation. How the neuronal autophagy pathway is organized and controlled remains poorly understood. Several presynaptic endocytic proteins have been shown to regulate both synaptic vesicle recycling and autophagy. Here, by combining electron, fluorescence, and live imaging microscopy with biochemical analysis, we show that the neuron-specific protein APache, a presynaptic AP-2 interactor, functions in neurons as an important player in the autophagy process, regulating the retrograde transport of autophagosomes. We found that APache colocalizes and co-traffics with autophagosomes in primary cortical neurons and that induction of autophagy by mTOR inhibition increases LC3 and APache protein levels at synaptic boutons. APache silencing causes a blockade of autophagic flux preventing the clearance of p62/SQSTM1, leading to a severe accumulation of autophagosomes and amphisomes at synaptic terminals and along neurites due to defective retrograde transport of TrkB-containing signaling amphisomes along the axons. Together, our data identify APache as a regulator of the autophagic cycle, potentially in cooperation with AP-2, and hypothesize that its dysfunctions contribute to the early synaptic impairments in neurodegenerative conditions associated with impaired autophagy.
Collapse
Affiliation(s)
- Barbara Parisi
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- Present Affiliation: Department of Cell Biology, Universidad de Granada, Granada, Spain
| | - Alessandro Esposito
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- IRCSS, Ospedale Policlinico San Martino, Viale Benedetto XV, 3, Genova, 16122, Italy
| | - Enrico Castroflorio
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Mattia Bramini
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
- Present Affiliation: Institute of Neuroscience, National Research Council (CNR), Vedano al Lambro, Italy
| | - Sara Pepe
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia
| | - Antonella Marte
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia
| | - Fabrizia C Guarnieri
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- IRCSS, Ospedale Policlinico San Martino, Viale Benedetto XV, 3, Genova, 16122, Italy
| | - Flavia Valtorta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Pietro Baldelli
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia
| | - Anna Fassio
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia
| | - Silvia Giovedì
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italia.
- IRCCS, Ospedale Policlinico San Martino, Genova, Italia.
- Department of Experimental Medicine, University of Genoa, Viale Benedetto XV, 3, Genova, 16122, Italy.
| |
Collapse
|
2
|
Karpova A, Aly AAA, Marosi EL, Mikulovic S. Fiber-based in vivo imaging: unveiling avenues for exploring mechanisms of synaptic plasticity and neuronal adaptations underlying behavior. NEUROPHOTONICS 2024; 11:S11507. [PMID: 38390518 PMCID: PMC10883581 DOI: 10.1117/1.nph.11.s1.s11507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
In recent decades, various subfields within neuroscience, spanning molecular, cellular, and systemic dimensions, have significantly advanced our understanding of the elaborate molecular and cellular mechanisms that underpin learning, memory, and adaptive behaviors. There have been notable advancements in imaging techniques, particularly in reaching superficial brain structures. This progress has led to their widespread adoption in numerous laboratories. However, essential physiological and cognitive processes, including sensory integration, emotional modulation of motivated behavior, motor regulation, learning, and memory consolidation, are intricately encoded within deeper brain structures. Hence, visualization techniques such as calcium imaging using miniscopes have gained popularity for studying brain activity in unrestrained animals. Despite its utility, miniscope technology is associated with substantial brain tissue damage caused by gradient refractive index lens implantation. Furthermore, its imaging capabilities are primarily confined to the neuronal somata level, thus constraining a comprehensive exploration of subcellular processes underlying adaptive behaviors. Consequently, the trajectory of neuroscience's future hinges on the development of minimally invasive optical fiber-based endo-microscopes optimized for cellular, subcellular, and molecular imaging within the intricate depths of the brain. In pursuit of this goal, select research groups have invested significant efforts in advancing this technology. In this review, we present a perspective on the potential impact of this innovation on various aspects of neuroscience, enabling the functional exploration of in vivo cellular and subcellular processes that underlie synaptic plasticity and the neuronal adaptations that govern behavior.
Collapse
Affiliation(s)
- Anna Karpova
- Leibniz Institute for Neurobiology, RG Neuroplasticity, Magdeburg, Germany
- Otto von Guericke University, Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Ahmed A. A. Aly
- Leibniz Institute for Neurobiology, RG Neuroplasticity, Magdeburg, Germany
| | - Endre Levente Marosi
- Leibniz Institute for Neurobiology, RG Cognition and Emotion, Magdeburg, Germany
| | - Sanja Mikulovic
- Otto von Guericke University, Center for Behavioral Brain Sciences, Magdeburg, Germany
- Leibniz Institute for Neurobiology, RG Cognition and Emotion, Magdeburg, Germany
- German Centre for Mental Health (DZPG), Magdeburg, Germany
| |
Collapse
|
3
|
Li J, Huang X, An Y, Chen X, Chen Y, Xu M, Shan H, Zhang M. The role of snapin in regulation of brain homeostasis. Neural Regen Res 2024; 19:1696-1701. [PMID: 38103234 PMCID: PMC10960280 DOI: 10.4103/1673-5374.389364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/15/2023] [Accepted: 10/08/2023] [Indexed: 12/18/2023] Open
Abstract
Brain homeostasis refers to the normal working state of the brain in a certain period, which is important for overall health and normal life activities. Currently, there is a lack of effective treatment methods for the adverse consequences caused by brain homeostasis imbalance. Snapin is a protein that assists in the formation of neuronal synapses and plays a crucial role in the normal growth and development of synapses. Recently, many researchers have reported the association between snapin and neurologic and psychiatric disorders, demonstrating that snapin can improve brain homeostasis. Clinical manifestations of brain disease often involve imbalances in brain homeostasis and may lead to neurological and behavioral sequelae. This article aims to explore the role of snapin in restoring brain homeostasis after injury or diseases, highlighting its significance in maintaining brain homeostasis and treating brain diseases. Additionally, it comprehensively discusses the implications of snapin in other extracerebral diseases such as diabetes and viral infections, with the objective of determining the clinical potential of snapin in maintaining brain homeostasis.
Collapse
Affiliation(s)
- Jiawen Li
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China (Academy of Forensic Science), Shanghai, China
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Xinqi Huang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Yumei An
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Xueshi Chen
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Yiyang Chen
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Mingyuan Xu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Mingyang Zhang
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China (Academy of Forensic Science), Shanghai, China
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
4
|
Manzoli R, Badenetti L, Bruzzone M, Macario MC, Rubin M, Dal Maschio M, Roveri A, Moro E. Mucopolysaccharidosis type II zebrafish model exhibits early impaired proteasomal-mediated degradation of the axon guidance receptor Dcc. Cell Death Dis 2024; 15:269. [PMID: 38627369 PMCID: PMC11021486 DOI: 10.1038/s41419-024-06661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Most of the patients affected by neuronopathic forms of Mucopolysaccharidosis type II (MPS II), a rare lysosomal storage disorder caused by defects in iduronate-2-sulfatase (IDS) activity, exhibit early neurological defects associated with white matter lesions and progressive behavioural abnormalities. While neuronal degeneration has been largely described in experimental models and human patients, more subtle neuronal pathogenic defects remain still underexplored. In this work, we discovered that the axon guidance receptor Deleted in Colorectal Cancer (Dcc) is significantly dysregulated in the brain of ids mutant zebrafish since embryonic stages. In addition, thanks to the establishment of neuronal-enriched primary cell cultures, we identified defective proteasomal degradation as one of the main pathways underlying Dcc upregulation in ids mutant conditions. Furthermore, ids mutant fish-derived primary neurons displayed higher levels of polyubiquitinated proteins and P62, suggesting a wider defect in protein degradation. Finally, we show that ids mutant larvae display an atypical response to anxiety-inducing stimuli, hence mimicking one of the characteristic features of MPS II patients. Our study provides an additional relevant frame to MPS II pathogenesis, supporting the concept that multiple developmental defects concur with early childhood behavioural abnormalities.
Collapse
Affiliation(s)
- Rosa Manzoli
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy.
- Department of Biology, University of Padova, 35121, Padova, Italy.
| | - Lorenzo Badenetti
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
- Department of Women's and Children's Health, University of Padova, 35128, Padova, Italy
- Istituto di Ricerca Pediatrica "Città Della Speranza", 35127, Padova, Italy
| | - Matteo Bruzzone
- Department of Biomedical Sciences, University of Padova, 35121, Padova, Italy
- Padua Neuroscience Center - PNC, University of Padova, 35129, Padova, Italy
| | - Maria Carla Macario
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Michela Rubin
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Marco Dal Maschio
- Department of Biomedical Sciences, University of Padova, 35121, Padova, Italy
- Padua Neuroscience Center - PNC, University of Padova, 35129, Padova, Italy
| | - Antonella Roveri
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
5
|
Ma Z, Liu K, Zhang RF, Xie ZX, Liu W, Xu B. Manganese disrupts the maturation and degradation of axonal autophagosome leading to hippocampal synaptic toxicity in mice via the activation of LRRK2 on phosphorylation of Rab10. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170021. [PMID: 38224893 DOI: 10.1016/j.scitotenv.2024.170021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/17/2024]
Abstract
Manganese (Mn) overexposure induces hippocampal synaptotoxicity by the accumulation of dysfunctional synaptic vesicles (SVs). Leucine-rich repeat kinase 2 (LRRK2) kinase activity is involved in regulating axonal transport (autophagosomal maturation) and lysosomal function. Nevertheless, it remains unclear whether Mn-induced synaptotoxicity is associated with the LRRK2-mediated disruption of autophagosomal maturation in axonal transport and the impairment of lysosomes in hippocampal neurons. Here, we established models of manganism in C57BL/6 mice and hippocampal neuronal HT22 cells to verify the role of LRRK2-mediated Rab10 phosphorylation in the Mn-induced dysfunction of autophagy- lysosomal fusion. Our results proved that Mn-induced the disorder of axonal transport and that lysosome impairments were associated with the increased recruitment of phospho-Rab10 at the axon and lysosomes. Next, we established Lrrk2-KD and LRRK2 kinase- specific inhibitor (GNE-0877, GNE) pre-treated HT22 cells to inhibit Lrrk2 gene expression and kinase activity, respectively. In Mn-treated Lrrk2-KD or GNE-pretreated normal neurons, our results indicated that lysosomal pH and integrity and autophagic flow were restored, indicating by decreased levels of phospho-Rab10 on lysosomes and JNK-interacting proteins (JIP4). In addition, GNE pretreatment could provide protection against Mn-induced synaptotoxicity in vivo, which was evidenced by the partial recovery in synaptic plasticity and synaptic damage. Thus, the Mn-induced abnormal activation of LRRK2 affected lysosomes and the recruitment of phospho-Rab10 by JIP4, which disrupted autophagosomal maturation in proximal axons and resulted in the hippocampal synaptic toxicity of mice.
Collapse
Affiliation(s)
- Zhuo Ma
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, China Medical University, Ministry of Education, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, China
| | - Kuan Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, China
| | - Rui-Feng Zhang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, China
| | - Zi-Xin Xie
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, China
| | - Wei Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, China Medical University, Ministry of Education, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, China
| | - Bin Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, China Medical University, Ministry of Education, Shenyang, Liaoning 110122, China; Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, China.
| |
Collapse
|
6
|
Lin M, Yu H, Xie Q, Xu Z, Shang P. Role of microglia autophagy and mitophagy in age-related neurodegenerative diseases. Front Aging Neurosci 2023; 14:1100133. [PMID: 37180741 PMCID: PMC10169626 DOI: 10.3389/fnagi.2022.1100133] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 05/16/2023] Open
Abstract
Microglia, characterized by responding to damage, regulating the secretion of soluble inflammatory mediators, and engulfing specific segments in the central nervous system (CNS), function as key immune cells in the CNS. Emerging evidence suggests that microglia coordinate the inflammatory responses in CNS system and play a pivotal role in the pathogenesis of age-related neurodegenerative diseases (NDDs). Remarkably, microglia autophagy participates in the regulation of subcellular substances, which includes the degradation of misfolded proteins and other harmful constituents produced by neurons. Therefore, microglia autophagy regulates neuronal homeostasis maintenance and process of neuroinflammation. In this review, we aimed at highlighting the pivotal role of microglia autophagy in the pathogenesis of age-related NDDs. Besides the mechanistic process and the co-interaction between microglia autophagy and different kinds of NDDs, we also emphasized potential therapeutic agents and approaches that could be utilized at the onset and progression of these diseases through modulating microglia autophagy, including promising nanomedicines. Our review provides a valuable reference for subsequent studies focusing on treatments of neurodegenerative disorders. The exploration of microglia autophagy and the development of nanomedicines greatly enhances current understanding of NDDs.
Collapse
Affiliation(s)
- Mingkai Lin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongwen Yu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiuyan Xie
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiyun Xu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pei Shang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Nabavi M, Hiesinger PR. Turnover of synaptic adhesion molecules. Mol Cell Neurosci 2023; 124:103816. [PMID: 36649812 DOI: 10.1016/j.mcn.2023.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Molecular interactions between pre- and postsynaptic membranes play critical roles during the development, function and maintenance of synapses. Synaptic interactions are mediated by cell surface receptors that may be held in place by trans-synaptic adhesion or intracellular binding to membrane-associated scaffolding and signaling complexes. Despite their role in stabilizing synaptic contacts, synaptic adhesion molecules undergo turnover and degradation during all stages of a neuron's life. Here we review current knowledge about membrane trafficking mechanisms that regulate turnover of synaptic adhesion molecules and the functional significance of turnover for synapse development and function. Based on recent proteomics, genetics and imaging studies, synaptic adhesion molecules exhibit remarkably high turnover rates compared to other synaptic proteins. Degradation occurs predominantly via endolysosomal mechanisms, with little evidence for roles of proteasomal or autophagic degradation. Basal turnover occurs both during synaptic development and maintenance. Neuronal activity typically stabilizes synaptic adhesion molecules while downregulating neurotransmitter receptors based on turnover. In conclusion, constitutive turnover of synaptic adhesion molecules is not a necessarily destabilizing factor, but a basis for the dynamic regulation of trans-synaptic interactions during synapse formation and maintenance.
Collapse
Affiliation(s)
- Melinda Nabavi
- Institute for Biology, Division of Neurobiology, Freie Universität Berlin, Germany
| | - P Robin Hiesinger
- Institute for Biology, Division of Neurobiology, Freie Universität Berlin, Germany.
| |
Collapse
|
8
|
Liu Y, Shuai K, Sun Y, Zhu L, Wu XM. Advances in the study of axon-associated vesicles. Front Mol Neurosci 2022; 15:1045778. [PMID: 36545123 PMCID: PMC9760877 DOI: 10.3389/fnmol.2022.1045778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
The central nervous system is the most important and difficult to study system in the human body and is known for its complex functions, components, and mechanisms. Neurons are the basic cellular units realizing neural functions. In neurons, vesicles are one of the critical pathways for intracellular material transport, linking information exchanges inside and outside cells. The axon is a vital part of neuron since electrical and molecular signals must be conducted through axons. Here, we describe and explore the formation, trafficking, and sorting of cellular vesicles within axons, as well as related-diseases and practical implications. Furthermore, with deepening of understanding and the development of new approaches, accumulating evidence proves that besides signal transmission between synapses, the material exchange and vesicular transmission between axons and extracellular environment are involved in physiological processes, and consequently to neural pathology. Recent studies have also paid attention to axonal vesicles and their physiological roles and pathological effects on axons themselves. Therefore, this review mainly focuses on these two key nodes to explain the role of intracellular vesicles and extracellular vesicles migrated from cells on axons and neurons, providing innovative strategy for future researches.
Collapse
Affiliation(s)
- Yanling Liu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Ke Shuai
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yiyan Sun
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiao-Mei Wu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China,*Correspondence: Xiao-Mei Wu,
| |
Collapse
|
9
|
von Scheibler EN, van Eeghen AM, de Koning TJ, Kuijf ML, Zinkstok JR, Müller AR, van Amelsvoort TA, Boot E. Parkinsonism in Genetic Neurodevelopmental Disorders: A Systematic Review. Mov Disord Clin Pract 2022; 10:17-31. [PMID: 36699000 PMCID: PMC9847320 DOI: 10.1002/mdc3.13577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/25/2022] [Accepted: 08/16/2022] [Indexed: 01/28/2023] Open
Abstract
Background With advances in clinical genetic testing, associations between genetic neurodevelopmental disorders and parkinsonism are increasingly recognized. In this review, we aimed to provide a comprehensive overview of reports on parkinsonism in genetic neurodevelopmental disorders and summarize findings related to genetic diagnosis, clinical features and proposed disease mechanisms. Methods A systematic literature review was conducted in PubMed and Embase on June 15, 2021. Search terms for parkinsonism and genetic neurodevelopmental disorders, using generic terms and the Human Phenotype Ontology, were combined. Study characteristics and descriptive data were extracted from the articles using a modified version of the Cochrane Consumers and Communication Review Group's data extraction template. The protocol was registered in PROSPERO (CRD42020191035). Results The literature search yielded 208 reports for data-extraction, describing 69 genetic disorders in 422 patients. The five most reported from most to least frequent were: 22q11.2 deletion syndrome, beta-propeller protein-associated neurodegeneration, Down syndrome, cerebrotendinous xanthomatosis, and Rett syndrome. Notable findings were an almost equal male to female ratio, an early median age of motor onset (26 years old) and rigidity being more common than rest tremor. Results of dopaminergic imaging and response to antiparkinsonian medication often supported the neurodegenerative nature of parkinsonism. Moreover, neuropathology results showed neuronal loss in the majority of cases. Proposed disease mechanisms included aberrant mitochondrial function and disruptions in neurotransmitter metabolism, endosomal trafficking, and the autophagic-lysosomal and ubiquitin-proteasome system. Conclusion Parkinsonism has been reported in many GNDs. Findings from this study may provide clues for further research and improve management of patients with GNDs and/or parkinsonism.
Collapse
Affiliation(s)
- Emma N.M.M. von Scheibler
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtThe Netherlands
| | - Agnies M. van Eeghen
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Emma Children's HospitalUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tom J. de Koning
- Department of GeneticsUniversity of GroningenGroningenThe Netherlands,Expertise Centre Movement Disorders GroningenUniversity Medical Centre GroningenGroningenThe Netherlands,Pediatrics, Department of Clinical SciencesLund UniversityLundSweden
| | - Mark L. Kuijf
- Department of NeurologyMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Janneke R. Zinkstok
- Department of PsychiatryRadoud University Medical CentreNijmegenThe Netherlands,Karakter child and adolescent psychiatryNijmegenThe Netherlands,Department of Psychiatry and Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Annelieke R. Müller
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Emma Children's HospitalUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Erik Boot
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtThe Netherlands,The Dalglish Family 22q ClinicUniversity Health NetworkTorontoOntarioCanada
| |
Collapse
|
10
|
Kawano D, Pinter K, Chlebowski M, Petralia RS, Wang YX, Nechiporuk AV, Drerup CM. NudC regulated Lis1 stability is essential for the maintenance of dynamic microtubule ends in axon terminals. iScience 2022; 25:105072. [PMID: 36147950 PMCID: PMC9485903 DOI: 10.1016/j.isci.2022.105072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/26/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
In the axon terminal, microtubule stability is decreased relative to the axon shaft. The dynamic microtubule plus ends found in the axon terminal have many functions, including serving as a docking site for the Cytoplasmic dynein motor. Here, we report an unexplored function of dynein in microtubule regulation in axon terminals: regulation of microtubule stability. Using a forward genetic screen, we identified a mutant with an abnormal axon terminal structure owing to a loss of function mutation in NudC. We show that, in the axon terminal, NudC is a chaperone for the protein Lis1. Decreased Lis1 in nudc axon terminals causes dynein/dynactin accumulation and increased microtubule stability. Microtubule dynamics can be restored by pharmacologically inhibiting dynein, implicating excess dynein motor function in microtubule stabilization. Together, our data support a model in which local NudC-Lis1 modulation of the dynein motor is critical for the regulation of microtubule stability in the axon terminal. NudC, a dynein regulator, is crucial for axon terminal structure NudC mutation leads to a near complete loss of Lis1 protein in axon terminals Lis1 deficits cause accumulation of dynein and cargo in axon terminals Local elevation of dynein increases axon terminal microtubule stability
Collapse
Affiliation(s)
- Dane Kawano
- Unit on Neuronal Cell Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine Pinter
- Unit on Neuronal Cell Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Madison Chlebowski
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex V Nechiporuk
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Catherine M Drerup
- Unit on Neuronal Cell Biology, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
11
|
The Key Role of Lysosomal Protease Cathepsins in Viral Infections. Int J Mol Sci 2022; 23:ijms23169089. [PMID: 36012353 PMCID: PMC9409221 DOI: 10.3390/ijms23169089] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cathepsins encompass a family of lysosomal proteases that mediate protein degradation and turnover. Although mainly localized in the endolysosomal compartment, cathepsins are also found in the cytoplasm, nucleus, and extracellular space, where they are involved in cell signaling, extracellular matrix assembly/disassembly, and protein processing and trafficking through the plasma and nuclear membrane and between intracellular organelles. Ubiquitously expressed in the body, cathepsins play regulatory roles in a wide range of physiological processes including coagulation, hormone secretion, immune responses, and others. A dysregulation of cathepsin expression and/or activity has been associated with many human diseases, including cancer, diabetes, obesity, cardiovascular and inflammatory diseases, kidney dysfunctions, and neurodegenerative disorders, as well as infectious diseases. In viral infections, cathepsins may promote (1) activation of the viral attachment glycoproteins and entry of the virus into target cells; (2) antigen processing and presentation, enabling the virus to replicate in infected cells; (3) up-regulation and processing of heparanase that facilitates the release of viral progeny and the spread of infection; and (4) activation of cell death that may either favor viral clearance or assist viral propagation. In this review, we report the most relevant findings on the molecular mechanisms underlying cathepsin involvement in viral infection physiopathology, and we discuss the potential of cathepsin inhibitors for therapeutical applications in viral infectious diseases.
Collapse
|
12
|
Neuronal-specific septin-3 binds Atg8/LC3B, accumulates and localizes to autophagosomes during induced autophagy. Cell Mol Life Sci 2022; 79:471. [PMID: 35932293 PMCID: PMC9356936 DOI: 10.1007/s00018-022-04488-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
Abstract
In synapses that show signs of local apoptosis and mitochondrial stress and undergo neuro-immunological synapse pruning, an increase in the levels of the presynaptic protein, neuronal-specific septin-3 can be observed. Septin-3 is a member of the septin GTPase family with the ability to form multimers and contribute to the cytoskeleton. However, the function of septin-3 remains elusive. Here, we provide evidence that septin-3 is capable of binding the most-studied autophagy protein Atg8 homolog microtubule-associated protein 1 light chain 3B (LC3B), besides another homolog, GABA receptor-associated protein-like 2 (GABARAPL2). Moreover, we demonstrate that colocalization of septin-3 and LC3B increases upon chemical autophagy induction in primary neuronal cells. Septin-3 is accumulated in primary neurons upon autophagy enhancement or blockade, similar to autophagy proteins. Using electron microscopy, we also show that septin-3 localizes to LC3B positive membranes and can be found at mitochondria. However, colocalization results of septin-3 and the early mitophagy marker PTEN-induced kinase 1 (PINK1) do not support that binding of septin-3 to mitochondria is mitophagy related. We conclude that septin-3 correlates with synaptic/neuronal autophagy, binds Atg8 and localizes to autophagic membranes that can be enhanced with chemical autophagy induction. Based on our results, elevated septin-3 levels might indicate enhanced or impeded autophagy in neurons.
Collapse
|
13
|
Autophagy in Human Retinal Neurons in Glaucoma. Bull Exp Biol Med 2022; 173:468-474. [DOI: 10.1007/s10517-022-05563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 10/14/2022]
|
14
|
Chakravorty A, Sharma A, Sheeba V, Manjithaya R. Glutamatergic Synapse Dysfunction in Drosophila Neuromuscular Junctions Can Be Rescued by Proteostasis Modulation. Front Mol Neurosci 2022; 15:842772. [PMID: 35909443 PMCID: PMC9337869 DOI: 10.3389/fnmol.2022.842772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the nervous system, and the Drosophila glutamatergic neuromuscular junctions (NMJs) offer a tractable platform to understand excitatory synapse biology both in health and disease. Synaptopathies are neurodegenerative diseases that are associated with synaptic dysfunction and often display compromised proteostasis. One such rare, progressive neurodegenerative condition, Spinocerebellar Ataxia Type 3 (SCA3) or Machado-Joseph Disease (MJD), is characterized by cerebellar ataxia, Parkinsonism, and degeneration of motor neuron synapses. While the polyQ repeat mutant protein ataxin-3 is implicated in MJD, it is unclear how it leads to impaired synaptic function. In this study, we indicated that a Drosophila model of MJD recapitulates characteristics of neurodegenerative disorders marked by motor neuron dysfunction. Expression of 78 polyQ repeats of mutant ataxin-3 protein in Drosophila motor neurons resulted in behavioral defects, such as impaired locomotion in both larval and adult stages. Furthermore, defects in eclosion and lifespan were observed in adult flies. Detailed characterization of larval glutamatergic neuromuscular junctions (NMJs) revealed defects in morphological features along with compromised NMJ functioning. Autophagy, one of the key proteostasis pathways, is known to be impaired in the case of several synaptopathies. Our study reveals that overexpression of the autophagy-related protein Atg8a rescued behavioral defects. Thus, we present a model for glutamatergic synapse dysfunction that recapitulates synaptic and behavioral deficits and show that it is an amenable system for carrying out genetic and chemical biology screens to identify potential therapeutic targets for synaptopathies.
Collapse
Affiliation(s)
- Anushka Chakravorty
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Ankit Sharma
- Chronobiology and Behavioural Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Vasu Sheeba
- Chronobiology and Behavioural Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- *Correspondence: Vasu Sheeba
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Ravi Manjithaya
| |
Collapse
|
15
|
Richard M, Doubková K, Nitta Y, Kawai H, Sugie A, Tavosanis G. A Quantitative Model of Sporadic Axonal Degeneration in the Drosophila Visual System. J Neurosci 2022; 42:4937-4952. [PMID: 35534228 PMCID: PMC9188428 DOI: 10.1523/jneurosci.2115-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
In human neurodegenerative diseases, neurons undergo axonal degeneration months to years before they die. Here, we developed a system modeling early degenerative events in Drosophila adult photoreceptor cells. Thanks to the stereotypy of their axonal projections, this system delivers quantitative data on sporadic and progressive axonal degeneration of photoreceptor cells. Using this method, we show that exposure of adult female flies to a constant light stimulation for several days overcomes the intrinsic resilience of R7 photoreceptors and leads to progressive axonal degeneration. This was not associated with apoptosis. We furthermore provide evidence that loss of synaptic integrity between R7 and a postsynaptic partner preceded axonal degeneration, thus recapitulating features of human neurodegenerative diseases. Finally, our experiments uncovered a role of postsynaptic partners of R7 to initiate degeneration, suggesting that postsynaptic cells signal back to the photoreceptor to maintain axonal structure. This model can be used to dissect cellular and circuit mechanisms involved in the early events of axonal degeneration, allowing for a better understanding of how neurons cope with stress and lose their resilience capacities.SIGNIFICANCE STATEMENT Neurons can be active and functional for several years. In the course of aging and in disease conditions leading to neurodegeneration, subsets of neurons lose their resilience and start dying. What initiates this turning point at the cellular level is not clear. Here, we developed a model allowing to systematically describe this phase. The loss of synapses and axons represents an early and functionally relevant event toward degeneration. Using the ordered distribution of Drosophila photoreceptor axon terminals, we assembled a system to study sporadic initiation of axon loss and delineated a role for non-cell-autonomous activity regulation in the initiation of axon degeneration. This work will help shed light on key steps in the etiology of nonfamilial cases of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mélisande Richard
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V., 53127 Bonn, Germany
| | - Karolína Doubková
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V., 53127 Bonn, Germany
| | - Yohei Nitta
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | | | - Atsushi Sugie
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Gaia Tavosanis
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V., 53127 Bonn, Germany
- Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
16
|
Birdsall V, Kirwan K, Zhu M, Imoto Y, Wilson SM, Watanabe S, Waites CL. Axonal transport of Hrs is activity dependent and facilitates synaptic vesicle protein degradation. Life Sci Alliance 2022; 5:5/10/e202000745. [PMID: 35636965 PMCID: PMC9152131 DOI: 10.26508/lsa.202000745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
This study describes an activity-dependent mechanism for transporting ESCRT-0 protein Hrs to synaptic vesicle (SV) pools, facilitating SV protein degradation in response to increased neuronal firing. Turnover of synaptic vesicle (SV) proteins is vital for the maintenance of healthy and functional synapses. SV protein turnover is driven by neuronal activity in an endosomal sorting complex required for transport (ESCRT)-dependent manner. Here, we characterize a critical step in this process: axonal transport of ESCRT-0 component Hrs, necessary for sorting proteins into the ESCRT pathway and recruiting downstream ESCRT machinery to catalyze multivesicular body (MVB) formation. We find that neuronal activity stimulates the formation of presynaptic endosomes and MVBs, as well as the motility of Hrs+ vesicles in axons and their delivery to SV pools. Hrs+ vesicles co-transport ESCRT-0 component STAM1 and comprise a subset of Rab5+ vesicles, likely representing pro-degradative early endosomes. Furthermore, we identify kinesin motor protein KIF13A as essential for the activity-dependent transport of Hrs to SV pools and the degradation of SV membrane proteins. Together, these data demonstrate a novel activity- and KIF13A-dependent mechanism for mobilizing axonal transport of ESCRT machinery to facilitate the degradation of SV membrane proteins.
Collapse
Affiliation(s)
- Veronica Birdsall
- Neurobiology and Behavior PhD Program, Columbia University, New York, NY, USA
| | - Konner Kirwan
- Neurobiology and Behavior PhD Program, Columbia University, New York, NY, USA
| | - Mei Zhu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Yuuta Imoto
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Scott M Wilson
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD, USA.,Solomon H Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA .,Department of Neuroscience, Columbia University, New York, NY, USA
| |
Collapse
|
17
|
Kuijpers M. Keeping synapses in shape: degradation pathways in the healthy and aging brain. Neuronal Signal 2022; 6:NS20210063. [PMID: 35813265 PMCID: PMC9208270 DOI: 10.1042/ns20210063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Synapses maintain their molecular composition, plasticity and function through the concerted action of protein synthesis and removal. The complex and polarized neuronal architecture poses specific challenges to the logistics of protein and organelle turnover since protein synthesis and degradation mainly happen in the cell soma. In addition, post-mitotic neurons accumulate damage over a lifetime, challenging neuronal degradative pathways and making them particularly susceptible to the effects of aging. This review will summarize the current knowledge on neuronal protein turnover mechanisms with a particular focus on the presynapse, including the proteasome, autophagy and the endolysosomal route and their roles in regulating presynaptic proteostasis and function. In addition, the author will discuss how physiological brain aging, which entails a progressive decline in cognitive functions, affects synapses and the degradative machinery.
Collapse
Affiliation(s)
- Marijn Kuijpers
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Gundelfinger ED, Karpova A, Pielot R, Garner CC, Kreutz MR. Organization of Presynaptic Autophagy-Related Processes. Front Synaptic Neurosci 2022; 14:829354. [PMID: 35368245 PMCID: PMC8968026 DOI: 10.3389/fnsyn.2022.829354] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Brain synapses pose special challenges on the quality control of their protein machineries as they are far away from the neuronal soma, display a high potential for plastic adaptation and have a high energy demand to fulfill their physiological tasks. This applies in particular to the presynaptic part where neurotransmitter is released from synaptic vesicles, which in turn have to be recycled and refilled in a complex membrane trafficking cycle. Pathways to remove outdated and damaged proteins include the ubiquitin-proteasome system acting in the cytoplasm as well as membrane-associated endolysosomal and the autophagy systems. Here we focus on the latter systems and review what is known about the spatial organization of autophagy and endolysomal processes within the presynapse. We provide an inventory of which components of these degradative systems were found to be present in presynaptic boutons and where they might be anchored to the presynaptic apparatus. We identify three presynaptic structures reported to interact with known constituents of membrane-based protein-degradation pathways and therefore may serve as docking stations. These are (i) scaffolding proteins of the cytomatrix at the active zone, such as Bassoon or Clarinet, (ii) the endocytic machinery localized mainly at the peri-active zone, and (iii) synaptic vesicles. Finally, we sketch scenarios, how presynaptic autophagic cargos are tagged and recruited and which cellular mechanisms may govern membrane-associated protein turnover in the presynapse.
Collapse
Affiliation(s)
- Eckart D. Gundelfinger
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Anna Karpova
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Rainer Pielot
- Institute of Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Craig C. Garner
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Michael R. Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Center for Molecular Neurobiology (ZMNH), University Hospital Hamburg-Eppendorf, Hamburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| |
Collapse
|
19
|
Grochowska KM, Andres‐Alonso M, Karpova A, Kreutz MR. The needs of a synapse—How local organelles serve synaptic proteostasis. EMBO J 2022; 41:e110057. [PMID: 35285533 PMCID: PMC8982616 DOI: 10.15252/embj.2021110057] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/24/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Synaptic function crucially relies on the constant supply and removal of neuronal membranes. The morphological complexity of neurons poses a significant challenge for neuronal protein transport since the machineries for protein synthesis and degradation are mainly localized in the cell soma. In response to this unique challenge, local micro‐secretory systems have evolved that are adapted to the requirements of neuronal membrane protein proteostasis. However, our knowledge of how neuronal proteins are synthesized, trafficked to membranes, and eventually replaced and degraded remains scarce. Here, we review recent insights into membrane trafficking at synaptic sites and into the contribution of local organelles and micro‐secretory pathways to synaptic function. We describe the role of endoplasmic reticulum specializations in neurons, Golgi‐related organelles, and protein complexes like retromer in the synthesis and trafficking of synaptic transmembrane proteins. We discuss the contribution of autophagy and of proteasome‐mediated and endo‐lysosomal degradation to presynaptic proteostasis and synaptic function, as well as nondegradative roles of autophagosomes and lysosomes in signaling and synapse remodeling. We conclude that the complexity of neuronal cyto‐architecture necessitates long‐distance protein transport that combines degradation with signaling functions.
Collapse
Affiliation(s)
- Katarzyna M Grochowska
- Leibniz Group “Dendritic Organelles and Synaptic Function” Center for Molecular Neurobiology ZMNH University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Research Group Neuroplasticity Leibniz Institute for Neurobiology Magdeburg Germany
| | - Maria Andres‐Alonso
- Leibniz Group “Dendritic Organelles and Synaptic Function” Center for Molecular Neurobiology ZMNH University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Research Group Neuroplasticity Leibniz Institute for Neurobiology Magdeburg Germany
| | - Anna Karpova
- Research Group Neuroplasticity Leibniz Institute for Neurobiology Magdeburg Germany
- Center for Behavioral Brain Sciences Otto von Guericke University Magdeburg Germany
| | - Michael R Kreutz
- Leibniz Group “Dendritic Organelles and Synaptic Function” Center for Molecular Neurobiology ZMNH University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Research Group Neuroplasticity Leibniz Institute for Neurobiology Magdeburg Germany
- Center for Behavioral Brain Sciences Otto von Guericke University Magdeburg Germany
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg Germany
| |
Collapse
|
20
|
Yang S, Park D, Manning L, Hill SE, Cao M, Xuan Z, Gonzalez I, Dong Y, Clark B, Shao L, Okeke I, Almoril-Porras A, Bai J, De Camilli P, Colón-Ramos DA. Presynaptic autophagy is coupled to the synaptic vesicle cycle via ATG-9. Neuron 2022; 110:824-840.e10. [PMID: 35065714 PMCID: PMC9017068 DOI: 10.1016/j.neuron.2021.12.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023]
Abstract
Autophagy is a cellular degradation pathway essential for neuronal health and function. Autophagosome biogenesis occurs at synapses, is locally regulated, and increases in response to neuronal activity. The mechanisms that couple autophagosome biogenesis to synaptic activity remain unknown. In this study, we determine that trafficking of ATG-9, the only transmembrane protein in the core autophagy pathway, links the synaptic vesicle cycle with autophagy. ATG-9-positive vesicles in C. elegans are generated from the trans-Golgi network via AP-3-dependent budding and delivered to presynaptic sites. At presynaptic sites, ATG-9 undergoes exo-endocytosis in an activity-dependent manner. Mutations that disrupt endocytosis, including a lesion in synaptojanin 1 associated with Parkinson's disease, result in abnormal ATG-9 accumulation at clathrin-rich synaptic foci and defects in activity-induced presynaptic autophagy. Our findings uncover regulated key steps of ATG-9 trafficking at presynaptic sites and provide evidence that ATG-9 exo-endocytosis couples autophagosome biogenesis at presynaptic sites with the activity-dependent synaptic vesicle cycle.
Collapse
Affiliation(s)
- Sisi Yang
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Daehun Park
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Laura Manning
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Sarah E Hill
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Mian Cao
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Zhao Xuan
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Ian Gonzalez
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Yongming Dong
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Benjamin Clark
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Lin Shao
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Ifechukwu Okeke
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Agustin Almoril-Porras
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Jihong Bai
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Pietro De Camilli
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Daniel A Colón-Ramos
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Instituto de Neurobiología José del Castillo, Recinto de Ciencias Médicas, Universidad de Puerto Rico, 201 Boulevard del Valle, San Juan, PR 00901, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
21
|
Khan N, Halcrow PW, Afghah Z, Baral A, Geiger J, Chen X. HIV-1 Tat endocytosis and retention in endolysosomes affects HIV-1 Tat-induced LTR transactivation in astrocytes. FASEB J 2022; 36:e22184. [PMID: 35113458 PMCID: PMC9627655 DOI: 10.1096/fj.202101722r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/11/2022]
Abstract
The presence of latent HIV-1 reservoirs in the periphery and brain represents a major obstacle to curing HIV-1 infection. As an essential protein for HIV-1 viral replication, HIV-1 Tat, mostly intracellular, has been implicated in latent HIV-1 infection. From HIV-1 infected cells, HIV-1 Tat is actively secreted and bystander cells uptake the released Tat whereupon it is endocytosed and internalized into endolysosomes. However, to activate the HIV-1 LTR promoter and increase HIV-1 replication, HIV-1 Tat must first escape from the endolysosomes and then enter the nucleus. Here, we tested the hypothesis that HIV-1 Tat can accumulate in endolysosomes and contribute to the activation of latent HIV-1 in astrocytes. Using U87MG astrocytoma cells expressing HIV-1 LTR-driven luciferase and primary human astrocytes we found that exogenous HIV-1 Tat enters endolysosomes, resides in endolysosomes for extended periods of time, and induces endolysosome de-acidification as well as enlargement. The weak base chloroquine promoted the release of HIV-1 Tat from endolysosomes and induced HIV-1 LTR transactivation. Similar results were observed by activating endolysosome Toll-like receptor 3 (TLR3) and TLR7/8. Conversely, pharmacological block of TLRs and knocking down expression levels of TLR3 and TLR7, but not TLR8, prevented endolysosome leakage and attenuated HIV-1 Tat-mediated HIV-1 LTR transactivation. Our findings suggest that HIV-1 Tat accumulation in endolysosomes may play an important role in controlling HIV-1 transactivation.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Peter W. Halcrow
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Zahra Afghah
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Aparajita Baral
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Jonathan D. Geiger
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Xuesong Chen
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| |
Collapse
|
22
|
Ivanova D, Cousin MA. Synaptic Vesicle Recycling and the Endolysosomal System: A Reappraisal of Form and Function. Front Synaptic Neurosci 2022; 14:826098. [PMID: 35280702 PMCID: PMC8916035 DOI: 10.3389/fnsyn.2022.826098] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/03/2022] [Indexed: 12/15/2022] Open
Abstract
The endolysosomal system is present in all cell types. Within these cells, it performs a series of essential roles, such as trafficking and sorting of membrane cargo, intracellular signaling, control of metabolism and degradation. A specific compartment within central neurons, called the presynapse, mediates inter-neuronal communication via the fusion of neurotransmitter-containing synaptic vesicles (SVs). The localized recycling of SVs and their organization into functional pools is widely assumed to be a discrete mechanism, that only intersects with the endolysosomal system at specific points. However, evidence is emerging that molecules essential for endolysosomal function also have key roles within the SV life cycle, suggesting that they form a continuum rather than being isolated processes. In this review, we summarize the evidence for key endolysosomal molecules in SV recycling and propose an alternative model for membrane trafficking at the presynapse. This includes the hypotheses that endolysosomal intermediates represent specific functional SV pools, that sorting of cargo to SVs is mediated via the endolysosomal system and that manipulation of this process can result in both plastic changes to neurotransmitter release and pathophysiology via neurodegeneration.
Collapse
Affiliation(s)
- Daniela Ivanova
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Daniela Ivanova,
| | - Michael A. Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Michael A. Cousin,
| |
Collapse
|
23
|
Rickman AD, Hilyard A, Heckmann BL. Dying by fire: noncanonical functions of autophagy proteins in neuroinflammation and neurodegeneration. Neural Regen Res 2022; 17:246-250. [PMID: 34269183 PMCID: PMC8463974 DOI: 10.4103/1673-5374.317958] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/04/2021] [Accepted: 03/30/2021] [Indexed: 11/04/2022] Open
Abstract
Neuroinflammation and neurodegeneration are key components in the establishment and progression of neurodegenerative diseases including Alzheimer's Disease (AD). Over the past decade increasing evidence is emerging for the use of components of the canonical autophagy machinery in pathways that are characterized by LC3 lipidation yet are distinct from traditional macro-autophagy. One such pathway that utilizes components of the autophagy machinery to target LC3 to endosomes, a process termed LC3-associated endocytosis (LANDO), has recently been identified and regulates neuroinflammation. Abrogation of LANDO in microglia cells results in a propensity for elevated neuroinflammatory cytokine production. Using the well-established 5xFAD model of AD to interrogate neuroinflammatory regulation, impairment of LANDO through deletion of a key upstream regulator Rubicon or other downstream autophagy components, exacerbated disease onset and severity, while deletion of microglial autophagy alone had no measurable effect. Mice presented with robust deposition of the neurotoxic AD protein β-amyloid (Aβ), microglial activation and inflammatory cytokine production, tau phosphorylation, and aggressive neurodegeneration culminating in severe memory impairment. LANDO-deficiency impaired recycling of receptors that recognize Aβ, including TLR4 and TREM2. LANDO-deficiency alone through deletion of the WD-domain of the autophagy protein ATG16L, revealed a role for LANDO in the spontaneous establishment of age-associated AD. LANDO-deficient mice aged to 2 years presented with advanced AD-like disease and pathology correlative to that observed in human AD patients. Together, these studies illustrate an important role for microglial LANDO in regulating CNS immune activation and protection against neurodegeneration. New evidence is emerging that demonstrates a putative linkage between pathways such as LANDO and cell death regulation via apoptosis and possibly necroptosis. Herein, we provide a review of the use of the autophagy machinery in non-canonical mechanisms that alter immune regulation and could have significant impact in furthering our understanding of not only CNS diseases like AD, but likely beyond.
Collapse
Affiliation(s)
- Alexis D. Rickman
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Addison Hilyard
- USF Health Byrd Alzheimer's Center and Neuroscience Institute, Morsani College of Medicine, Tampa, FL, USA
| | - Bradlee L. Heckmann
- USF Health Byrd Alzheimer's Center and Neuroscience Institute, Morsani College of Medicine, Tampa, FL, USA
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
24
|
Awa S, Suzuki G, Masuda-Suzukake M, Nonaka T, Saito M, Hasegawa M. Phosphorylation of endogenous α-synuclein induced by extracellular seeds initiates at the pre-synaptic region and spreads to the cell body. Sci Rep 2022; 12:1163. [PMID: 35064139 PMCID: PMC8782830 DOI: 10.1038/s41598-022-04780-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of phosphorylated α-synuclein aggregates has been implicated in several diseases, such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB), and is thought to spread in a prion-like manner. Elucidating the mechanisms of prion-like transmission of α-synuclein is important for the development of therapies for these diseases, but little is known about the details. Here, we injected α-synuclein fibrils into the brains of wild-type mice and examined the early phase of the induction of phosphorylated α-synuclein accumulation. We found that phosphorylated α-synuclein appeared within a few days after the intracerebral injection. It was observed initially in presynaptic regions and subsequently extended its localization to axons and cell bodies. These results suggest that extracellular α-synuclein fibrils are taken up into the presynaptic region and seed-dependently convert the endogenous normal α-synuclein that is abundant there to an abnormal phosphorylated form, which is then transported through the axon to the cell body.
Collapse
Affiliation(s)
- Shiori Awa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Genjiro Suzuki
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Masami Masuda-Suzukake
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Nonaka
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Minoru Saito
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan.,Department of Correlative Study in Physics and Chemistry, Graduate School of Integrated Basic Sciences, Nihon University, Tokyo, Japan
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
25
|
Cai Q, Ganesan D. Regulation of neuronal autophagy and the implications in neurodegenerative diseases. Neurobiol Dis 2022; 162:105582. [PMID: 34890791 PMCID: PMC8764935 DOI: 10.1016/j.nbd.2021.105582] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 01/03/2023] Open
Abstract
Neurons are highly polarized and post-mitotic cells with the specific requirements of neurotransmission accompanied by high metabolic demands that create a unique challenge for the maintenance of cellular homeostasis. Thus, neurons rely heavily on autophagy that constitutes a key quality control system by which dysfunctional cytoplasmic components, protein aggregates, and damaged organelles are sequestered within autophagosomes and then delivered to the lysosome for degradation. While mature lysosomes are predominantly located in the soma of neurons, the robust, constitutive biogenesis of autophagosomes occurs in the synaptic terminal via a conserved pathway that is required to maintain synaptic integrity and function. Following formation, autophagosomes fuse with late endosomes and then are rapidly and efficiently transported by the microtubule-based cytoplasmic dynein motor along the axon toward the soma for lysosomal clearance. In this review, we highlight the recent knowledge of the roles of autophagy in neuronal health and disease. We summarize the available evidence about the normal functions of autophagy as a protective factor against neurodegeneration and discuss the mechanism underlying neuronal autophagy regulation. Finally, we describe how autophagy function is affected in major neurodegenerative diseases with a special focus on Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis.
Collapse
|
26
|
Crawley O, Grill B. Autophagy in axonal and presynaptic development. Curr Opin Neurobiol 2021; 69:139-148. [PMID: 33940492 DOI: 10.1016/j.conb.2021.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
The study of autophagy in the nervous system has predominantly centered on degeneration. Evidence is now cementing crucial roles for autophagy in neuronal development and growth, especially in axonal and presynaptic compartments. A picture is emerging that autophagy typically promotes the growth of axons and reduces presynaptic stability. Nonetheless, these are not rigid principles, and it remains unclear why autophagy does not always display these relationships during axonal and presynaptic development. Recent progress has identified mechanisms underlying spatiotemporal control of autophagy in neurons and begun to unravel how autophagy is integrated with other cellular processes, such as proteasomal degradation and axon guidance. Ultimately, understanding how autophagy is regulated and its role in the developing nervous system is key to comprehending how the nervous system assembles its stereotyped yet plastic configuration. It is also likely to inform how we think about neurodevelopmental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Oliver Crawley
- Unidad de Neurobiología Celular y de Sistemas, Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, 03550, Spain.
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98199, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
27
|
Vos M, Klein C. The Importance of Drosophila melanogaster Research to UnCover Cellular Pathways Underlying Parkinson's Disease. Cells 2021; 10:579. [PMID: 33800736 PMCID: PMC7998316 DOI: 10.3390/cells10030579] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder that is currently incurable. As a consequence of an incomplete understanding of the etiology of the disease, therapeutic strategies mainly focus on symptomatic treatment. Even though the majority of PD cases remain idiopathic (~90%), several genes have been identified to be causative for PD, facilitating the generation of animal models that are a good alternative to study disease pathways and to increase our understanding of the underlying mechanisms of PD. Drosophila melanogaster has proven to be an excellent model in these studies. In this review, we will discuss the different PD models in flies and key findings identified in flies in different affected pathways in PD. Several molecular changes have been identified, of which mitochondrial dysfunction and a defective endo-lysosomal pathway emerge to be the most relevant for PD pathogenesis. Studies in flies have significantly contributed to our knowledge of how disease genes affect and interact in these pathways enabling a better understanding of the disease etiology and providing possible therapeutic targets for the treatment of PD, some of which have already resulted in clinical trials.
Collapse
Affiliation(s)
- Melissa Vos
- Institute of Neurogenetics, University of Luebeck, Ratzeburger Allee 160, Building 67, 23562 Luebeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Ratzeburger Allee 160, Building 67, 23562 Luebeck, Germany
| |
Collapse
|