1
|
Tang Q, Tang J, Chen C, Zhu F, Yu Q, Chen H, Chen L, Ma S, Chen K, Li G. Bombyx mori RPL13 participates in UV-induced DNA damage repair of B. mori nucleopolyhedrovirus through interaction with Bm65. INSECT MOLECULAR BIOLOGY 2024; 33:638-649. [PMID: 38801334 DOI: 10.1111/imb.12928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024]
Abstract
Ribosomal protein L13 (RPL13) is highly conserved in evolution. At present, the properties and functions of RPL13 have not been characterised in insects. In this study, Bombyx mori RPL13 (BmRPL13) was first found to be specifically recruited to the sites of ultraviolet (UV)-induced DNA damage and contributed to UV damage repair. Escherichia coli expressing BmRPL13 showed better resistance to UV radiation. After knocking down the expression of BmRPL13 in BmN cells, the repair speed of UV-damaged DNA slowed down. The further results showed that BmRPL13 interacted with B. mori nucleopolyhedrovirus (BmNPV) ORF65 (Bm65) protein to locate at the UV-induced DNA damage sites of BmNPV and helped repair UV-damaged viral DNA.
Collapse
Affiliation(s)
- Qi Tang
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jingjing Tang
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ceru Chen
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Feifei Zhu
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qian Yu
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Huiqing Chen
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Liang Chen
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shangshang Ma
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Guohui Li
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
DeCleene NF, Asik E, Sanchez A, Williams CL, Kabotyanski EB, Zhao N, Chatterjee N, Miller KM, Wang YH, Bertuch AA. RPS19 and RPL5, the most commonly mutated genes in Diamond Blackfan anemia, impact DNA double-strand break repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617668. [PMID: 39416207 PMCID: PMC11482920 DOI: 10.1101/2024.10.10.617668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Diamond Blackfan anemia (DBA) is caused by germline heterozygous loss-of-function pathogenic variants (PVs) in ribosomal protein (RP) genes, most commonly RPS19 and RPL5. In addition to red cell aplasia, individuals with DBA are at increased risk of various cancers. Importantly, the mechanism(s) underlying cancer predisposition are poorly understood. We found that DBA patient-derived lymphoblastoid cells had persistent γ-H2AX foci following ionizing radiation (IR) treatment, suggesting DNA double-strand break (DSB) repair defects. RPS19- and RPL5-knocked down (KD) CD34+ cells had delayed repair of IR-induced DSBs, further implicating these RPs in DSB repair. Assessing the impact of RPS19- and RPL5-KD on specific DSB repair pathways, we found RPS19-KD decreased the efficiency of pathways requiring extensive end-resection, whereas RPL5-KD increased end-joining pathways. Additionally, RAD51 was reduced in RPS19- and RPL5-KD and RPS19- and RPL5-mutated DBA cells, whereas RPS19-deficient cells also had a reduction in PARP1 and BRCA2 proteins. RPS19-KD cells had an increase in nuclear RPA2 and a decrease in nuclear RAD51 foci post-IR, reflective of alterations in early, critical steps of homologous recombination. Notably, RPS19 and RPL5 interacted with poly(ADP)-ribose chains noncovalently, were recruited to DSBs in a poly(ADP)-ribose polymerase activity-dependent manner, and interacted with Ku70 and histone H2A. RPL5's recruitment, but not RPS19's, also required p53, suggesting that RPS19 and RPL5 directly participate in DSB repair via different pathways. We propose that defective DSB repair arising from haploinsufficiency of these RPs may underline the cancer predisposition in DBA.
Collapse
Affiliation(s)
- Nicholas F. DeCleene
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine
- Cancer and Hematology Center, Texas Children’s Hospital
| | - Elif Asik
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine
- Cancer and Hematology Center, Texas Children’s Hospital
| | - Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin
| | - Christopher L. Williams
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine
- Cancer and Hematology Center, Texas Children’s Hospital
| | | | - Na Zhao
- Department of Molecular and Cellular Biology, Baylor College of Medicine
| | - Nimrat Chatterjee
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine
- Cancer and Hematology Center, Texas Children’s Hospital
| | - Kyle M. Miller
- Department of Molecular Biosciences, The University of Texas at Austin
| | - Yu-Hsiu Wang
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch
| | - Alison A. Bertuch
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine
- Cancer and Hematology Center, Texas Children’s Hospital
| |
Collapse
|
3
|
Liu C, Lin A, Li Z, Ma Z, Liu F. Effects of live transport methods on the survivability, physiological responses, and flesh quality of turbot ( Scophthalmus maximus). EFOOD 2024; 5. [DOI: 10.1002/efd2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/11/2024] [Indexed: 01/05/2025] Open
Abstract
AbstractWaterless transport is an alternative method for live aquatic products. However, the changes that occur in the fish body after transportation are not known. Herein, the effects of different transport methods on quality of turbot (Scophthalmus maximus) were investigated. Fish were divided into four groups: Group A (water, 17°C), Group B (waterless, 3°C), Group C (water, 3°C), and Group D (control, 17°C). In the case of 100% survival, the maximum transport time was 40 h for Group A, 55 h for Group B, and 90 h for Group C. Both crude protein and crude fat decreased significantly (p < 0.05) in the treatment groups compared with the control group. Compared with control group, lactic dehydrogenase (LDH), lactic acid (LA), and serum cortisol (COR) increased significantly (p < 0.05) in all treatment groups. After fish recovered, LDH, LA, and COR values were all significantly (p < 0.05) lower than their corresponding non‐recovered group. Compared with the control group, the expression of proteins related to muscle motility and stress capacity both decreased in the low‐temperature, waterless group. Together, obvious damage may occur to flesh quality, liver, and heart of turbot when the transport time is >40 h, regardless of the transport method.
Collapse
Affiliation(s)
- Chune Liu
- Yantai Institute of China Agricultural University Shandong People's Republic of China
| | - Aiqi Lin
- Yantai Institute of China Agricultural University Shandong People's Republic of China
| | - Zixuan Li
- Yantai Institute of China Agricultural University Shandong People's Republic of China
| | - Zheng Ma
- Yantai Institute of China Agricultural University Shandong People's Republic of China
| | - Feng Liu
- Yantai Institute of China Agricultural University Shandong People's Republic of China
| |
Collapse
|
4
|
Li X, Li Y, Dai X. Transcriptomics-based analysis of Macrobrachium rosenbergii growth retardation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101298. [PMID: 39059145 DOI: 10.1016/j.cbd.2024.101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Macrobrachium rosenbergii is an economically important crustacean in many parts of the world, but in recent years, growth retardation has become an increasingly serious issue. While the underlying causes remain unclear, this has inevitably impacted on aquaculture and production outputs. In this study, gill, hepatopancreas, and muscle tissue samples from M. rosenbergii, with distinct growth differences, underwent transcriptome sequencing and bioinformatics analyses using high-throughput sequencing. In total, 59,796 unigenes were annotated. Differential expression analyses showed that the most differentially expressed genes (DEGs) were screened in gill tissue (1790 DEGs). In muscle and hepatopancreas tissues, 696 and 598 DEGs were screened, respectively. These DEGs were annotated to Kyoto Encyclopedia of Genes and Genomes pathways, which identified several significantly enriched pathways related to growth metabolism, such as PI3K-AKT, glycolysis/gluconeogenesis, and starch and sucrose metabolism. These results suggest that low growth metabolism levels may be one cause of M. rosenbergii growth retardation. Our data provide support for further investigations into the causes and molecular mechanisms underpinning growth retardation in M. rosenbergii.
Collapse
Affiliation(s)
- Xuenan Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai 201306, China; National Experimental Teaching Demonstration Centre for Aquatic Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Yahui Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai 201306, China; National Experimental Teaching Demonstration Centre for Aquatic Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Xilin Dai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai 201306, China; National Experimental Teaching Demonstration Centre for Aquatic Sciences, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
5
|
Yan R, Liu M, Zeng X, Du Q, Wu Z, Guo Y, Tu M, Pan D. Preparation of modified chitosan-based nano-TiO 2-nisin composite packaging film and preservation mechanism applied to chilled pork. Int J Biol Macromol 2024; 269:131873. [PMID: 38677699 DOI: 10.1016/j.ijbiomac.2024.131873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Here, we developed a nano-TiO2-nisin-modified chitosan composite packaging film and investigated its properties and antibacterial activity, as well as its effect on chilled pork preservation time. The results indicated that the preservation time of chilled pork coated with a nano-TiO2-nisin-modified chitosan film (including 0.7 g/L nano-TiO2, irradiated with ultraviolet light for 40 min, and dried for 6 h) followed by modified atmosphere packaging (50% CO2 + 50% N2) increased from 7 to 20 days at 4 °C. Both nano-TiO2 and nisin enhanced the mechanical strength of the chitosan film, and nisin promoted nano-TiO2 dispersion and compatibility in chitosan. Treatment with 0.4 g/L nano-TiO2 for 60 min considerably inhibited spoilage bacteria, particularly Acinetobacter johnnii XBB1 (A. johnnii XBB1). As nano-TiO2 concentration and photocatalytic time increased, K+, Ca2+, and Mg2+ leakage in A. johnnii XBB1 increased but Na+/K+-ATPase and Ca2+/Mg2+-ATPase activities decreased. In A. johnnii XBB1, TiO2 significantly downregulated the expression of putrefaction-related genes such as cysM and inhibited cell self-regulation and membrane wall system repair. Therefore, our nano-TiO2-nisin-modified chitosan film could extend the shelf life without the addition of any chemical preservatives, demonstrating great potential for application in food preservation.
Collapse
Affiliation(s)
- Ruonan Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Mingxue Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China.
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yuxing Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Guo N, Zhou H, Zhang Q, Fu Y, Jia Q, Gan X, Wang Y, He S, Li C, Tao Z, Liu J, Jia E. Exploration and bioinformatic prediction for profile of mRNA bound to circular RNA BTBD7_hsa_circ_0000563 in coronary artery disease. BMC Cardiovasc Disord 2024; 24:71. [PMID: 38267845 PMCID: PMC10809658 DOI: 10.1186/s12872-024-03711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND As a novel circRNA, BTBD7_hsa_circ_0000563 has not been fully investigated in coronary artery disease (CAD). Our aim is to reveal the possible functional role and regulatory pathway of BTBD7_hsa_circ_0000563 in CAD via exploring genes combined with BTBD7_hsa_circ_0000563. METHODS A total of 45 peripheral blood mononuclear cell (PBMC) samples of CAD patients were enrolled. The ChIRP-RNAseq assay was performed to directly explore genes bound to BTBD7_hsa_circ_0000563. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted to reveal possible functions of these genes. The interaction network was constructed by the STRING database and the Cytoscape software. The Cytoscape software were used again to identify clusters and hub genes of genes bound to BTBD7_hsa_circ_0000563. The target miRNAs of hub genes were predicted via online databases. RESULTS In this study, a total of 221 mRNAs directly bound to BTBD7_hsa_circ_0000563 were identified in PBMCs of CAD patients via ChIRP-RNAseq. The functional enrichment analysis revealed that these mRNAs may participate in translation and necroptosis. Moreover, the interaction network showed that there may be a close relationship between these mRNAs. Eight clusters can be further subdivided from the interaction network. RPS3 and RPSA were identified as hub genes and hsa-miR-493-5p was predicted to be the target miRNA of RPS3. CONCLUSIONS BTBD7_hsa_circ_0000563 and mRNAs directly bound to it may influence the initiation and progression of CAD, among which RPS3 and RPSA may be hub genes. These findings may provide innovative ideas for further research on CAD.
Collapse
Affiliation(s)
- Ning Guo
- Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, 215101, Jiangsu Province, China
| | - Hanxiao Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Qian Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Yahong Fu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Qiaowei Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Xiongkang Gan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Yanjun Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Shu He
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Chengcheng Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Zhengxian Tao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Jun Liu
- Department of Cardiology, Jurong City People's Hospital, Ersheng Road 66, Jurong, 212400, Jiangsu Province, China.
| | - Enzhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
7
|
Zhuang X, Xiao R, Fu Y, Yang B, Fan J, Lu F, Qin T, Yang X, Hu X, Yin J, Li W, Kang X, Chen G, Hu D, Sun C. MRE11:p.K464R mutation mediates olaparib resistance by enhancing DNA damage repair in HGSOC. Cell Biosci 2023; 13:178. [PMID: 37759323 PMCID: PMC10537967 DOI: 10.1186/s13578-023-01117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Although the clinical application of PARP inhibitors has brought hope to ovarian cancer, the problem of its resistance has become increasingly prominent. Therefore, clinical experts have been focused on finding specific indicators and therapeutic targets that can be used for resistance monitoring of PARP inhibitors. RESULTS By cfDNA detecting during Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer, we found the presence of MRE11:p.K464R mutation was strongly associated with acquired Olaparib resistance. Structural analysis revealed that the MRE11:p.K464R mutation is situated at a critical site where the MRE11 protein interacts with other biomolecules, leading to potential structural and functional abnormalities of MRE11 protein. Functionally, MRE11:p.K464R mutation enhanced the tolerance of Olaparib by reducing the DNA damage. Mechanistically, MRE11:p.K464R mutation improved the efficiency of DNA damage repair and induce Olaparib resistance by enhancing its binding activity with the interacting proteins (including RAD50 and RPS3). Among them, the enhanced binding of MRE11:p.K464R mutation to RAD50/RPS3 facilitated non-homologous end joining (NHEJ) repair in tumor cells, thereby expanding the scope of research into acquired resistance to PARP inhibitors. CONCLUSIONS Our findings provide a theoretical basis for MRE11:p.K464R mutation as a specific indicator of resistance monitoring in Olaparib treatment, and the exploration of its resistance mechanism provides a novel insights for the formulation of combination ther therapies after Olaparib resistance.
Collapse
Affiliation(s)
- Xucui Zhuang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rourou Xiao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Yang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junpeng Fan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Funian Lu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Qin
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohang Yang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyuan Hu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Yin
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenting Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Kang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Chen
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dianxing Hu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chaoyang Sun
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Ahn WS, Kim HD, Kim TS, Kwak MJ, Park YJ, Kim J. Phosphorylation of rpS3 by Lyn increases translation of Multi-Drug Resistance (MDR1) gene. BMB Rep 2023; 56:302-307. [PMID: 36724904 PMCID: PMC10230018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/29/2022] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
Lyn, a tyrosine kinase that is activated by double-stranded DNAdamaging agents, is involved in various signaling pathways, such as proliferation, apoptosis, and DNA repair. Ribosomal protein S3 (RpS3) is involved in protein biosynthesis as a component of the ribosome complex and possesses endonuclease activity to repair damaged DNA. Herein, we demonstrated that rpS3 and Lyn interact with each other, and the phosphorylation of rpS3 by Lyn, causing ribosome heterogeneity, upregulates the translation of p-glycoprotein, which is a gene product of multidrug resistance gene 1. In addition, we found that two different regions of the rpS3 protein are associated with the SH1 and SH3 domains of Lyn. An in vitro immunocomplex kinase assay indicated that the rpS3 protein acts as a substrate for Lyn, which phosphorylates the Y167 residue of rpS3. Furthermore, by adding various kinase inhibitors, we confirmed that the phosphorylation status of rpS3 was regulated by both Lyn and doxorubicin, and the phosphorylation of rpS3 by Lyn increased drug resistance in cells by upregulating p-glycoprotein translation. [BMB Reports 2023; 56(5): 302-307].
Collapse
Affiliation(s)
- Woo Sung Ahn
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Hag Dong Kim
- HAEL Lab, TechnoComplex, Korea University, Seoul 02841, Korea
| | - Tae Sung Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Myoung Jin Kwak
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea
- HAEL Lab, TechnoComplex, Korea University, Seoul 02841, Korea
| | - Yong Jun Park
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea
- HAEL Lab, TechnoComplex, Korea University, Seoul 02841, Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea
- HAEL Lab, TechnoComplex, Korea University, Seoul 02841, Korea
| |
Collapse
|
9
|
Hayashi Y, Funakoshi M, Hirosawa K, Zhang-Akiyama QM. The H2TH-like motif of the Escherichia coli multifunctional protein KsgA is required for DNA binding involved in DNA repair and the suppression of mutation frequencies. Genes Environ 2023; 45:13. [PMID: 37041652 PMCID: PMC10091538 DOI: 10.1186/s41021-023-00266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 02/23/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND DNA oxidatively damaged by reactive oxygen species is repaired by base excision repair (BER) pathway proteins, with DNA glycosylases removing damaged or mismatched bases in the first step of BER. KsgA is a multifunctional protein that exhibits the activities of two enzymes, DNA glycosylase and rRNA dimethyltransferase. The structure-function relationship of the KsgA protein in cellular DNA repair remains unclear because the domains required for KsgA to recognize DNA have not been identified. PURPOSE To clarify the mechanisms by which KsgA recognizes damaged DNA and to identify the DNA-binding site, which exists in KsgA. METHODS A structural analysis and in vitro DNA-protein binding assay were performed. The C-terminal function of the KsgA protein was investigated in vitro and in vivo. RESULTS The 3D conformations of KsgA, MutM, and Nei were compared at UCSF Chimera. The root mean square deviation of KsgA (214-273) and MutM (148-212) and that of KsgA (214-273) and Nei (145-212) were 1.067 and 1.188 Å, both less than 2 Å, suggesting that the C terminal of KsgA is spatially similar to the H2TH domains of MutM and Nei. The full-length KsgA protein and KsgA lacking 1-8 or 214-273 amino acids were purified and used in gel mobility shift assays. KsgA exhibited DNA-binding activity, which was lost in the C-terminally deleted KsgA protein. Spontaneous mutation frequency was measured using a mutM mutY ksgA-deficient strain, and the results obtained showed that the mutation frequency was not suppressed by KsgA lacking the C-terminal region, whereas it was in KsgA. To assess dimethyltransferase activity, kasugamycin sensitivity was assessed in wild-type and ksgA-deficient strains. Plasmids carrying the full-length ksgA gene and C-terminal deletion gene were introduced into ksgA-deficient strains. KsgA lacking the C terminus restored dimethyltransferase activity in the ksgA-deficient strain as well as KsgA. CONCLUSION The present results confirmed that one enzyme exhibited two activities and revealed that the C-terminal (214-273) amino acids of KsgA were highly similar to the H2TH structural domain, exhibited DNA-binding activity, and inhibited spontaneous mutations. This site is not essential for dimethyltransferase activity.
Collapse
Affiliation(s)
- Yuichiro Hayashi
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
- Takara Bio Inc., Nojihigashi, Kusatsu-shi, Shiga, 525-0058, Japan
| | - Masafumi Funakoshi
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo, Kyoto, 606-8507, Japan
| | - Kaname Hirosawa
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Qiu-Mei Zhang-Akiyama
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
10
|
RpS3 Is Required for Spermatogenesis of Drosophila melanogaster. Cells 2023; 12:cells12040573. [PMID: 36831240 PMCID: PMC9954509 DOI: 10.3390/cells12040573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Ribosomal proteins (RPs) constitute the ribosome, thus participating in the protein biosynthesis process. Emerging studies have suggested that many RPs exhibit different expression levels across various tissues and function in a context-dependent manner for animal development. Drosophila melanogaster RpS3 encodes the ribosomal protein S3, one component of the 40S subunit of ribosomes. We found that RpS3 is highly expressed in the reproductive organs of adult flies and its depletion in male germline cells led to severe defects in sperm production and male fertility. Immunofluorescence staining showed that RpS3 knockdown had little effect on early germ cell differentiation, but strongly disrupted the spermatid elongation and individualization processes. Furthermore, we observed abnormal morphology and activity of mitochondrial derivatives in the elongating spermatids of RpS3-knockdown testes, which could cause the failure of axoneme elongation. We also found that RpS3 RNAi inhibited the formation of the individualization complex that takes charge of disassociating the spermatid bundle. In addition, excessive apoptotic cells were detected in the RpS3-knockdown testes, possibly to clean the defective spermatids. Together, our data demonstrated that RpS3 plays an important role in regulating spermatid elongation and individualization processes and, therefore, is required for normal Drosophila spermatogenesis.
Collapse
|
11
|
Ding Y, Fan B, Zhu C, Chen Z. Shared and Related Molecular Targets and Actions of Salicylic Acid in Plants and Humans. Cells 2023; 12:219. [PMID: 36672154 PMCID: PMC9856608 DOI: 10.3390/cells12020219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Salicylic acid (SA) is a phenolic compound produced by all plants that has an important role in diverse processes of plant growth and stress responses. SA is also the principal metabolite of aspirin and is responsible for many of the anti-inflammatory, cardioprotective and antitumor activities of aspirin. As a result, the number of identified SA targets in both plants and humans is large and continues to increase. These SA targets include catalases/peroxidases, metabolic enzymes, protein kinases and phosphatases, nucleosomal and ribosomal proteins and regulatory and signaling proteins, which mediate the diverse actions of SA in plants and humans. While some of these SA targets and actions are unique to plants or humans, many others are conserved or share striking similarities in the two types of organisms, which underlie a host of common biological processes that are regulated or impacted by SA. In this review, we compare shared and related SA targets and activities to highlight the common nature of actions by SA as a hormone in plants versus a therapeutic agent in humans. The cross examination of SA targets and activities can help identify new actions of SA and better explain their underlying mechanisms in plants and humans.
Collapse
Affiliation(s)
- Yuanyuan Ding
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Baofang Fan
- Department of Botany and Plant Pathology and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Department of Botany and Plant Pathology and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907-2054, USA
| |
Collapse
|
12
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
13
|
Ahn WS, Kim TS, Park YJ, Park YK, Kim HD, Kim J. Production, characterization, and epitope mapping of monoclonal antibodies of ribosomal protein S3 (rpS3). Anim Cells Syst (Seoul) 2021; 25:323-336. [PMID: 34745438 PMCID: PMC8567880 DOI: 10.1080/19768354.2021.1980100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ribosomal protein S3 (rpS3), a member of 40S small ribosomal subunit, is a multifunctional protein with various extra-ribosomal functions including DNA repair endonuclease activity and is secreted from cancer cells. Therefore, antibodies with high specificity against rpS3 protein could be useful cancer biomarkers. In this study, polyclonal antibody (pAb) and monoclonal antibodies (mAbs) were raised against rpS3 protein and epitope mapping was performed for each antibody; the amino acid residues of rpS3 were scanned from amino acid 185 to 243 through peptide scanning to reveal the epitopes of each mAb. Results showed that pAb R2 has an epitope from amino acid 203 to 230, mAb M7 has an epitope from amino acid 213 to 221, and mAb M8 has an epitope from amino acid 197 to 219. Taken together, novel mAbs and pAb against rpS3 were raised and mapped against rpS3 with different specific epitopes.
Collapse
Affiliation(s)
- Woo-Sung Ahn
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Tae-Sung Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Yong Jun Park
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Young Kwang Park
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Hag Dong Kim
- HAEL Lab, Korea University, Seoul, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea.,HAEL Lab, Korea University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Gueiderikh A, Maczkowiak-Chartois F, Rosselli F. A new frontier in Fanconi anemia: From DNA repair to ribosome biogenesis. Blood Rev 2021; 52:100904. [PMID: 34750031 DOI: 10.1016/j.blre.2021.100904] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
Described by Guido Fanconi almost 100 years ago, Fanconi anemia (FA) is a rare genetic disease characterized by developmental abnormalities, bone marrow failure (BMF) and cancer predisposition. The proteins encoded by FA-mutated genes (FANC proteins) and assembled in the so-called FANC/BRCA pathway have key functions in DNA repair and replication safeguarding, which loss leads to chromosome structural aberrancies. Therefore, since the 1980s, FA has been considered a genomic instability and chromosome fragility syndrome. However, recent findings have demonstrated new and unexpected roles of FANC proteins in nucleolar homeostasis and ribosome biogenesis, the alteration of which impacts cellular proteostasis. Here, we review the different cellular, biochemical and molecular anomalies associated with the loss of function of FANC proteins and discuss how these anomalies contribute to BMF by comparing FA to other major inherited BMF syndromes. Our aim is to determine the extent to which alterations in the DNA damage response in FA contribute to BMF compared to the consequences of the loss of function of the FANC/BRCA pathway on the other roles of the pathway.
Collapse
Affiliation(s)
- Anna Gueiderikh
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Frédérique Maczkowiak-Chartois
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Filippo Rosselli
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| |
Collapse
|