1
|
Jay TR, Kang Y, Ouellet-Massicotte V, Micael MKB, Kacouros-Perkins VL, Chen J, Sheehan A, Freeman MR. Developmental and age-related synapse elimination is mediated by glial Croquemort. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600214. [PMID: 39026803 PMCID: PMC11257470 DOI: 10.1101/2024.06.24.600214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Neurons and glia work together to dynamically regulate neural circuit assembly and maintenance. In this study, we show Drosophila exhibit large-scale synapse formation and elimination as part of normal CNS circuit maturation, and that glia use conserved molecules to regulate these processes. Using a high throughput ELISA-based in vivo screening assay, we identify new glial genes that regulate synapse numbers in Drosophila in vivo, including the scavenger receptor ortholog Croquemort (Crq). Crq acts as an essential regulator of glial-dependent synapse elimination during development, with glial Crq loss leading to excess CNS synapses and progressive seizure susceptibility in adults. Loss of Crq in glia also prevents age-related synaptic loss in the adult brain. This work provides new insights into the cellular and molecular mechanisms that underlie synapse development and maintenance across the lifespan, and identifies glial Crq as a key regulator of these processes.
Collapse
|
2
|
Xia X, Li Y. A new GRAB sensor reveals differences in the dynamics and molecular regulation between neuropeptide and neurotransmitter release. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595424. [PMID: 38826473 PMCID: PMC11142204 DOI: 10.1101/2024.05.22.595424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The co-existence and co-transmission of neuropeptides and small molecule neurotransmitters in the same neuron is a fundamental aspect of almost all neurons across various species. However, the differences regarding their in vivo spatiotemporal dynamics and underlying molecular regulation remain poorly understood. Here, we developed a GPCR-activation-based (GRAB) sensor for detecting short neuropeptide F (sNPF) with high sensitivity and spatiotemporal resolution. Furthermore, we explore the differences of in vivo dynamics and molecular regulation between sNPF and acetylcholine (ACh) from the same neurons. Interestingly, the release of sNPF and ACh shows different spatiotemporal dynamics. Notably, we found that distinct synaptotagmins (Syt) are involved in these two processes, as Syt7 and Sytα for sNPF release, while Syt1 for ACh release. Thus, this new GRAB sensor provides a powerful tool for studying neuropeptide release and providing new insights into the distinct release dynamics and molecular regulation between neuropeptides and small molecule neurotransmitters.
Collapse
Affiliation(s)
- Xiju Xia
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies (AAIS), and Peking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing, 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies (AAIS), and Peking University–Tsinghua University–National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing, 100871, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
3
|
Shiao MS, Liu ST, Siriwatcharapibool G, Thongpradit S, Khunpanich P, Tong SK, Huang CH, Jinawath N, Chou MY. Conserved expression of the zebrafish syt4 gene in GABAergic neurons in the cerebellum of adult fishes revealed by mammalian SYT4 immunoreactive-like signals. Heliyon 2024; 10:e30575. [PMID: 38765140 PMCID: PMC11098836 DOI: 10.1016/j.heliyon.2024.e30575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Synaptotagmin 4 (syt4) belongs to the synaptotagmin protein family, which has 17 and 28 family members in human and zebrafish, respectively. In zebrafish and rodents, syt4 is known to express abundantly in the entire central nervous system in the early developmental stages. In adult rodents, the gene expression shifts to be predominant in the cerebellum, mostly in Purkinje cells, a type of GABAergic neurons. However, there is no report of the expression pattern of syt4 in the adult zebrafish brain. Therefore, we hypothesize that the expression of syt4 is conserved in adult zebrafish and is specific to the GABAergic neurons, likely Purkinje cells, in the cerebellum. To examine the hypothesis, we first show that only one copy of syt4 gene remains in the zebrafish genome, and it is orthologous to the gene in other vertebrates. We further observe mammalian SYT4 antibody immunoreactive-like (mSYT4-ir) signals in several structures in the hindbrain including the medial divisions of the valvula cerebelli and the corpus cerebelli. In addition, our observations indicate the presence of mSYT4-ir signals in GABAergic neurons, most notably in the Purkinje cell layer of the molecular layer in the aforementioned structures. Conversely, mSYT4-ir signals are not observed in glutamatergic or cholinergic neurons. Therefore, we deduce that the syt4 gene in zebrafish exhibits a homologous expression pattern to those of previously studied vertebrate species, which is revealed by the positive immunoreactive-like signals of mammalian SYT4 antibodies.
Collapse
Affiliation(s)
- Meng-Shin Shiao
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Sian-Tai Liu
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | | | - Supranee Thongpradit
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Punnakorn Khunpanich
- International College, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Sok-Keng Tong
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Hsuan Huang
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Integrative Computational Bioscience (ICBS) Center, Mahidol University, Nakhon Pathom, 73170, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
4
|
Wang P, Tong K, Li Y, Li X, Zhang Y, Gu J, Lei P, Yan S, Hu P. The role and mechanism of HIF-1α-mediated glypican-3 secretion in hypoxia-induced tumor progression in hepatocellular carcinoma. Cell Signal 2024; 114:111007. [PMID: 38081444 DOI: 10.1016/j.cellsig.2023.111007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 01/01/2024]
Abstract
OBJECTIVE To explore the expression and secretion mechanism of glypican-3 (GPC3) in hepatocellular carcinoma (HCC) cells under hypoxic conditions, and its role in tumor progression. METHODS Huh7 cells with and without the knockdown of hypoxia-inducible factor 1-alpha (HIF-1α) were cultured under 1% O2 for varying durations to induce hypoxia. The expression levels of GPC3, HSP70, CD63, STX11 and SYT7 in the cytoplasm and exosomes of Huh7 cells were evaluated by western blotting and immunofluorescence. GPC3 protein expression was further measured in cells treated with GW4869 under hypoxic conditions. Huh7 cells and human umbilical vein endothelial cells (HUVECs) were cultured with the exosomes extracted from the control and GPC3-knockdown cells, the cell proliferation, migration, epithelial-mesenchymal transition (EMT), invasion, and in vitro angiogenesis were analyzed. Tumor xenografts were established to assess the role of GPC3-deficient exosomes in tumor growth. RESULTS Hypoxic culture conditions downregulated GPC3, STX11 and SYT7 protein levels in the Huh7 cells and upregulated GPC3 mRNA, and also increased GPC3 protein expression in the exosomes. HIF-1α knockdown, as well as treatment with GW4869, upregulated GPC3 protein in the Huh7 cells grown under 1% O2, but downregulated exosomal GPC3. Furthermore, exosomes derived from the GPC3-knockdown cells inhibited the proliferation and migration of Huh7 cells, decreased the expression of N-cadherin, vimentin, β-catenin, c-Myc and cyclin D1, and increased that of E-cadherin. Likewise, the GPC3-deficient exosomes also suppressed the invasion and tube formation ability of the HUVECs compared to that of control cells. Consistent with the in vitro results, the GPC3-deficient exosomes also repressed tumor growth in vivo. CONCLUSION Hypoxia promoted secretion of exosomal GPC3 through the activation of HIF-1α. GPC3-deficient exosomes inhibited the proliferation, migration and EMT of HCC cells via the Wnt/β-catenin signaling pathway, and suppressed the angiogenic potential of HUVECs. This provided a novel understanding of the role of exosomal GPC3 in HCC progression.
Collapse
Affiliation(s)
- Pingfeng Wang
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000. China; Biomedical Engineering College, Hubei University of Medicine, Shiyan, Hubei, 442000. China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000. China
| | - Kun Tong
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000. China; Department of Laboratory Medicine, Huanggang Central Hospital, China
| | - Ying Li
- Department of Blood Transfusion, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000. China
| | - Xuejie Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000. China; Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of HCC, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000.China
| | - Yuan Zhang
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, Hubei, 442000. China
| | - Jiangxue Gu
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, Hubei, 442000. China
| | - Panwei Lei
- Hospital of Stomatology Wuhan University, Wuhan, Hubei, 430000. China
| | - Shirong Yan
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000. China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000. China.
| | - Pei Hu
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000. China; Biomedical Engineering College, Hubei University of Medicine, Shiyan, Hubei, 442000. China.
| |
Collapse
|
5
|
Brija EA, Guan Z, Jetti SK, Littleton JT. Stochastic RNA editing of the Complexin C-terminus within single neurons regulates neurotransmitter release. Cell Rep 2023; 42:113152. [PMID: 37717212 PMCID: PMC10591831 DOI: 10.1016/j.celrep.2023.113152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
Neurotransmitter release requires assembly of the SNARE complex fusion machinery, with multiple SNARE-binding proteins regulating when and where synaptic vesicle fusion occurs. The presynaptic protein Complexin (Cpx) controls spontaneous and evoked neurotransmitter release by modulating SNARE complex zippering. Although the central SNARE-binding helix is essential, post-translational modifications to Cpx's C-terminal membrane-binding amphipathic helix regulate its ability to control synaptic vesicle fusion. Here, we demonstrate that RNA editing of the Cpx C-terminus modifies its ability to clamp SNARE-mediated fusion and alters presynaptic output. RNA editing of Cpx across single neurons is stochastic, generating up to eight edit variants that fine tune neurotransmitter release by altering the subcellular localization and clamping properties of the protein. Similar stochastic editing rules for other synaptic genes were observed, indicating editing variability at single adenosines and across multiple mRNAs generates unique synaptic proteomes within the same population of neurons to fine tune presynaptic output.
Collapse
Affiliation(s)
- Elizabeth A Brija
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhuo Guan
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Suresh K Jetti
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
6
|
Brija EA, Guan Z, Jetti SK, Littleton JT. Stochastic RNA editing of the Complexin C-terminus within single neurons regulates neurotransmitter release. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542887. [PMID: 37398117 PMCID: PMC10312600 DOI: 10.1101/2023.05.30.542887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Neurotransmitter release requires assembly of the SNARE complex fusion machinery, with multiple SNARE-binding proteins regulating this process to control when and where synaptic vesicle fusion occurs. Complexin (Cpx) controls spontaneous and evoked neurotransmitter release by modulating SNARE complex zippering. Although the central SNARE-binding helix is essential, post-translational modifications to Cpx's C-terminal membrane-binding amphipathic helix modulate its activity. Here we demonstrate that RNA editing of the Cpx C-terminus regulates its ability to clamp SNARE-mediated fusion and alters presynaptic output. RNA editing of Cpx within single neurons is stochastic, generating up to eight edit variants that fine-tune neurotransmitter release by changing the subcellular localization and clamping properties of the protein. Similar editing rules for other synaptic genes were observed, indicating stochastic editing at single adenosines and across multiple mRNAs can generate unique synaptic proteomes within the same population of neurons to fine-tune presynaptic output.
Collapse
Affiliation(s)
- Elizabeth A Brija
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Zhuo Guan
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Suresh K Jetti
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
7
|
MacLeod KM, Pandya S. Expression and Neurotransmitter Association of the Synaptic Calcium Sensor Synaptotagmin in the Avian Auditory Brain Stem. J Assoc Res Otolaryngol 2022; 23:701-720. [PMID: 35999323 PMCID: PMC9789253 DOI: 10.1007/s10162-022-00863-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 07/12/2022] [Indexed: 01/31/2023] Open
Abstract
In the avian auditory brain stem, acoustic timing and intensity cues are processed in separate, parallel pathways via the two divisions of the cochlear nucleus, nucleus angularis (NA) and nucleus magnocellularis (NM). Differences in excitatory and inhibitory synaptic properties, such as release probability and short-term plasticity, contribute to differential processing of the auditory nerve inputs. We investigated the distribution of synaptotagmin, a putative calcium sensor for exocytosis, via immunohistochemistry and double immunofluorescence in the embryonic and hatchling chick brain stem (Gallus gallus). We found that the two major isoforms, synaptotagmin 1 (Syt1) and synaptotagmin 2 (Syt2), showed differential expression. In the NM, anti-Syt2 label was strong and resembled the endbulb terminals of the auditory nerve inputs, while anti-Syt1 label was weaker and more punctate. In NA, both isoforms were intensely expressed throughout the neuropil. A third isoform, synaptotagmin 7 (Syt7), was largely absent from the cochlear nuclei. In nucleus laminaris (NL, the target nucleus of NM), anti-Syt2 and anti-Syt7 strongly labeled the dendritic lamina. These patterns were established by embryonic day 18 and persisted to postnatal day 7. Double-labeling immunofluorescence showed that Syt1 and Syt2 were associated with vesicular glutamate transporter 2 (VGluT2), but not vesicular GABA transporter (VGAT), suggesting that these Syt isoforms were localized to excitatory, but not inhibitory, terminals. These results suggest that Syt2 is the major calcium binding protein underlying excitatory neurotransmission in the timing pathway comprising NM and NL, while Syt2 and Syt1 regulate excitatory transmission in the parallel intensity pathway via cochlear nucleus NA.
Collapse
Affiliation(s)
- Katrina M MacLeod
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| | - Sangeeta Pandya
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
8
|
Widmer S, Seefried FR, von Rohr P, Häfliger IM, Spengeler M, Drögemüller C. Associated regions for multiple birth in Brown Swiss and Original Braunvieh cattle on chromosomes 15 and 11. Anim Genet 2022; 53:557-569. [PMID: 35748198 PMCID: PMC9539900 DOI: 10.1111/age.13229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 11/30/2022]
Abstract
Twin and multiple births have negative effects on the performance and health of cows and calves. To decipher the genetic architecture of this trait in the two Swiss Brown Swiss cattle populations, we performed various association analyses based on de-regressed breeding values. Genome-wide association analyses were executed using ~600 K imputed SNPs for the maternal multiple birth trait in ~3500 Original Braunvieh and ~7800 Brown Swiss animals. Significantly associated QTL were observed on different chromosomes for both breeds. We have identified on chromosome 11 a QTL that explains ~6% of the total genetic variance of the maternal multiple birth trait in Original Braunvieh. For the Brown Swiss breed, we have discovered a QTL on chromosome 15 that accounts for ~4% of the total genetic variance. For Original Braunvieh, subsequent haplotype analysis revealed a 90-kb window on chromosome 11 at 88 Mb, where a likely regulatory region is located close to the ID2 gene. In Brown Swiss, a 130-kb window at 75 Mb on chromosome 15 was identified. Analysis of whole-genome sequence data using linkage-disequilibrium estimation revealed possible causal variants for the identified QTL. A presumably regulatory variant in the non-coding 5' region of the ID2 gene was strongly associated with the haplotype for Original Braunvieh. In Brown Swiss, an intron variant in PRDM11, one 3' UTR variant in SYT13 and three intergenic variants 5' upstream of SYT13 were identified as candidate variants for the trait multiple birth maternal. In this study, we report for the first time QTL for the trait of multiple births in Original Braunvieh and Brown Swiss cattle. Moreover, our findings are another step towards a better understanding of the complex genetic architecture of this polygenic trait.
Collapse
Affiliation(s)
- Sarah Widmer
- Vetsuisse Faculty, Institute of GeneticsUniversity of BernBernSwitzerland
| | | | | | - Irene M. Häfliger
- Vetsuisse Faculty, Institute of GeneticsUniversity of BernBernSwitzerland
| | | | - Cord Drögemüller
- Vetsuisse Faculty, Institute of GeneticsUniversity of BernBernSwitzerland
| |
Collapse
|
9
|
Chakravorty A, Sharma A, Sheeba V, Manjithaya R. Glutamatergic Synapse Dysfunction in Drosophila Neuromuscular Junctions Can Be Rescued by Proteostasis Modulation. Front Mol Neurosci 2022; 15:842772. [PMID: 35909443 PMCID: PMC9337869 DOI: 10.3389/fnmol.2022.842772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the nervous system, and the Drosophila glutamatergic neuromuscular junctions (NMJs) offer a tractable platform to understand excitatory synapse biology both in health and disease. Synaptopathies are neurodegenerative diseases that are associated with synaptic dysfunction and often display compromised proteostasis. One such rare, progressive neurodegenerative condition, Spinocerebellar Ataxia Type 3 (SCA3) or Machado-Joseph Disease (MJD), is characterized by cerebellar ataxia, Parkinsonism, and degeneration of motor neuron synapses. While the polyQ repeat mutant protein ataxin-3 is implicated in MJD, it is unclear how it leads to impaired synaptic function. In this study, we indicated that a Drosophila model of MJD recapitulates characteristics of neurodegenerative disorders marked by motor neuron dysfunction. Expression of 78 polyQ repeats of mutant ataxin-3 protein in Drosophila motor neurons resulted in behavioral defects, such as impaired locomotion in both larval and adult stages. Furthermore, defects in eclosion and lifespan were observed in adult flies. Detailed characterization of larval glutamatergic neuromuscular junctions (NMJs) revealed defects in morphological features along with compromised NMJ functioning. Autophagy, one of the key proteostasis pathways, is known to be impaired in the case of several synaptopathies. Our study reveals that overexpression of the autophagy-related protein Atg8a rescued behavioral defects. Thus, we present a model for glutamatergic synapse dysfunction that recapitulates synaptic and behavioral deficits and show that it is an amenable system for carrying out genetic and chemical biology screens to identify potential therapeutic targets for synaptopathies.
Collapse
Affiliation(s)
- Anushka Chakravorty
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Ankit Sharma
- Chronobiology and Behavioural Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Vasu Sheeba
- Chronobiology and Behavioural Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- *Correspondence: Vasu Sheeba
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Ravi Manjithaya
| |
Collapse
|
10
|
Jiao W, Spreemann G, Ruchti E, Banerjee S, Vernon S, Shi Y, Stowers RS, Hess K, McCabe BD. Intact Drosophila central nervous system cellular quantitation reveals sexual dimorphism. eLife 2022; 11:74968. [PMID: 35801638 PMCID: PMC9270032 DOI: 10.7554/elife.74968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/09/2022] [Indexed: 12/15/2022] Open
Abstract
Establishing with precision the quantity and identity of the cell types of the brain is a prerequisite for a detailed compendium of gene and protein expression in the central nervous system (CNS). Currently, however, strict quantitation of cell numbers has been achieved only for the nervous system of Caenorhabditis elegans. Here, we describe the development of a synergistic pipeline of molecular genetic, imaging, and computational technologies designed to allow high-throughput, precise quantitation with cellular resolution of reporters of gene expression in intact whole tissues with complex cellular constitutions such as the brain. We have deployed the approach to determine with exactitude the number of functional neurons and glia in the entire intact larval Drosophila CNS, revealing fewer neurons and more glial cells than previously predicted. We also discover an unexpected divergence between the sexes at this juvenile developmental stage, with the female CNS having significantly more neurons than that of males. Topological analysis of our data establishes that this sexual dimorphism extends to deeper features of CNS organisation. We additionally extended our analysis to quantitate the expression of voltage-gated potassium channel family genes throughout the CNS and uncover substantial differences in abundance. Our methodology enables robust and accurate quantification of the number and positioning of cells within intact organs, facilitating sophisticated analysis of cellular identity, diversity, and gene expression characteristics.
Collapse
Affiliation(s)
- Wei Jiao
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology
| | - Gard Spreemann
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology
| | - Evelyne Ruchti
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology
| | - Soumya Banerjee
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology
| | - Samuel Vernon
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology
| | - Ying Shi
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology
| | - R Steven Stowers
- Department of Microbiology and Cell Biology, Montana State University
| | - Kathryn Hess
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology
| | - Brian D McCabe
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology
| |
Collapse
|
11
|
Anqueira-González A, Acevedo-Gonzalez JP, Montes-Mercado A, Irizarry-Hernández C, Fuenzalida-Uribe NL, Ghezzi A. Transcriptional Correlates of Chronic Alcohol Neuroadaptation in Drosophila Larvae. Front Behav Neurosci 2021; 15:768694. [PMID: 34803626 PMCID: PMC8599819 DOI: 10.3389/fnbeh.2021.768694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022] Open
Abstract
When presented with the choice, Drosophila melanogaster females will often prefer to lay eggs on food containing a significant amount of alcohol. While, in some cases, this behavioral decision can provide a survival advantage to the developing larvae, it can also lead to developmental and cognitive problems. Alcohol consumption can affect executive functions, episodic memory, and other brain function capacities. However, in the fruit fly, the initial cognitive effects of alcohol consumption have been shown to reverse upon persistent exposure to alcohol. Using an olfactory conditioning assay where an odorant is implemented as a conditioned stimulus and paired with a heat shock as an unconditioned stimulus, a previous study has shown that when exposed to a short acute dose of alcohol, Drosophila larvae can no longer learn this association. Interestingly, upon prolonged chronic alcohol exposure, larvae seem to successfully avoid the conditioned stimulus just as well as control alcohol-naive larvae, suggestive of alcohol-induced neuroadaptations. However, the mechanisms by which Drosophila adapt to the presence of alcohol remains unknown. In this study, we explore the transcriptional correlates of neuroadaptation in Drosophila larvae exposed to chronic alcohol to understand the genetic and cellular components responsible for this adaptation. For this, we employed RNA sequencing technology to evaluate differences in gene expression in the brain of larvae chronically exposed to alcohol. Our results suggest that alcohol-induced neuroadaptations are modulated by a diverse array of synaptic genes within the larval brain through a series of epigenetic modulators.
Collapse
Affiliation(s)
- Amanda Anqueira-González
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan, PR, United States
| | - Jenny P Acevedo-Gonzalez
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan, PR, United States
| | - Airined Montes-Mercado
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan, PR, United States
| | | | | | - Alfredo Ghezzi
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan, PR, United States
| |
Collapse
|
12
|
Sauvola CW, Littleton JT. SNARE Regulatory Proteins in Synaptic Vesicle Fusion and Recycling. Front Mol Neurosci 2021; 14:733138. [PMID: 34421538 PMCID: PMC8377282 DOI: 10.3389/fnmol.2021.733138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
Membrane fusion is a universal feature of eukaryotic protein trafficking and is mediated by the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) family. SNARE proteins embedded in opposing membranes spontaneously assemble to drive membrane fusion and cargo exchange in vitro. Evolution has generated a diverse complement of SNARE regulatory proteins (SRPs) that ensure membrane fusion occurs at the right time and place in vivo. While a core set of SNAREs and SRPs are common to all eukaryotic cells, a specialized set of SRPs within neurons confer additional regulation to synaptic vesicle (SV) fusion. Neuronal communication is characterized by precise spatial and temporal control of SNARE dynamics within presynaptic subdomains specialized for neurotransmitter release. Action potential-elicited Ca2+ influx at these release sites triggers zippering of SNAREs embedded in the SV and plasma membrane to drive bilayer fusion and release of neurotransmitters that activate downstream targets. Here we discuss current models for how SRPs regulate SNARE dynamics and presynaptic output, emphasizing invertebrate genetic findings that advanced our understanding of SRP regulation of SV cycling.
Collapse
Affiliation(s)
- Chad W Sauvola
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|